Skip to main content

Identification and interaction analysis of molecular markers in myocardial infarction by bioinformatics and next-generation sequencing data analysis

Abstract

Background

Cardiovascular diseases are prevalent worldwide with any age, and it is characterized by sudden blockage of blood flow to heart and permanent damage to the heart muscle, whose cause and underlying molecular mechanisms are not fully understood. This investigation aimed to explore and identify essential genes and signaling pathways that contribute to the progression of MI.

Methods

The aim of this investigation was to use bioinformatics and next-generation sequencing (NGS) data analysis to identify differentially expressed genes (DEGs) with diagnostic and therapeutic potential in MI. NGS dataset (GSE132143) was downloaded from the Gene Expression Omnibus (GEO) database. DEGs between MI and normal control samples were identified using the DESeq2 R bioconductor tool. The gene ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed using g:Profiler. Next, four kinds of algorithms in the protein–protein interaction (PPI) were performed to identify potential novel biomarkers. Next, miRNA-hub gene regulatory network analysis and TF-hub gene regulatory network were constructed by miRNet and NetworkAnalyst database, and Cytoscape software. Finally, the diagnostic effectiveness of hub genes was predicted by receiver operator characteristic curve (ROC) analysis and AUC more than 0.800 was considered as having the capability to diagnose MI with excellent specificity and sensitivity.

Results

A total of 958 DEGs were identified, consisting of 480 up-regulated genes and 478 down-regulated genes. The enriched GO terms and pathways of the DEGs include immune system, neuronal system, response to stimulus and multicellular organismal process. Ten hub genes (namely cftr, cdk1, rps13, rps15a, rps27, notch1, mrpl12, nos2, ccdc85b and atn1) were obtained via protein–protein interaction analysis results. MiRNA-hub gene regulatory network and TF-hub gene regulatory network showed that hsa-mir-409-3p, hsa-mir-3200-3p, creb1 and tp63 might play an important role in the MI.

Conclusions

Analysis of next-generation sequencing dataset combined with global network information and validation presents a successful approach to uncover the risk hub genes and prognostic markers of MI. Our investigation identified four risk- and prognostic-related gene signatures, including cftr, cdk1, rps13, rps15a, rps27, notch1, mrpl12, nos2, ccdc85b and atn1. This gene sets contribute a new perspective to improve the diagnostic, prognostic, and therapeutic outcomes of MI.

Background

Myocardial infarction (MI) is one of the most commonly diagnosed cardiovascular diseases prevalent worldwide [1]. The clinical prevalence of MI is approximately 18 million people worldwide [1], and its main features such as the presence of sudden blockage of blood flow to heart and permanent damage to the heart muscle [2]. MI becomes the chief cause of morbidity and mortality all over the world [3]. Studies have revealed that the progression of MI is related to genetic factors [4], older age [5], smoking [6], hypertension [7], diabetes mellitus [8] and obesity [9]. However, the molecular pathogenesis of MI has not been explored comprehensively. In current years, molecular biomarkers were demonstrated highly useful as clinical tools for MI diagnosis [10, 11]. A key molecular target for diagnosis and reexamination is essential for therapeutic action and prognostic outcome of MI patients.

The diagnosis of MI, however, remains a challenge due to the complex clinical features and the lack of definitive diagnostic tests or biomarkers in the early stages. Several studies have described that significant molecular biomarkers in MI were identified as prognostic or therapeutic factors such as hmga1 [12], stxbp2 [13], ccl19 and ccl21 [14], nlrp3 [15] and cd14 [16]. Molecular biology investigation has identified numerous signaling pathways that contribute to the progression of MI, including, Nrf2/HO-1; TLR4/TNF-α signaling pathway [17], Wnt/β-catenin signaling pathway [18], β2AR, cAMP/PKA, and BDNF/TrkB signaling pathways [19], PTEN/PI3K/Akt signaling pathway [20] and TGF-β1/SMAD2 signaling pathway [21]. It is very essential to explore the molecular characteristics and mechanism of MI occurrence, advancement to contribute novel approach for the effective prevention, diagnosis and treatment of MI.

In current investigation, next-generation sequencing (NGS) technology based on high-throughput platforms has been extensively used to scrutinize and determine the encouraging biomarkers for diagnosis and prognosis of disease at the genome level. With the wide application of bioinformatics and NGS data analysis, a huge number of cores data have been produced, and most of the NGS data have been deposited and stored in public database Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) [24]. Bioinformatics and NGS data analysis have been carried out on cardiovascular diseases in recently years [22], and hundreds of differentially expressed genes (DEGs) have been obtained. In perspective of this, the plan of this investigation is to analyze NGS data related to the pathogenesis of MI from the public database, which provide novel understanding into the molecular mechanisms of MI.

Here, we analyzed the MI NGS dataset GSE132143 [23] was downloaded from the GEO database and performed the identification of differentially expressed genes (DEGs) between the MI samples and normal control samples. Afterward, gene ontology (GO) terms and REACTOME pathways linked with DEGs were marked to illuminate the gene enrichment in MI. A protein–protein interaction network (PPIN) was generated to resolve the hub genes linked with MI. Moreover, miRNA-hub gene regulatory network analysis and TF-hub gene regulatory network, and the miRNA and TFs were identified according to degree parameters. Finally, hub genes were validated via receiver operating characteristic curve (ROC) analysis. In brief, these outcomes determined that the most genes might have probable value in prognosis and diagnosis of MI.

Methods

Data resources

The GEO database is a national depository of genetic information databases of next-generation sequencing data. In this investigation, we retrieved NGS dataset GSE132143 [23] from the GEO database. GSE132143 (Platform GPL18573 Illumina NextSeq 500 (Homo sapiens)) comprised 20 MI samples and 12 normal control samples.

Identification of DEGs

DESeq2 of R/Bioconductor software package [25] was accessible to determine the DEGs between MI and normal control samples. The log-fold change (FC) and adjusted P-values (adj. P) were resolved. The adj. P using the Benjamini–Hochberg method with default values was enforced to accurate the probable false-positive results [26]. According standard statistical protocol or literature (logFC > 1 and logFc < −1) and adj.p.Val < 0.05 are significant up- and down-regulated genes selection. Genes that met the definite cut-off criteria of adj. P < 0.05 and |logFC|> 1.37 were marked as up-regulated DEGs and |logFC|< −1.89 was marked as down-regulated DEGs. We used a ggplot2 and gplot package of R/Bioconductor software to generate volcano plots and heatmap of the DEGs.

GO and REACTOME pathway enrichment analysis of DEGs

The DEGs with the strongest associations were selected for GO and REACTOME pathway enrichment analysis. Moreover, GO and REACTOME pathway enrichment analysis were used to further determine the potential functions of the essential genes associated in MI. To effectively examine the biological content behind DEGs, the g:Profiler (http://biit.cs.ut.ee/gprofiler/) [29] was used to gain the set of functional annotation. GO enrichment analysis (GO, http://www.geneontology.org) [27] is a broadly used tool for annotating genes with probable functions, such as biological process (BP), cellular component (CC), and molecular function (MF). REACTOME (https://reactome.org/) [28] pathway enrichment analysis is an efficient resource for analytical investigation of gene functions and linked high-level genome functional information. p < 0.05 was marked as the threshold value.

Construction of the PPI network and module analysis

The Human Integrated Protein–Protein Interaction rEference (HIPPIE) (http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/) [30] database is an online search tool used to analyze accepted proteins and predict PPI networks, including direct and indirect interactions between proteins and their functional correlations and then software Cytoscape (version 3.8.2) (http://www.cytoscape.org/) [31] was engaged to accommodate and visualize PPI networks. HIPPIE is an experimentally validated PPI database. PPI networks can advance the examination of molecular targets, signaling pathways, and network functions associated in the advancement of MI. Hub genes are associated biological processes and diseases progression. Subsequently, we utilized a plug-in Network Analyzer of Cytoscape to resolve hub genes according to the algorithms, including node degree [32], betweenness centrality [33], stress centrality [34] and closeness centrality [35]. The PEWCC1 [36] plug-in was used to cover the hub gene modules in the PPI network.

MiRNA-hub gene regulatory network construction

MicroRNAs can inflect hub gene expression by promoting or inhibiting mRNA degradation and translation. Target hub gene information of miRNAs was collected from miRNet database (https://www.mirnet.ca/) [37], which is an experimentally validated miRNA-hub gene interactions database. The intersection of target hub genes of miRNAs in MI was used to construct the miRNA-hub gene-regulated network. The miRNA-hub gene regulatory network of the hub genes and their targeted miRNAs was visualized by Cytoscape software [31].

TF-hub gene regulatory network construction

Transcription factors (TFs) can inflect hub gene expression by promoting mRNA translation. Target hub gene information of TFs was collected from NetworkAnalyst database (https://www.networkanalyst.ca/) [38], which is an experimentally validated TF-hub gene interactions database. The intersection of target hub genes of TFs in MI was used to construct the TF-hub gene-regulated network. The TF-hub gene regulatory network of the hub genes and their targeted TFs was visualized by Cytoscape software [31].

