Inquisitive minds have wondered why living things tend to look like their parents and why some families are affected by certain diseases. However, there was a lack of understanding of the causal mechanisms. The early popular views included the “blending” of parental traits in their offspring [3]. An alternative theory proposed by Mendel based on the results of his experiments on pea plants challenged the existing theories. Using data from large-scale experiments on pea plants followed by a pioneering systematic mathematical analysis, Mendel was able to find a pattern for the transmission of contrasting trait pairs through generations. His experiments lead to the conclusion that each trait is determined by pairs of “antagonistic elements”, one dominates over the other in their manifestation, and rather than blending, they “segregate” among the progeny, and thus, are “particulate” in nature [4]. The Mendelian theory of inheritance also suggests that the assortment of one trait is independent of that of another trait. These particulate units of inheritance are now known as “genes”, and the antagonistic elements resulting from the variations in DNA sequences of a gene are called “alleles”. Unfortunately, Mendel’s work was not widely accepted during his lifetime. However, the rediscovery of Mendel’s work through independent experiments by Correns, de Vries, and Tschermak in 1900 ultimately established the principles of genetic inheritance and hailed Mendel as the “Father of Genetics”.