Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci 113(21):5970–5975
Article
CAS
Google Scholar
Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum. 5(4):4–5
Article
Google Scholar
de Hoog GS, Ahmed SA, Danesi P, Guillot J, Gräser Y (2018) Distribution of pathogens and outbreak fungi in the fungal kingdom. In: Seyedmousavi S, de Hoog GS, Guillot J, Verweij P (eds) Emerging and epizootic fungal infections in animals. Springer, Dordrecht, pp 3–16
Chapter
Google Scholar
Hyde KD, Abdullah MSA, Andersen B, Boekhout T, Buzina W, Dawson TL Jr, Eastwood DC, Jones EBG, de Hoog S, Kang Y, Longcore JE, Richard-Forget F, Stadler M, Theelen B, Thongbai B, Tsui CKM (2018) The world’s ten most feared fungi. Fungal Diversity 93:161–194
Article
Google Scholar
Atiencia-Carrera MB, Cabezas-Mera FS, Tejera E, Machado A (2022) Prevalence of biofilms in Candida spp bloodstream infections: a metaanalysis. PLoS ONE 17(2):e0263522
Article
CAS
Google Scholar
Lopes JP, Lionakis MS (2022) Pathogenesis and virulence of Candida albicans. Virulence 13(1):89–121
Article
CAS
Google Scholar
Bates S (2008) Pathogenic fungi: insights in molecular biology. Expert Rev Anti Infect Ther 6(5):591–592
Article
Google Scholar
Kainz K, Bauer MA, Madeo F, Carmona-Gutierrez D (2020) Fungal infections in humans: the silent crisis. Microbial Cell 7(6):143–145
Article
Google Scholar
Xiao Z, Wang Q, Zhu F, An Y (2019) Epidemiology, species distribution, antifungal susceptibility and mortality risk factors of candidemia among critically ill patients: a retrospective study from 2011 to 2017 in a teaching hospital in China. Antimicrob Resist Infect Control 8:89
Article
Google Scholar
Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges, and promising strategies. Front Med (Lausanne) 5:28
Article
Google Scholar
Lo HJ, Kohler JR, DiDomenico B, Loebenberg L, Cacciapuoti A, Fink GR (1997) Nonfilamentous C albicans mutants are avirulent. Cell 90:939–949
Article
CAS
Google Scholar
Nunes CS, Kumar V (2018) Enzymes in human and animal nutrition: principles and perspectives. Academic Press 267–277
Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9(7):327–335
Article
CAS
Google Scholar
Kurtzman CP, Meyerozyma Kurtzman & M, Suzuki (2010) In Kurtzman CP, Fell JW, Boekhout T, eds. The yeast. 5th ed. London, Elsevier; 2011; p 621–624.
Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11(7):512–524
Article
CAS
Google Scholar
Santos MA, Gomes AC, Santos MC, Carreto LC, Moura GR (2011) The genetic code of the fungal CTG clade. CR Biol 334(8):607–611
Article
CAS
Google Scholar
Sibirny AA, Boretsky YR (2009) Pichia guilliermondii. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 113–134
Chapter
Google Scholar
Oslan SN, Salleh AB, Rahman RNZRA, Basri M, Chor ALT (2012) Locally isolated yeasts from Malaysia: identification phylogenetic study and characterization. Acta Biochim Pol 59(2):225–229
Article
CAS
Google Scholar
Oslan SN, Salleh AB, Rahman RNZRA, Leow TC, Sukamat H, Basri M (2015) A newly isolated yeast as an expression host for recombinant lipase. Cell Molecul Biol Lett 20(2):279–293
CAS
Google Scholar
Valli M, Tatto NE, Peymann A, Gruber C, Landes N, Ekker H, Thallinger GG, Mattanovich D, Gasser B, Graf AB (2016) Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function. FEMS Yeast Res 16(6):fow051
Article
Google Scholar
Mahyon NI (2017) Structural investigation of alcohol oxidase from Meyerozyma guilliermondii and the use of its promoter for recombinant protein expression. Master's thesis. Universiti Putra Malaysia
Nasir NSM, Leow CT, Oslan SNH, Salleh AB, Oslan SN (2020) Molecular expression of a recombinant thermostable bacterial amylase from Geobacillus stearothermophilus SR74 using methanol-free Meyerozyma guilliermondii strain SO yeast system. BioResources 15(2):3161–3172