Validation of hub genes by receiver operating characteristic curve (ROC) analysis

The linear discriminant analysis (LDA) with combined selected hub genes was used to identify biomarkers with high sensitivity and specificity for MI diagnosis. Here, we used one data as training dataset and other data as validation dataset iteratively. The receiver operator characteristic curves were plotted, and area under curve (AUC) was determined separately to check the achievement of LDA model using the R packages “pROC” [39]. A AUC > 0.8 determined that the model had a favorable fitting effect.

Results

Identification of DEGs

In our investigation, 958 DEGs were identified between MI samples and normal control samples. Among them, 480 were up-regulated genes (|logFC|> 1.37) and 478 were down-regulated genes (|logFC|< −1.89) (Table 1). The volcano plot (Fig. 1) was used to show the expression pattern of DEGs in MI (volcano plots presented the distributions of differentially expressed genes; Green dots—up-regulated genes and red dots—down-regulated genes). The heatmap of the DEGs (heat maps explains the gene expression levels in dataset) is shown in Fig. 2.

Table 1 The statistical metrics for key differentially expressed genes (DEGs)
Fig. 1
figure 1

Volcano plot of differentially expressed genes. Genes with a significant change of more than twofold were selected. Green dot represents up-regulated significant genes, and red dot represents down-regulated significant genes

Fig. 2
figure 2

Heat map of differentially expressed genes. Legend on the top left indicates log-fold change of genes. (A1–A20 = MI samples; B1–B12 = normal control samples)

GO and REACTOME pathway enrichment analysis of DEGs

A total of 480 up-regulated genes and 478 down-regulated genes were analyzed by g:Profiler software. GO enrichment analysis covers three aspects: BP, CC and MF (Table 2). The up-regulated genes were mainly related to response to stimulus, cell communication, cell periphery, membrane, molecular transducer activity and transmembrane signaling receptor activity; while the down-regulated genes were mainly involved in multicellular organismal process, anatomical structure development, cell periphery, plasma membrane, inorganic molecular entity transmembrane transporter activity and structural molecule activity. Moreover, REACTOME pathway enrichment analysis indicated that the up-regulated genes were involved in immune system and innate immune system, while down-regulated genes were involved in neuronal system and extracellular matrix organization (Table 3).

Table 2 The enriched GO terms of the up- and down-regulated differentially expressed genes
Table 3 The enriched pathway terms of the up- and down-regulated differentially expressed genes

Construction of the PPI network and module analysis

Considering the critical role of protein interactions in protein function, we used the HIPIE database and Cytoscape software to generate PPI network once we had identified the 958 DEGs. The results showed that there were dense regions in PPI, that is, genes closely related to MI. A total of 6292 nodes and 12,582 edges were selected to plot the PPI network (Fig. 3). The Network Analyzer plugin of Cytoscape was used to score each nodes by 4 selected algorithms, including node degree, betweenness, stress and closeness. Finally, we identified ten hub genes (cftr, cdk1, rps13, rps15a, rps27, notch1, mrpl12, nos2, ccdc85b and atn1) and are listed Table 4. Then, the significant modules were identified via the PEWCC1 plugin. The top two significant modules were selected. The functional enrichment analysis of genes in module 1 and module 2 were conducted by g:Profiler. Module 1 consisted of 59 nodes and 203 edges (Fig. 4A). Hub genes in module 1 were significantly enriched in metabolism of amino acids and derivatives, cellular responses to external stimuli, and membrane. Module 2 consisted of 21 nodes and 41 edges (Fig. 4B). Hub genes in module 2 were significantly enriched in diseases of glycosylation and multicellular organismal process.

Fig. 3
figure 3

PPI network of DEGs. Up-regulated genes are marked in green; down-regulated genes are marked in red

Table 4 Topology table for up- and down-regulated genes
Fig. 4
figure 4

Modules of isolated form PPI of DEGs. (A) The most significant module was obtained from PPI network with 59 nodes and 203 edges for up-regulated genes (B). The most significant module was obtained from PPI network with 21 nodes and 41 edges for down-regulated genes. Up-regulated genes are marked in green; down-regulated genes are marked in red

MiRNA-hub gene regulatory network construction

The miRNet database and Cytoscape software were used to establish the miRNA-hub gene regulatory network of the hub genes. A miRNA-hub gene regulatory network containing 2222 nodes (miRNAs: 1952 and hub genes: 270) and 9722 edges was constructed (Fig. 5). tfrc that was modulated by 108 miRNAs (ex: hsa-mir-409-3p); top2a that was modulated by 90 miRNAs (ex: hsa-mir-320d); cdk1 that was modulated by 68 miRNAs (ex hsa-mir-301a-5p); cep55 that was modulated by 56 miRNAs (ex: hsa-mir-107); fkbp5 that was modulated by 32 miRNAs (ex: hsa-mir-205-5p); atn1 that was modulated by 74 miRNAs (ex: hsa-mir-3200-3p); fscn1 that was modulated by 62 miRNAs (ex: hsa-mir-29a-5p); cherp that was modulated by 52 miRNAs (ex: hsa-mir-296-5p); notch1 that was modulated by 35 miRNAs (ex: hsa-mir-139-5p); notch3 that was modulated by 33 miRNAs (ex: hsa-mir-147a) (Table 5).

Fig. 5
figure 5

Target gene—miRNA regulatory network between target genes. The blue color diamond nodes represent the key miRNAs; up-regulated genes are marked in green; down-regulated genes are marked in red

Table 5 miRNA—target gene and TF—target gene interaction

TF-hub gene regulatory network construction

The NetworkAnalyst database and Cytoscape software were used to establish the TF-hub gene regulatory network of the hub genes. A TF-hub gene regulatory network containing 356 nodes (TF: 78 and hub gene: 278) and 2152 edges was constructed (Fig. 6). rps27 that was modulated by 18 TFs (ex; creb1); fkbp5 that was modulated by 17 TFs (ex; tp63); tfrc that was modulated by 15 TFs (ex; foxa1); cdk1 that was modulated by 14 TFs (ex; nrf1); prdx1 that was modulated by 11 TFs (ex; jund); atn1 that was modulated by 19 TFs (ex; tead1); fscn1 that was modulated by 8 TFs (ex; srebf2); atp6v1b1 that was modulated by 7 TFs (ex; gata2); gata1 that was modulated by 7 TFs (ex; e2f1); mrpl12 that was modulated by 7 TFs (ex; tp53) (Table 5).

Fig. 6
figure 6

Target gene—TF regulatory network between target genes. The gray color triangle nodes represent the key TFs; up-regulated genes are marked in green; down-regulated genes are marked in red

Validation of hub genes by receiver operating characteristic curve (ROC) analysis

To determine top hub genes have the diagnose significance of MI patients; The ROC analyses were conducted to explore the sensitivity and specificity of hub genes for MI diagnosis. The results showed that cftr (AUC = 0.895), cdk1 (AUC = 0.915), rps13 (AUC = 0.962), rps15a (AUC = 0.959), rps27 (AUC = 0.974), notch1 (AUC = 0.969), mrpl12 (AUC = 0.880), nos2 (AUC = 0.960), ccdc85b (AUC = 0.933) and atn1 (AUC = 0.943) have the best diagnostic value for differentiating the patients with MI from normal controls (Fig. 7). This indicated that expression of hub genes include cftr, cdk1, rps13, rps15a, rps27, notch1, mrpl12, nos2, ccdc85b and atn1 correlated with disease activity of MI, these hub genes could act as a biomarkers to estimate the activity of MI and verify the effectiveness of the treatment of MI.

Fig. 7
figure 7

ROC curve analyses of hub genes. A CFTR, B CDK1, C RPS13, D RPS15A, E RPS27, F NOTCH1, G MRPL12, H NOS2, I CCDC85B, J ATN1

Discussion

Disregarding of new development in the treatment of MI, it has continued the greater frequent cause of heart-related deaths in the past few years. The huge mortality rate of MI is slightly due to the inadequacy of acceptable screening methods with tremendous sensitivity and specificity. Therefore, it is essential to determine potential biomarkers for screening and early diagnosis of MI. NGS technology has become essential tools for providing complete genetic information on MI samples and prophetic the changes in disease advancement.

The present investigation obtained NGS dataset GSE132143 from the GEO database, and total of 958 DEGs were screened, including 480 up-regulated genes and 478 down-regulated genes were selected between the MI samples and normal control samples. Research have shown that genes include il1rl1 [40] and alox15b [41] plays an important role in the pathogenesis of coronary artery disease. Some studies have shown that altered expression of genes include serpina3 [42], gpr78 [43] and esm1 [44] promotes the MI. A study indicates that scgn has been identified in diabetes mellitus [45]. These genes served as potential biomarkers for MI diagnosis and prognosis.

In this investigation, we identified enriched genes in GO terms and signaling pathways that might be utilized as diagnostic and/or therapeutic targets in MI. GO terms and signaling pathways include immune system [46], innate immune system [47], neutrophil degranulation [48], toll-like receptor cascades [49], metabolism of amino acids and derivatives [50], neuronal system [51], extracellular matrix organization [52], degradation of the extracellular matrix [53], diseases of glycosylation [54], response to stimulus [55], cell communication [56], cell periphery [57], membrane [58], anatomical structure development [59] and plasma membrane [60] were responsible for progression of MI. Recently, mounting researches have revealed that genes include pla2g2a [61], ccl23 [62], cd53 [63], treml4 [64], trem2 [65], cd180 [66], hpse [67], cela2a [68], tnfrsf4 [69], ambp [70], sox18 [71], panx2 [72], rspo2 [73], comp [74], asgr1 [75] and noxa1 [76] were vital for the onset and developmental process of atherosclerosis. A great number of studies have indicated that genes include s100a9 [77], adora3 [78], il1r2 [79], fpr1 [80], ccl20 [81], cd163 [82], s100a8 [83], tlr2 [84], has2 [85], ptx3 [86], timp4 [87], areg [88], lbp [89], il18r1 [90], alox5ap [91], retn [92], f13a1 [93], fpr2 [94], saa1 [95], flt3 [96], aqp4 [97], fcer1g [98], ccl18 [99], hp [100], cdk1 [101], slc7a11 [102], cftr [103], f8 [104], stc1 [44], il18rap [90], timp3 [105], pde4d [106], cyp4a11 [107], scn10a [108], apob [109], ace [110], penk [111], hspb6 [112], tlr9 [113], egr1 [114], cacng8 [115], foxd3 [116], dbh [117], foxp3 [118], glp1r [119], il34 [120], ccn1 [121], adra2a [122], bgn [123], nos2 [124], agrn [125], drd1 [126], gnb3 [127], egr2 [128], mdk [129], notch3 [130], azin2 [131], notch1 [132], loxl2 [133], adamts14 [134] and sod3 [135] have been implicated in MI pathology.. A previous bioinformatics study suggested that genes include defb1 [136], slc11a1 [137], spink1 [138], ccr1 [139], glul [140], gpr84 [141], siglec5 [142], siglec7 [143], lgr5 [144], cd38 [145], grb14 [146], prdx1 [147], slc19a2 [148], cadm2 [149], trpm5 [150], col1a1 [151], ctrb1 [152], uts2r [153], crtc1 [154], muc5b [155], tmprss6 [156], slc5a2 [157] and kcnj9 [158] might play a role in the development of diabetes mellitus. A previous study reported that the genes include mt1a [159], lyve1 [160], s100a12 [161], gckr [162], tlr8 [163], mrc1 [164], agtr1 [165], p2ry12 [166], msr1 [167], nqo1 [168], fkbp5 [169], cmtm5 [170], adh1c [171], aplnr [172], sfrp4 [173], ccl3 [174], col11a2 [175], egr3 [176] and il2rb [177] play an important role in the pathophysiology of coronary artery disease. Study demonstrated that genes include edn2 [178], snx10 [179] and kcnn1 [180] can participate in the occurrence and development of atrial fibrillation. The abnormal expression of genes include ednrb [181], fgf10 [182], wnk3 [183], kng1 [184], fcn3 [185], aqp3 [186], hpr [187], cth [188], sparcl1 [189], maoa [190], bmpr1b [191], fgf7 [192], calcrl [193], mark3 [194], adh1b [195], amh [196], ret [197], igf2 [198], slc6a9 [199], nppa [200], sct [201], dcx [202], asic1 [203], lmx1b [204], dbp [205] and slc6a9 [206] contributes to the progression of hypertension. Study showed that the genes include camp [207], spp1 [208]. cxcl11 [209], tfrc [210], irak3 [211], c3ar1 [212], gli2 [213], thy1 [214], foxo6 [215], rgs4 [216], wnt10b [217] and aebp1 [218] plays a vital role in the development of might be related to the pathophysiology of obesity. A study showed genes include tdgf1 [219], kif20a [220] and ltbp2 [221] are highly prone to congenital heart defect. Our data indicated that enriched genes might have impact on MI progression. It would be meaningful to confirm exact function of enriched genes in MI in prospective.

Building PPI network is favorable for investigators to study the underlying molecular mechanism of MI for the reason that the DEGs would be unified and organized in the network deciding by their interactions. Identification of hub genes that might be key prognostic markers, diagnostic markers and therapeutic targets for MI. Based on the PPI network constructed by the online database HIPIE, we identified hub genes. A recent study suggested that the hub genes include cftr [103], cdk1 [101], notch1 [132], nos2 [124] and notch3 [130] might take part in the progression of MI. We gave a new confirmation for that rps13, rps15a, rps27, rpl26, rps29, mrpl12, ccdc85b and atn1 are expected to become a novel biomarker for MI prognosis. Thus, it might consider as potential therapeutic targets for MI.

To illuminate the potential molecular mechanism of the hub genes in MI, we focused a miRNA-hub gene regulatory network and TF-hub gene regulatory network analysis. The identified hub gens, TFs and miRNAs might be associated in the pathological process of MI. Zaja et al. [101], Si et al. [132], Zhang et al. [130], Chen et al. [222], Li and Zhang [223], Wang et al. [224], Zhao et al. [225], Lin et al. [226], Liao et al. [227], Izadpanah et al. [228], Wang et al. [229] and Hakobjanyan et al. [230] reported that the expression of the cdk1, notch1, notch3, hsa-mir-409-3p, hsa-mir-320d, hsa-mir-107, hsa-mir-139-5p, nrf1, tead1, gata2, e2f1 and tp53 can lead to MI. Studies reported that biomarkers include hsa-mir-301a-5p [231], hsa-mir-29a-5p [232], hsa-mir-296-5p [233], creb1 [234] and foxa1 [235] were proposed to contribute to the development of diabetes mellitus. A previous study reported that hsa-mir-205-5p plays a key role in hypertension [236]. Accumulated evidence has demonstrated that biomarkers include fkbp5 [169] and srebf2 [237] are associated with coronary artery disease. Studies have shown that biomarker tfrc (transferrin receptor) [210] was identified to be associated with obesity. Our interesting finding is that novel biomarkers include top2a, cep55, fscn1, cherp, atp6v1b1, gata1, hsa-mir-3200-3p, hsa-mir-147a, tp63 and jund (jun D proto-oncogene) are all closely related to MI. Evidence from studies indicates that these novel biomarkers might be related to the advancement of MI and thus has the potential to be used as a diagnostic biomarkers of MI.

Our investigations had some limitations. Firstly, we used only 1 dataset, and there might have been bias in the search for biomarkers for MI. Secondly, we did not account for the potential confounding effects of demographic variables. Finally, we did not carry out experiments to prove the research results, which will be considered in future work. Finally, we did not carry out in vivo and in vitro validation experiments for hub genes to prove the research results, which will be considered in future work.

Conclusion

This investigation identified significant DEGs between MI and normal control samples via analyzing NGS dataset. cftr, cdk1, rps13, rps15a, rps27, notch1, mrpl12, nos2, ccdc85b and atn1 were verified and considered as hub genes were linked with disease prognosis, which could be predictive and therapeutic targets. The above results provide novel investigation directions for the relationship between MI and its associated complications. Bioinformatics and NGS technology provide opportunities to further examine the molecular mechanism and targeted therapy of MI on a transcriptional level. In vivo and in vitro validation experiments will be implemented in ongoing work.

Availability of data and materials

The datasets supporting the conclusions of this article are available in the GEO (Gene Expression Omnibus) (https://www.ncbi.nlm.nih.gov/geo/) repository. [(GSE132143) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132143)].

Abbreviations

MI:

Myocardial infarction

DEGs:

Differentially expressed genes

NGS:

Next-generation sequencing

GEO:

Gene expression omnibus

GO:

Gene ontology

PPI:

Protein–protein interaction

miRNA:

Micro-ribonucleic acid

TF:

Transcription factor

ROC:

Receiver operating characteristic curve

CFTR:

CF transmembrane conductance regulator

CDK1:

Cyclin-dependent kinase 1

RPS13:

Ribosomal protein S13

RPS15A:

Ribosomal protein S15a

RPS27:

Ribosomal protein S27

NOTCH1:

Notch receptor 1

MRPL12:

Mitochondrial ribosomal protein L12

NOS2:

Nitric oxide synthase 2

CCDC85B:

Coiled-coil domain containing 85B

ATN1:

Atrophin 1

References

  1. Salari N, Morddarvanjoghi F, Abdolmaleki A, Rasoulpoor S, Khaleghi AA, Hezarkhani LA, Shohaimi S, Mohammadi M (2023) The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord 23(1):206. https://doi.org/10.1186/s12872-023-03231-w

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zeeshan M, Yousaf S, Ahmed A, Bahadar H, Ali U, Jabeen S, Hussain HU, Mumtaz H, Hasan M (2022) Co-relation of monocyte count in high vs. low thrombus burden ST-segment elevated myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention. Cureus. 14(4):e24344. https://doi.org/10.7759/cureus.24344

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yap J, Irei J, Lozano-Gerona J, Vanapruks S, Bishop T, Boisvert WA (2023) Macrophages in cardiac remodelling after myocardial infarction. Nat Rev Cardiol 20(6):373–385. https://doi.org/10.1038/s41569-022-00823-5