Article
CAS
Google Scholar
Castillo-Bejarano JI, Tamez-Rivera O, Mirabal-García M, Luengas-Bautista M, Montes-Figueroa AG, Fortes-Gutiérrez S, González-Saldaña N (2020) Invasive candidiasis due to Candida guilliermondii complex: epidemiology and antifungal susceptibility testing from a third-level pediatric center in Mexico. J Pediatric Infectious Diseases Soc 9(3):404–406
Article
CAS
Google Scholar
Deorukhkar SC, Saini S, Mathew S (2014) Non-albicans Candida infection: an emerging threat. Interdisciplinary perspectives on infectious diseases
Girmenia C, Pizzarelli G, Cristini F, Barchiesi F, Spreghini E, Scalise G, Martino P (2006) Candida guilliermondii fungemia in patients with hematologic malignancies. J Clin Microbiol 44(7):2458–2464
Article
CAS
Google Scholar
Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, Rodloff A, Fu W, Ling TA (2010) Results from the ARTEMIS DISK global antifungal surveillance study 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole determined by CLSI standardized disk diffusion. J Clinic Microbiol 48(4):1366–1377
Article
CAS
Google Scholar
Tseng TY, Chen TC, Ho CM, Lin PC, Chou CH, Tsai CT, Wang JH, Chi CY, Ho MW (2017) Clinical features, antifungal susceptibility and outcome of Candida guilliermondii fungemia: an experience in a tertiary hospital in mid-Taiwan. J Microbiol Immunol Infect 51:552–558
Article
Google Scholar
Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99
Article
Google Scholar
Castanheira M, Woosley LN, Diekema DJ, Jones RN, Pfaller MA (2013) Candida guilliermondii and other species of Candida misidentified as Candida famata: assessment by vitek 2, DNA sequencing analysis, and matrix-assisted laser desorption ionization-time of flight mass spectrometry in two global antifungal surveillance programs. J Clin Microbiol 51(1):117–124
Article
CAS
Google Scholar
Fan S, Li C, Bing J, Huang G, Du H (2020) Discovery of the diploid form of the emerging fungal pathogen Candida auris. ACS Infectious Diseases 6(10):2641–2646
Article
CAS
Google Scholar
Navarro-Arias MJ, Hernández-Chávez MJ, Garcia-Carnero LC, Amezcua-Hernandez DG, Lozoya-Perez NE, Estrada-Mata E, Martinez-Duncker I, Franco B, Mora-Montes HM (2019) Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infection Drug Resistance 12:783–794
Article
CAS
Google Scholar
Mukherjee S, Mukherjee N, Saini P, Gayen P, Roy P, Babu SPS (2014) Molecular evidence on the occurrence of co-infection with Pichia guilliermondii and Wuchereria bancrofti in two filarial endemic districts of India. Infectious Disease Poverty 3(13):1–10
Google Scholar
Ruiz-Herrera J, Elorza MV, Valentín E, Sentandreu R (2006) Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6(1):14–29
Article
CAS
Google Scholar
Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN (2021) Opportunistic yeast pathogen Candida spp.: secreted and membrane-bound virulence factors. Med Mycol 59(12):1127–1144
Article
CAS
Google Scholar
Marcos-Zambrano LJ, Puig-Asensio M, Pérez-García F, Escribano P, Sánchez-Carrillo C, Zaragoza O, Padilla B, Cuenca-Estrella M, Almirante B, Martín-Gómez MT, Muñoz P, Bouza E, Guinea J (2017) Candida guilliermondii complex is characterized by high antifungal resistance but low mortality in 22 cases of candidemia. Antimicrob Agents Chemother 61(7):e00099-e117
Article
CAS
Google Scholar
Chaves ALS, Trilles L, Alves GM, Figueiredi-Carvalho MHG, Brito-Santos F, Coelho RA, Martins IS, Almeida-Paes R (2020) A case-series of bloodstream infections caused by the Meyerozyma guilliermondii species complex at a reference center of oncology in Brazil. Med Mycol 59(3):235–243