    Article  PubMed  Google Scholar 

  4. Tirdea C, Hostiuc S, Moldovan H, Scafa-Udriste A (2022) Identification of risk genes associated with myocardial infarction-big data analysis and literature review. Int J Mol Sci 23(23):15008. https://doi.org/10.3390/ijms232315008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Christensen DM, Strange JE, Falkentoft AC, El-Chouli M, Ravn PB, Ruwald AC, Fosbøl E, Køber L, Gislason G, Sehested TSG et al (2023) Frailty, treatments, and outcomes in older patients with myocardial infarction: a nationwide registry-based study. J Am Heart Assoc 12(14):e030561. https://doi.org/10.1161/JAHA.123.030561

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hall TS, Ørn S, Zannad F, Rossignol P, Duarte K, Solomon SD, Atar D, Agewall S, Dickstein K, Girerd N (2022) The Association of smoking with hospitalization and mortality differs according to sex in patients with heart failure following myocardial infarction. J Womens Health 31(3):310–320. https://doi.org/10.1089/jwh.2021.0326

    Article  Google Scholar 

  7. Buteau S, Yankoty LI, Letellier N, Benmarhnia T, Gamache P, Plante C, Goudreau S, Blais C, Perron S, Fournier M et al (2023) Associations between environmental noise and myocardial infarction and stroke: investigating the potential mediating effects of hypertension. Environ Res 231(Pt 1):116092. https://doi.org/10.1016/j.envres.2023.116092

    Article  CAS  PubMed  Google Scholar 

  8. Szczepańska E, Gacal M, Sokal A, Janota B, Kowalski O (2023) Diet in patients with myocardial infarction and coexisting type 2 diabetes mellitus. Int J Environ Res Public Health 20(8):5442. https://doi.org/10.3390/ijerph20085442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mangalesh S, Nanna MG (2023) Obesity and undernutrition in acute myocardial infarction. Am J Cardiol 203:529–530. https://doi.org/10.1016/j.amjcard.2023.07.111

    Article  PubMed  Google Scholar 

  10. Wu J, Yan J, Hua Z, Jia J, Zhou Z, Zhang J, Li J, Zhang J (2023) Identification of molecular signatures in acute myocardial infarction based on integrative analysis of proteomics and transcriptomics. Genomics 115(5):110701. https://doi.org/10.1016/j.ygeno.2023.110701

    Article  CAS  PubMed  Google Scholar 

  11. Wang M, Gao Y, Chen H, Shen Y, Cheng J, Wang G (2023) Bioinformatics strategies to identify differences in molecular biomarkers for ischemic stroke and myocardial infarction. Medicine 102(46):e35919. https://doi.org/10.1097/MD.0000000000035919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song Y, Long L, Dai F, Huang Z, Wang Y, Li X (2018) HMGA1: a novel predisposing gene for acute myocardial infarction. Int J Cardiol 256:37. https://doi.org/10.1016/j.ijcard.2018.01.038

    Article  PubMed  Google Scholar 

  13. Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M et al (2017) Identification of STXBP2 as a novel susceptibility locus for myocardial infarction in Japanese individuals by an exome-wide association study. Oncotarget 8(20):33527–33535. https://doi.org/10.18632/oncotarget.16536

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stahelova A, Petrkova J, Petrek M, Mrazek F (2014) Sequence variation in promoter regions of genes for CC chemokine ligands (CCL)19 and 21 in Czech patients with myocardial infarction. Mol Biol Rep 41(5):3163–3168. https://doi.org/10.1007/s11033-014-3175-9

    Article  CAS  PubMed  Google Scholar 

  15. Silvis MJM, Demkes EJ, Fiolet ATL, Dekker M, Bosch L, van Hout GPJ, Timmers L, de Kleijn DPV (2021) Immunomodulation of the NLRP3 inflammasome in atherosclerosis, coronary artery disease, and acute myocardial infarction. J Cardiovasc Transl Res 14(1):23–34. https://doi.org/10.1007/s12265-020-10049-w

    Article  PubMed  Google Scholar 

  16. Zhang C, Zeng S, Ji W, Li Z, Sun H, Teng T, Yu Y, Zhou X, Yang Q (2023) Synergistic role of circulating CD14++CD16+ monocytes and fibrinogen in predicting the cardiovascular events after myocardial infarction. Clin Cardiol 46(5):521–528. https://doi.org/10.1002/clc.24005

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abdelzaher WY, Ahmed SM, Welson NN, Alsharif KF, Batiha GE, Labib DAA (2021) Dapsone ameliorates isoproterenol-induced myocardial infarction via Nrf2/ HO-1; TLR4/ TNF-α signaling pathways and the suppression of oxidative stress, inflammation, and apoptosis in rats. Front Pharmacol 12:669679. https://doi.org/10.3389/fphar.2021.669679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang M, Wu H, Qian H, Li D, Xu H, Chen J, Zhong J, Wu W, Yang H, Chen X et al (2023) Linggui Zhugan decoction delays ventricular remodeling in rats with chronic heart failure after myocardial infarction through the Wnt/β-catenin signaling pathway. Phytomedicine 120:155026. https://doi.org/10.1016/j.phymed.2023.155026

    Article  CAS  PubMed  Google Scholar 

  19. Gong J, Zhou F, Wang SXX, Xu J, Xiao F (2020) Caveolin-3 protects diabetic hearts from acute myocardial infarction/reperfusion injury through β2AR, cAMP/PKA, and BDNF/TrkB signaling pathways. Aging 12(14):14300–14313. https://doi.org/10.18632/aging.103469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han X, Zhang G, Chen G, Wu Y, Xu T, Xu H, Liu B, Zhou Y (2022) Buyang Huanwu Decoction promotes angiogenesis in myocardial infarction through suppression of PTEN and activation of the PI3K/Akt signalling pathway. J Ethnopharmacol 287:114929. https://doi.org/10.1016/j.jep.2021.114929

    Article  CAS  PubMed  Google Scholar 

  21. Jiang J, Gu X, Wang H, Ding S (2021) Resveratrol improves cardiac function and left ventricular fibrosis after myocardial infarction in rats by inhibiting NLRP3 inflammasome activity and the TGF-β1/SMAD2 signaling pathway. PeerJ 9:e11501. https://doi.org/10.7717/peerj.11501

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ganekal P, Vastrad B, Vastrad C, Kotrashetti S (2023) Identification of biomarkers, pathways, and potential therapeutic targets for heart failure using next-generation sequencing data and bioinformatics analysis. Ther Adv Cardiovasc Dis 17:17539447231168472. https://doi.org/10.1177/17539447231168471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruiz-Villalba A, Romero JP, Hernández SC, Vilas-Zornoza A, Fortelny N, Castro-Labrador L, San Martin-Uriz P, Lorenzo-Vivas E, García-Olloqui P, Palacio M et al (2020) Single-Cell RNA sequencing analysis reveals a crucial role for CTHRC1 (Collagen triple helix repeat containing 1) cardiac fibroblasts after myocardial infarction. Circulation 142(19):1831–1847. https://doi.org/10.1161/CIRCULATIONAHA.119.044557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clough E, Barrett T (2016) The gene expression omnibus database. Methods Mol Biol 1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Solari A, Goeman JJ (2017) Minimally adaptive BH: a tiny but uniform improvement of the procedure of Benjamini and Hochberg. Biom J 59(4):776–780. https://doi.org/10.1002/bimj.201500253

    Article  PubMed  Google Scholar 

  27. Thomas PD (2017) The gene ontology and the meaning of biological function. Methods Mol Biol 1446:15–24. https://doi.org/10.1007/978-1-4939-3743-1_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B et al (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655. https://doi.org/10.1093/nar/gkx1132

    Article  CAS  PubMed  Google Scholar 

  29. Reimand J, Kull M, Peterson H, Hansen J, Vilo J (2007) g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res 35:W193–W200. https://doi.org/10.1093/nar/gkm226

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH (2017) HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res 45(D1):D408–D414. https://doi.org/10.1093/nar/gkw985

    Article  CAS  PubMed  Google Scholar 

  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M (2018) A systematic survey of centrality measures for protein-protein interaction networks. BMC Syst Biol 12(1):80. https://doi.org/10.1186/s12918-018-0598-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zito A, Lualdi M, Granata P, Cocciadiferro D, Novelli A, Alberio T, Casalone R, Fasano M (2021) Gene set enrichment analysis of interaction networks weighted by node centrality. Front Genet 12:577623. https://doi.org/10.3389/fgene.2021.577623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilbert M, Li Z, Wu XN, Rohr L, Gombos S, Harter K, Schulze WX (2021) Comparison of path-based centrality measures in protein-protein interaction networks revealed proteins with phenotypic relevance during adaptation to changing nitrogen environments. J Proteomics 235:104114. https://doi.org/10.1016/j.jprot.2021.104114

    Article  CAS  PubMed  Google Scholar 

  35. Li G, Li M, Wang J, Li Y, Pan Y (2020) United neighborhood closeness centrality and orthology for predicting essential proteins. IEEE/ACM Trans Comput Biol Bioinform 17(4):1451–1458. https://doi.org/10.1109/TCBB.2018.2889978

    Article  CAS  PubMed  Google Scholar 

  36. Zaki N, Efimov D, Berengueres J (2013) Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics 14:163. https://doi.org/10.1186/1471-2105-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan Y, Xia J (2018) miRNet-functional analysis and visual exploration of miRNA-target interactions in a network context. Methods Mol Biol 1819:215–233. https://doi.org/10.1007/978-1-4939-8618-7_10

    Article  CAS  PubMed  Google Scholar 

  38. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234–W241. https://doi.org/10.1093/nar/gkz240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin JF, Wu S, Juang JJ, Chiang FT, Hsu LA, Teng MS, Cheng ST, Huang HL, Sun YC, Liu PY et al (2017) IL1RL1 single nucleotide polymorphism predicts sST2 level and mortality in coronary and peripheral artery disease. Atherosclerosis 257:71–77. https://doi.org/10.1016/j.atherosclerosis.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  41. Wuest SJ, Horn T, Marti-Jaun J, Kühn H, Hersberger M (2014) Association of polymorphisms in the ALOX15B gene with coronary artery disease. Clin Biochem 47(6):349–355. https://doi.org/10.1016/j.clinbiochem.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  42. Zhang G, Sun X, Zhang D, Zhang X, Yu K (2023) SerpinA3 promotes myocardial infarction in rat and cell-based models. Mol Biotechnol. https://doi.org/10.1007/s12033-023-00982-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ge Y, Li G, Liu B, Guo H, Wang D, Jie Q, Che W, Hou L et al (2015) The protective effect of lacidipine on myocardial remodeling is mediated by the suppression in expression of GPR78 and CHOP in rats. Evid Based Complement Alternat Med 2015:945076. https://doi.org/10.1155/2015/945076

    Article  PubMed  PubMed Central  Google Scholar 

  44. Watanabe M, Horie H, Kurata Y, Inoue Y, Notsu T, Wakimizu T, Adachi M, Yamamoto K, Morikawa K, Kuwabara M et al (2021) Esm1 and Stc1 as angiogenic factors responsible for protective actions of adipose-derived stem cell sheets on chronic heart failure after rat myocardial infarction. Circ J 85(5):657–666. https://doi.org/10.1253/circj.CJ-20-0877

    Article  CAS  PubMed  Google Scholar 

  45. Sharma AK, Khandelwal R, Sharma Y (2019) Veiled potential of secretagogin in diabetes: Correlation or coincidence? Trends Endocrinol Metab 30(4):234–243. https://doi.org/10.1016/j.tem.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  46. Anzai A, Ko S, Fukuda K (2022) Immune and inflammatory networks in myocardial infarction: current research and its potential implications for the clinic. Int J Mol Sci 23(9):5214. https://doi.org/10.3390/ijms23095214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koelwyn GJ, Newman AAC, Afonso MS, van Solingen C, Corr EM, Brown EJ, Albers KB, Yamaguchi N, Narke D, Schlegel M et al (2020) Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat Med 26(9):1452–1458. https://doi.org/10.1038/s41591-020-0964-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang N, Aiyasiding X, Li WJ, Liao HH, Tang QZ (2022) Neutrophil degranulation and myocardial infarction. Cell Commun Signal 20(1):50. https://doi.org/10.1186/s12964-022-00824-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Komal S, Komal N, Mujtaba A, Wang SH, Zhang LR, Han SN (2022) Potential therapeutic strategies for myocardial infarction: the role of Toll-like receptors. Immunol Res 70(5):607–623. https://doi.org/10.1007/s12026-022-09290-z

    Article  CAS  PubMed  Google Scholar 

  50. Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, Lee Y, Li C, Zhang L, Lian K et al (2016) Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 311(5):H1160–H1169. https://doi.org/10.1152/ajpheart.00114.2016

    Article  PubMed  Google Scholar 

  51. Wu P, Vaseghi M (2020) The autonomic nervous system and ventricular arrhythmias in myocardial infarction and heart failure. Pacing Clin Electrophysiol 43(2):172–180. https://doi.org/10.1111/pace.13856

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brunton-O’Sullivan MM, Holley AS, Hally KE, Kristono GA, Harding SA, Larsen PD (2021) A combined biomarker approach for characterising extracellular matrix profiles in acute myocardial infarction. Sci Rep 11(1):12705. https://doi.org/10.1038/s41598-021-92108-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ushakov A, Ivanchenko V, Gagarina A (2020) Regulation of myocardial extracellular matrix dynamic changes in myocardial infarction and postinfarct remodeling. Curr Cardiol Rev 16(1):11–24. https://doi.org/10.2174/1573403X15666190509090832

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ferro F, Spelat R, Pandit A, Martin-Ventura JL, Rabinovich GA, Contessotto P (2024) Glycosylation of blood cells during the onset and progression of atherosclerosis and myocardial infarction. Trends Mol Med 30(2):178–196. https://doi.org/10.1016/j.molmed.2023.11.013

    Article  CAS  PubMed  Google Scholar 

  55. Oliveira JB, Soares AASM, Sposito AC (2018) Inflammatory response during myocardial infarction. Adv Clin Chem 84:39–79. https://doi.org/10.1016/bs.acc.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  56. Yuan MJ, Maghsoudi T, Wang T (2016) Exosomes mediate the intercellular communication after myocardial infarction. Int J Med Sci 13(2):113–116. https://doi.org/10.7150/ijms.14112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meckert PC, Rivello HG, Vigliano C, González P, Favaloro R, Laguens R (2005) Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc Res 67(1):116–123. https://doi.org/10.1016/j.cardiores.2005.02.017

    Article  CAS  PubMed  Google Scholar 

  58. Batchelor RJ, Wheelahan A, Zheng WC, Stub D, Yang Y, Chan W (2022) Impella versus venoarterial extracorporeal membrane oxygenation for acute myocardial infarction cardiogenic shock: a systematic review and meta-analysis. J Clin Med 11(14):3955. https://doi.org/10.3390/jcm11143955

    Article  PubMed  PubMed Central  Google Scholar 

  59. Erbel R, Ge J, Möhlenkamp S (2009) Myocardial bridging: A congenital variant as an anatomic risk factor for myocardial infarction? Circulation 120(5):357–359. https://doi.org/10.1161/CIRCULATIONAHA.109.881367

    Article  PubMed  Google Scholar 

  60. Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 8(6):863–884. https://doi.org/10.2217/fca.12.58

    Article  CAS  PubMed  Google Scholar 

  61. Monroy-Muñoz IE, Angeles-Martinez J, Posadas-Sánchez R, Villarreal-Molina T, Alvarez-León E, Flores-Dominguez C, Cardoso-Saldaña G, Medina-Urrutia A, Juárez-Rojas JG, Posadas-Romero C, et al. PLA2G2A polymorphisms are associated with metabolic syndrome and type 2 diabetes mellitus. Results from the genetics of atherosclerotic disease Mexican study. Immunobiology. 2017;222(10):967–972. https://doi.org/10.1016/j.imbio.2016.08.014

  62. Kim CS, Kang JH, Cho HR, Blankenship TN, Erickson KL, Kawada T, Yu R (2011) Potential involvement of CCL23 in atherosclerotic lesion formation/progression by the enhancement of chemotaxis, adhesion molecule expression, and MMP-2 release from monocytes. Inflamm Res 60(9):889–895. https://doi.org/10.1007/s00011-011-0350-5

    Article  CAS  PubMed  Google Scholar 

  63. Liu C, Zhang H, Chen Y, Wang S, Chen Z, Liu Z, Wang J (2021) Identifying RBM47, HCK, CD53, TYROBP, and HAVCR2 as hub genes in advanced atherosclerotic plaques by network-based analysis and validation. Front Genet 11:602908. https://doi.org/10.3389/fgene.2020.602908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Duarte VHR, Cruz MS, Bertolami A, Hirata MH, Hirata RDC, Luchessi AD, Silbiger VN (2022) TREML4 polymorphisms increase the mRNA in blood leukocytes in the progression of atherosclerosis. Sci Rep 12(1):18612. https://doi.org/10.1038/s41598-022-22040-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo X, Li B, Wen C, Zhang F, Xiang X, Nie L, Chen J, Mao L (2023) TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis. Cell Mol Life Sci 80(5):137. https://doi.org/10.1007/s00018-023-04786-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karper JC, de Jager SC, Ewing MM, de Vries MR, Bot I, van Santbrink PJ, Redeker A, Mallat Z, Binder CJ, Arens R et al (2013) An unexpected intriguing effect of Toll-like receptor regulator RP105 (CD180) on atherosclerosis formation with alterations on B-cell activation. Arterioscler Thromb Vasc Biol 33(12):2810–2817. https://doi.org/10.1161/ATVBAHA.113.301882

    Article  CAS  PubMed  Google Scholar 

  67. Nguyen TK, Paone S, Chan E, Poon IKH, Baxter AA, Thomas SR, Hulett MD (2022) Heparanase: a novel therapeutic target for the treatment of atherosclerosis. Cells 11(20):3198. https://doi.org/10.3390/cells11203198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Esteghamat F, Broughton JS, Smith E, Cardone R, Tyagi T, Guerra M, Szabó A, Ugwu N, Mani MV, Azari B et al (2019) CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation. Nat Genet 51(8):1233–1243. https://doi.org/10.1038/s41588-019-0470-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang Q, Yang QD, Tan XL, Feng J, Tang T, Xia J, Zhang L, Huang L, Bai YP, Liu YH (2014) Absence of association between atherosclerotic cerebral infarction and TNFSF4/TNFRSF4 single nucleotide polymorphisms rs1234313, rs1234314 and rs17568 in a Chinese population. J Int Med Res 42(2):436–443. https://doi.org/10.1177/0300060514521154