Article
Google Scholar
Radzi SNF (2020) Toxicity studies of Meyerozyma guilliermondii strain SO using zebrafish as a model. Universiti Putra Malaysia, Malaysia
Google Scholar
Santos ALS, Soares RM (2005) Candida guilliermondii isolated from HIV-infected human secretesa 50 kDa serine proteinase that cleaves a broad spectrum of proteinaceous substrates. FEMS Immunol Med Microbiol 43(1):13–20
Article
Google Scholar
Estevez SV, Armitage A, Bates HJ, Harrison RJ, Buscaino A (2021) The genome of the CTG (Ser1) yeast Scheffersomyces stipitis is plastic. Am Soc Microbiol J 12(5):e1817
Google Scholar
Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13(1):122–143
Article
CAS
Google Scholar
Bill CA, Vines CM (2020) Phospholipase C. Adv Exp Med Biol 1131:215–242
Article
CAS
Google Scholar
Bennett DE, McCreary CE, Coleman DC (1998) Genetic characterization of a phospholipase C gene from Candida albicans: presence of homologous sequences in Candida species other than Candida albicans. Microbiology 144:55–72
Article
CAS
Google Scholar
Kunze D, Melzer I, Bennett D, Sanglard D, MacCallum D, Norskau J, Coleman DC, Odds FC, Schafer W, Hube B (2005) Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology 151:3381–3394
Article
CAS
Google Scholar
Bandana K, Jashandeep K, Jagdeep K (2018) Phospholipases in bacterial virulence and pathogenesis. Adv Biotechnol Microbiol 10(5):106–113
Google Scholar
Deepika D, Amarjeet S (2022) Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application. Crit Rev Biotechnol 42(1):106–124
Article
CAS
Google Scholar
Nakamura Y, Kanemaru K, Shoji M, Totoki K, Nakamura K, Nakaminami H, Nakase K, Noguchi N, Fukami K (2020) Phosphatidylinositol-specific phospholipase C enhances epidermal penetration by Staphylococcus aureus. Sci Rep 10:17845
Article
CAS
Google Scholar
Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62(19–20):2305–2316
Article
CAS
Google Scholar
Dolan JW, Bell AC, Hube B, Schaller M, Warner TF, Balish E (2004) Candida albicans PLD1 activity is required for full virulence. Med Mycol 42:439–447
Article
CAS
Google Scholar
Ponting CP, Kerr ID (1996) A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci Publ Protein Soc 5(5):914–922
Article
CAS
Google Scholar
Andrews S (2010) FastQC: A quality control tool for high throughput sequence data [Internet]. [cited 2018 Jun 1]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Hannon GJ (2010) FASTX-Toolkit [Internet]. [cited 2018 Jun 1]. Available from: http://hannonlab.cshl.edu/fastx_toolkit
Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829
Article
CAS
Google Scholar
Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964
Article
CAS
Google Scholar
Lagesen K, Hallin PF, Roedland EA, Stærfeldt H, Rognes T, Ussery DW (2007) RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res 35(9):3100–3108
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Article
CAS
Google Scholar
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18:1979–1990
Article
CAS
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212
Article
Google Scholar
Sewalt V, Shanahan D, Gregg L, La Marta J, Carrillo R (2016) The Generally Recognized as Safe (GRAS) process for industrial microbial enzymes. Ind Biotechnol 12(5):295–302
Article
Google Scholar
Singh DK, Tóth R, Gácser A (2020) Mechanisms of pathogenic Candida species to evade the host complement attack. Front Cell Infect Microbiol 10:94
Article
CAS
Google Scholar
Ohama T, Suzuku T, Mori M, Osawa S, Ueda T, Watanabe K, Nakase T (1993) Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21(17):4039–4045
Article
CAS
Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425
CAS
Google Scholar