    Article  CAS  PubMed  Google Scholar 

  70. Liu H, Luo D, Qiu Y, Huang Y, Chen C, Song X, Gao L, Zhou Y (2019) The effect of AMBP SNPs, their haplotypes, and gene-environment interactions on the risk of atherothrombotic stroke among the Chinese population. Genet Test Mol Biomarkers 23(7):487–494. https://doi.org/10.1089/gtmb.2018.0248

    Article  CAS  PubMed  Google Scholar 

  71. García-Ramírez M, Martínez-González J, Juan-Babot JO, Rodríguez C, Badimon L (2005) Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth. Arterioscler Thromb Vasc Biol 25(11):2398–2403. https://doi.org/10.1161/01.ATV.0000187464.81959.23

    Article  CAS  PubMed  Google Scholar 

  72. Ray SL, Coulson DJ, Yeoh MLY, Tamara A, Latief JS, Bakhashab S, Weaver JU (2020) The role of miR-342 in vascular health study in subclinical cardiovascular disease in mononuclear cells, plasma, inflammatory cytokines and PANX2. Int J Mol Sci 21(19):7217. https://doi.org/10.3390/ijms21197217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Singla B, Lin HP, Chen A, Ahn W, Ghoshal P, Cherian-Shaw M, White J, Stansfield BK, Csányi G (2021) Role of R-spondin 2 in arterial lymphangiogenesis and atherosclerosis. Cardiovasc Res 117(6):1489–1509. https://doi.org/10.1093/cvr/cvaa244

    Article  CAS  PubMed  Google Scholar 

  74. Lv H, Wang H, Quan M, Zhang C, Fu Y, Zhang L, Lin C, Liu X, Yi X, Chen J et al (2021) Cartilage oligomeric matrix protein fine-tunes disturbed flow-induced endothelial activation and atherogenesis. Matrix Biol 95:32–51. https://doi.org/10.1016/j.matbio.2020.10.003

    Article  CAS  PubMed  Google Scholar 

  75. Hamledari H, Sajjadi SF, Alikhah A, Boroumand MA, Behmanesh M (2019) ASGR1 but not FOXM1 expression decreases in the peripheral blood mononuclear cells of diabetic atherosclerotic patients. J Diabetes Complications 33(8):539–546. https://doi.org/10.1016/j.jdiacomp.2019.05.008

    Article  PubMed  Google Scholar 

  76. Tang Y, Song H, Shen Y, Yao Y, Yu Y, Wei G, Long B, Yan W (2021) MiR-155 acts as an inhibitory factor in atherosclerosis-associated arterial pathogenesis by down-regulating NoxA1 related signaling pathway in ApoE-/- mouse. Cardiovasc Diagn Ther 11(1):1–13. https://doi.org/10.21037/cdt-20-518

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chalise U, Becirovic-Agic M, Daseke MJ 2nd, Konfrst SR, Rodriguez-Paar JR, Feng D, Salomon JD, Anderson DR, Cook LM, Lindsey ML (2022) S100A9 is a functional effector of infarct wall thinning after myocardial infarction. Am J Physiol Heart Circ Physiol 322(2):H145–H155. https://doi.org/10.1152/ajpheart.00475.2021

    Article  CAS  PubMed  Google Scholar 

  78. He HR, Li YJ, He GH, Qiang H, Zhai YJ, Ma M, Wang YJ, Wang Y, Zheng XW, Dong YL et al (2018) The polymorphism in ADORA3 decreases transcriptional activity and influences the chronic heart failure risk in the Chinese. Biomed Res Int 2018:4969385. https://doi.org/10.1155/2018/4969385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song XL, Zhang FF, Wang WJ, Li XN, Dang Y, Li YX, Yang Q, Shi MJ, Qi XY (2020) LncRNA A2M-AS1 lessens the injury of cardiomyocytes caused by hypoxia and reoxygenation via regulating IL1R2. Genes Genomics 42(12):1431–1441. https://doi.org/10.1007/s13258-020-01007-6

    Article  CAS  PubMed  Google Scholar 

  80. Zhou QL, Teng F, Zhang YS, Sun Q, Cao YX, Meng GW (2018) FPR1 gene silencing suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/reperfusion injury through the inhibition of MAPK signaling pathway. Exp Cell Res 370(2):506–518. https://doi.org/10.1016/j.yexcr.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  81. Wang YH, Li CX, Stephenson JM, Marrelli SP, Kou YM, Meng DZ, Wu T (2021) NR4A3 and CCL20 clusters dominate the genetic networks in CD146+ blood cells during acute myocardial infarction in humans. Eur J Med Res 26(1):113. https://doi.org/10.1186/s40001-021-00586-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shao X, Wu B, Chen P, Hua F, Cheng L, Li F, Zhan Y, Liu C, Ji L, Min Z et al (2020) Circulating CX3CR1+CD163+ M2 monocytes markedly elevated and correlated with cardiac markers in patients with acute myocardial infarction. Ann Transl Med 8(9):578. https://doi.org/10.21037/atm-20-383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma J, Li Y, Li P, Yang X, Zhu S, Ma K, Gao F, Gao H, Zhang H, Ma XL et al (2024) S100A8/A9 as a prognostic biomarker with causal effects for post-acute myocardial infarction heart failure. Nat Commun 15(1):2701. https://doi.org/10.1038/s41467-024-46973-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li MJ, Yan SB, Dong H, Huang ZG, Li DM, Tang YL, Pan YF, Yang Z, Pan HB, Chen G (2022) Clinical assessment and molecular mechanism of the upregulation of Toll-like receptor 2 (TLR2) in myocardial infarction. BMC Cardiovasc Disord 22(1):314. https://doi.org/10.1186/s12872-022-02754-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Msheik A, Kaspar C, Mailhac A, Hoballah JJ, Tamim H, Dakik HA. Performance of the AUB-HAS2 Cardiovascular Risk Index in vascular surgery patients. Vasc Med. 2021;1358863X21996806. https://doi.org/10.1177/1358863X21996806

  86. Xu Y, Hu Y, Geng Y, Zhao N, Jia C, Song H, Bai W, Guo C, Wang L, Ni Y et al (2022) Pentraxin 3 depletion (PTX3 KD) inhibited myocardial fibrosis in heart failure after myocardial infarction. Aging 14(9):4036–4049. https://doi.org/10.18632/aging.204070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cavusoglu E, Kassotis JT, Marmur JD, Banerji MA, Yanamadala S, Chopra V, Anwar A, Eng C (2017) Usefulness of plasma tissue inhibitor of matrix metalloproteinase-4 to predict death and myocardial infarction in patients with diabetes mellitus referred for coronary angiography. Am J Cardiol 120(1):1–7. https://doi.org/10.1016/j.amjcard.2017.03.267

    Article  CAS  PubMed  Google Scholar 

  88. Li N, Xia N, He J, Liu M, Gu M, Lu Y, Yang H, Hao Z, Zha L, Wang X et al (2024) Amphiregulin improves ventricular remodeling after myocardial infarction by modulating autophagy and apoptosis. FASEB J 38(4):e23488. https://doi.org/10.1096/fj.202302385R

    Article  CAS  PubMed  Google Scholar 

  89. Hubacek JA, Pitha J, Skodová Z, Adámková V, Podrapska I, Schmitz G, Poledne R (2002) Polymorphisms in the lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein in patients with myocardial infarction. Clin Chem Lab Med 40(11):1097–1100. https://doi.org/10.1515/CCLM.2002.191

    Article  CAS  PubMed  Google Scholar 

  90. Ponasenko AV, Tsepokina AV, Khutornaya MV, Sinitsky MY, Barbarash OL (2021) IL18-family genes polymorphism is associated with the risk of myocardial infarction and IL18 concentration in patients with coronary artery disease. Immunol Invest 51:1–15. https://doi.org/10.1080/08820139.2021.1876085

    Article  CAS  Google Scholar 

  91. Gammelmark A, Nielsen MS, Lundbye-Christensen S, Tjønneland A, Schmidt EB, Overvad K (2016) Common polymorphisms in the 5-lipoxygenase pathway and risk of incident myocardial infarction: a Danish case-cohort study. PLoS ONE 11(11):e0167217. https://doi.org/10.1371/journal.pone.0167217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weikert C, Westphal S, Berger K, Dierkes J, Möhlig M, Spranger J, Rimm EB, Willich SN, Boeing H, Pischon T (2008) Plasma resistin levels and risk of myocardial infarction and ischemic stroke. J Clin Endocrinol Metab 93(7):2647–2653. https://doi.org/10.1210/jc.2007-2735

    Article  CAS  PubMed  Google Scholar 

  93. Ansani L, Marchesini J, Pestelli G, Luisi GA, Scillitani G, Longo G, Milani D, Serino ML, Tisato V, Gemmati D (2018) F13A1 gene variant (V34L) and residual circulating FXIIIA levels predict short- and long-term mortality in acute myocardial infarction after coronary angioplasty. Int J Mol Sci 19(9):2766. https://doi.org/10.3390/ijms19092766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. García RA, Lupisella JA, Ito BR, Hsu MY, Fernando G, Carson NL, Allocco JJ, Ryan CS, Zhang R, Wang Z et al (2021) Selective FPR2 agonism promotes a proresolution macrophage phenotype and improves cardiac structure-function post myocardial infarction. JACC Basic Transl Sci 6(8):676–689. https://doi.org/10.1016/j.jacbts.2021.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang BY, Hang JY, Zhong Y, Tan SJ (2014) Association of genetic polymorphisms of SAA1 (rs12218) with myocardial infarction in a Chinese population. Genet Mol Res 13(2):3693–3696. https://doi.org/10.4238/2014.May.9.13

    Article  CAS  PubMed  Google Scholar 

  96. Monogiou Belik D, Bernasconi R, Xu L, Della Verde G, Lorenz V, Grüterich V, Balzarolo M, Mochizuki M, Pfister O et al (2024) The Flt3-inhibitor quizartinib augments apoptosis and promotes maladaptive remodeling after myocardial infarction in mice. Apoptosis 29(3–4):357–371. https://doi.org/10.1007/s10495-023-01911-8

    Article  CAS  PubMed  Google Scholar 

  97. Warth A, Eckle T, Köhler D, Faigle M, Zug S, Klingel K, Eltzschig HK, Wolburg H (2007) Upregulation of the water channel aquaporin-4 as a potential cause of postischemic cell swelling in a murine model of myocardial infarction. Cardiology 107(4):402–410. https://doi.org/10.1159/000099060

    Article  CAS  PubMed  Google Scholar 

  98. Xiao S, Zhou Y, Wu Q, Liu Q, Chen M, Zhang T, Zhu H, Liu J, Yin T, Pan D (2021) FCER1G and PTGS2 serve as potential diagnostic biomarkers of acute myocardial infarction based on integrated bioinformatics analyses. DNA Cell Biol. https://doi.org/10.1089/dna.2020.6447.10.1089/dna.2020.6447

    Article  PubMed  Google Scholar 

  99. Sajedi Khanian M, Abdi Ardekani A, Khosropanah S, Doroudchi M (2016) Correlation of early and late ejection fractions with CCL5 and CCL18 levels in acute anterior myocardial infarction. Iran J Immunol 13(2):100–113

    PubMed  Google Scholar 

  100. Mohamed Bakrim N, Mohd Shah ANS, Talib NA, Ab Rahman J, Abdullah A (2020) Identification of haptoglobin as a potential biomarker in young adults with acute myocardial infarction by proteomic analysis. Malays J Med Sci 27(2):64–76. https://doi.org/10.21315/mjms2020.27.2.8

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zaja I, Bai X, Liu Y, Kikuchi C, Dosenovic S, Yan Y, Canfield SG, Bosnjak ZJ (2014) Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death. Biochem Biophys Res Commun 453(4):710–721. https://doi.org/10.1016/j.bbrc.2014.09.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li H, Ding J, Liu W, Wang X, Feng Y, Guan H, Chen Z (2023) Plasma exosomes from patients with acute myocardial infarction alleviate myocardial injury by inhibiting ferroptosis through miR-26b-5p/SLC7A11 axis. Life Sci 322:121649. https://doi.org/10.1016/j.lfs.2023.121649

    Article  CAS  PubMed  Google Scholar 

  103. Vanherle L, Lidington D, Uhl FE, Steiner S, Vassallo S, Skoug C, Duarte JMN, Ramu S, Uller L, Desjardins JF et al (2022) Restoring myocardial infarction-induced long-term memory impairment by targeting the cystic fibrosis transmembrane regulator. EBioMedicine 86:104384. https://doi.org/10.1016/j.ebiom.2022.104384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zupančić-Šalek S, Vodanović M, Pulanić D, Skorić B, Matytsina I, Klovaite J (2017) A case report of acute inferior myocardial infarction in a patient with severe hemophilia A after recombinant factor VIII infusion. Medicine 96(52):e9075. https://doi.org/10.1097/MD.0000000000009075

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen H, Chen S, Ye H, Guo X (2022) Protective effects of circulating TIMP3 on coronary artery disease and myocardial infarction: a Mendelian randomization study. J Cardiovasc Dev Dis 9(8):277. https://doi.org/10.3390/jcdd9080277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rodríguez-Pérez JM, Posadas-Sánchez R, Blachman-Braun R, Vargas-Alarcón G, Posadas-Romero C, García-Flores E, López-Bautista F, Tovilla-Zárate CA, González-Castro TB, Borgonio-Cuadra VM et al (2018) A haplotype of the phosphodiesterase 4D (PDE4D) gene is associated with myocardial infarction and with cardiometabolic parameters: the GEA study. EXCLI J 17:1182–1190. https://doi.org/10.17179/excli2018-1608

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fu Z, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Shindo A, Ohta M, Soma M, Aoi N, Sato M et al (2012) Haplotype-based case-control study of CYP4A11 gene and myocardial infarction. Hereditas 149(3):91–98. https://doi.org/10.1111/j.1601-5223.2012.02247.x

    Article  PubMed  Google Scholar 

  108. Foddha H, Bouzidi N, Foddha A, Chouchene S, Touhami R, Leban N, Maatoug MF, Gamra H, Ferchichi S, Chibani JB et al (2020) Single nucleotide polymorphisms of SCN5A and SCN10A genes increase the risk of ventricular arrhythmias during myocardial infarction. Adv Clin Exp Med 29(4):423–429. https://doi.org/10.17219/acem/116750

    Article  PubMed  Google Scholar 

  109. Marston NA, Giugliano RP, Melloni GEM, Park JG, Morrill V, Blazing MA, Ference B, Stein E, Stroes ES, Braunwald E et al (2022) Association of apolipoprotein B-containing lipoproteins and risk of myocardial infarction in individuals with and without atherosclerosis: distinguishing between particle concentration, type, and content. JAMA Cardiol 7(3):250–256. https://doi.org/10.1001/jamacardio.2021.5083

    Article  PubMed  Google Scholar 

  110. Moorthy N, Saligrama Ramegowda K, Jain S, Bharath G, Sinha A, Nanjappa MC, Christopher R (2021) Role of Angiotensin-Converting Enzyme (ACE) gene polymorphism and ACE activity in predicting outcome after acute myocardial infarction. Int J Cardiol Heart Vasc 32:100701. https://doi.org/10.1016/j.ijcha.2020.100701

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ng LL, Sandhu JK, Narayan H, Quinn PA, Squire IB, Davies JE, Bergmann A, Maisel A, Jones DJ (2014) Proenkephalin and prognosis after acute myocardial infarction. J Am Coll Cardiol 63(3):280–289. https://doi.org/10.1016/j.jacc.2013.09.037

    Article  CAS  PubMed  Google Scholar 

  112. Fan GC, Kranias EG (2011) Small heat shock protein 20 (HspB6) in cardiac hypertrophy and failure. J Mol Cell Cardiol 51(4):574–577. https://doi.org/10.1016/j.yjmcc.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  113. Yonebayashi S, Tajiri K, Murakoshi N, Xu D, Li S, Feng D, Okabe Y, Yuan Z, Song Z, Aonuma K et al (2020) MAIR-II deficiency ameliorates cardiac remodelling post-myocardial infarction by suppressing TLR9-mediated macrophage activation. J Cell Mol Med 24(24):14481–14490. https://doi.org/10.1111/jcmm.16070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li J, Gong L, Zhang R, Li S, Yu H, Liu Y, Xue Y, Huang D, Xu N, Wang Y et al (2021) Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1. Eur J Pharmacol 910:174470. https://doi.org/10.1016/j.ejphar.2021.174470

    Article  CAS  PubMed  Google Scholar 

  115. Ortega A, Tarazón E, Roselló-Lletí E, Gil-Cayuela C, Lago F, González-Juanatey JR, Cinca J, Jorge E, Martínez-Dolz L, Portolés M et al (2015) Patients with dilated cardiomyopathy and sustained monomorphic ventricular tachycardia show up-regulation of KCNN3 and KCNJ2 genes and cacng8-linked left ventricular dysfunction. PLoS ONE 10(12):e0145518. https://doi.org/10.1371/journal.pone.0145518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zheng J, Peng B, Zhang Y, Ai F, Hu X (2020) FOXD3-AS1 knockdown suppresses hypoxia-induced cardiomyocyte injury by increasing cell survival and inhibiting apoptosis via upregulating cardioprotective molecule miR-150-5p in vitro. Front Pharmacol 11:1284. https://doi.org/10.3389/fphar.2020.01284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ogawa K, Yamazaki N, Suzuki Y, Kakizawa N, Okubo M, Yoshida Y, Nakamura T, Wakamatsu Y, Ito T, Shiozu H et al (1976) Dopamine-beta-hydroxylase activity after acute myocardial infarction. Recent Adv Stud Cardiac Struct Metab 12:425–429

    CAS  PubMed  Google Scholar 

  118. Zhuang R, Meng Q, Ma X, Shi S, Gong S, Liu J, Li M, Gu W, Li D, Zhang X et al (2022) CD4+FoxP3+CD73+ regulatory T cell promotes cardiac healing post-myocardial infarction. Theranostics 12(6):2707–2721. https://doi.org/10.7150/thno.68437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McLean BA, Wong CK, Kabir MG, Drucker DJ (2022) Glucagon-like Peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction. Mol Metab 66:101641. https://doi.org/10.1016/j.molmet.2022.101641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kashiwagi M, Ozaki Y, Imanishi T, Taruya A, Kuroi A, Katayama Y, Shimamura K, Shiono Y, Tanimoto T, Kubo T et al (2022) Interleukin-34 levels are increased in acute myocardial infarction and associated with major adverse cardiovascular events. Coron Artery Dis 31(1):61–63. https://doi.org/10.1097/MCA.0000000000001046

    Article  PubMed  Google Scholar 

  121. Bonda TA, Kamiński KA, Dziemidowicz M, Litvinovich S, Kożuch M, Hirnle T, Dmitruk I, Chyczewski L, Winnicka MM (2012) Atrial expression of the CCN1 and CCN2 proteins in chronic heart failure. Folia Histochem Cytobiol 50(1):99–103. https://doi.org/10.2478/18703

    Article  CAS  PubMed  Google Scholar 

  122. Adefurin A, Darghosian L, Okafor C, Kawai V, Li C, Shah A, Wei WQ, Kurnik D, Stein CM (2016) Alpha2A adrenergic receptor genetic variation contributes to hyperglycemia after myocardial infarction. Int J Cardiol 215:482–486. https://doi.org/10.1016/j.ijcard.2016.04.079

    Article  PubMed  PubMed Central  Google Scholar 

  123. Westermann D, Mersmann J, Melchior A, Freudenberger T, Petrik C, Schaefer L, Lüllmann-Rauch R, Lettau O, Jacoby C, Schrader J et al (2008) Biglycan is required for adaptive remodeling after myocardial infarction. Circulation 117(10):1269–1276. https://doi.org/10.1161/CIRCULATIONAHA.107.714147

    Article  CAS  PubMed  Google Scholar 

  124. Zheng B, Cao LS, Zeng QT, Wang X, Li DZ, Liao YH (2004) Inhibition of NOS2 ameliorates cardiac remodeling, improves heart function after myocardial infarction in rats. Basic Res Cardiol 99(4):264–271. https://doi.org/10.1007/s00395-004-0470-y

    Article  CAS  PubMed  Google Scholar 

  125. Baehr A, Umansky KB, Bassat E, Jurisch V, Klett K, Bozoglu T, Hornaschewitz N, Solyanik O, Kain D, Ferraro B et al (2020) Agrin promotes coordinated therapeutic processes leading to improved cardiac repair in pigs. Circulation 142(9):868–881. https://doi.org/10.1161/CIRCULATIONAHA.119.045116

    Article  CAS  PubMed  Google Scholar 

  126. Zhao Z, Li S, Zhang L, Deng X, Chen T, Zeng K, Mo X (2012) Dopamine D1 receptor gene polymorphism is associated with myocardial infarction. DNA Cell Biol 31(6):1010–1014. https://doi.org/10.1089/dna.2011.1466

    Article  CAS  PubMed  Google Scholar 

  127. Chang WT, Wang YC, Chen CC, Zhang SK, Liu CH, Chang FH, Hsu LS (2012) The -308G/A of Tumor Necrosis Factor (TNF)-α and 825C/T of Guanidine Nucleotide Binding Protein 3 (GNB3) are associated with the onset of acute myocardial infarction and obesity in Taiwan. Int J Mol Sci 13(2):1846–1857. https://doi.org/10.3390/ijms13021846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bo Z, Huang S, Li L, Chen L, Chen P, Luo X, Shi F, Zhu B, Shen L (2022) EGR2 is a hub-gene in myocardial infarction and aggravates inflammation and apoptosis in hypoxia-induced cardiomyocytes. BMC Cardiovasc Disord 22(1):373. https://doi.org/10.1186/s12872-022-02814-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhao SL, Zhang YJ, Li MH, Zhang XL, Chen SL (2014) Mesenchymal stem cells with overexpression of midkine enhance cell survival and attenuate cardiac dysfunction in a rat model of myocardial infarction. Stem Cell Res Ther 5(2):37. https://doi.org/10.1186/scrt425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang M, Pan X, Zou Q, Xia Y, Chen J, Hao Q, Wang H, Sun D (2016) Notch3 ameliorates cardiac fibrosis after myocardial infarction by inhibiting the TGF-β1/Smad3 pathway. Cardiovasc Toxicol 16(4):316–324. https://doi.org/10.1007/s12012-015-9341-z

    Article  CAS  PubMed  Google Scholar 

  131. Li X, Sun Y, Huang S, Chen Y, Chen X, Li M, Si X, He X, Zheng H, Zhong L et al (2019) Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. EBioMedicine 39:69–82. https://doi.org/10.1016/j.ebiom.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  132. Zheng Y, Lin J, Liu D, Wan G, Gu X, Ma J (2022) Nogo-B promotes angiogenesis and improves cardiac repair after myocardial infarction via activating Notch1 signaling. Cell Death Dis 13(4):306. https://doi.org/10.1038/s41419-022-04754-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang J, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, Barry V, Mikels-Vigdal A, Karpinski S, Kornyeyev D et al (2016) Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun 7:13710. https://doi.org/10.1038/ncomms13710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee CW, Hwang I, Park CS, Lee H, Park DW, Kang SJ, Lee SW, Kim YH, Park SW, Park SJ (2012) Expression of ADAMTS-2, -3, -13, and -14 in culprit coronary lesions in patients with acute myocardial infarction or stable angina. J Thromb Thrombolysis 33(4):362–370. https://doi.org/10.1007/s11239-011-0673-7

    Article  CAS  PubMed  Google Scholar 

  135. Mohammedi K, Bellili-Muñoz N, Marklund SL, Driss F, Le Nagard H, Patente TA, Fumeron F, Roussel R, Hadjadj S, Marre M et al (2015) Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes. Cardiovasc Diabetol 14:845. https://doi.org/10.1186/s12933-014-0163-2

    Article  PubMed  PubMed Central  Google Scholar 

  136. Emulina DE, Abola I, Brinkmane A, Isakovs A, Skadins I, Moisejevs G, Gailite L, Auzenbaha M (2024) The impact of IL1B rs1143634 and DEFB1 rs11362 variants on periodontitis risk in phenylketonuria and type 1 diabetes mellitus patients in a Latvian population. Diagnostics 14(2):192. https://doi.org/10.3390/diagnostics14020192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kavian Z, Sargazi S, Majidpour M, Sarhadi M, Saravani R, Shahraki M, Mirinejad S, Heidari Nia M, Piri M (2023) Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus. Sci Rep 13(1):6195. https://doi.org/10.1038/s41598-023-33239-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mahurkar S, Bhaskar S, Reddy DN, Prakash S, Rao GV, Singh SP, Thomas V, Chandak GR (2008) TCF7L2 gene polymorphisms do not predict susceptibility to diabetes in tropical calcific pancreatitis but may interact with SPINK1 and CTSB mutations in predicting diabetes. BMC Med Genet 9:80. https://doi.org/10.1186/1471-2350-9-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liehn EA, Merx MW, Postea O, Becher S, Djalali-Talab Y, Shagdarsuren E, Kelm M, Zernecke A, Weber C (2008) Ccr1 deficiency reduces inflammatory remodelling and preserves left ventricular function after myocardial infarction. J Cell Mol Med 12(2):496–506. https://doi.org/10.1111/j.1582-4934.2007.00194.x

    Article  CAS  PubMed  Google Scholar 

  140. Griffin JWD, Liu Y, Bradshaw PC, Wang K (2018) In silico preliminary association of ammonia metabolism genes GLS, CPS1, and GLUL with risk of alzheimer’s disease, major depressive disorder, and type 2 diabetes. J Mol Neurosci 64(3):385–396. https://doi.org/10.1007/s12031-018-1035-0

    Article  CAS  PubMed  Google Scholar 

  141. Du Toit E, Browne L, Irving-Rodgers H, Massa HM, Fozzard N, Jennings MP, Peak IR (2018) Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets. Eur J Nutr 57(5):1737–1746. https://doi.org/10.1007/s00394-017-1456-5

    Article  CAS  PubMed  Google Scholar 

  142. Li JY, Yang XY, Wang XF, Jia X, Wang ZJ, Deng AP, Bai XL, Zhu L, Li BH, Feng ZB et al (2017) Siglec-5 is a novel marker of critical limb ischemia in patients with diabetes. Sci Rep 7(1):11272. https://doi.org/10.1038/s41598-017-11820-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dharmadhikari G, Stolz K, Hauke M, Morgan NG, Varki A, de Koning E, Kelm S, Maedler K (2017) Siglec-7 restores β-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes. Sci Rep 7:45319. https://doi.org/10.1038/srep45319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Alharbi KK, Ali Khan I, Syed R, Alharbi FK, Mohammed AK, Vinodson B, Al-Daghri NM (2015) Association of JAZF1 and TSPAN8/LGR5 variants in relation to type 2 diabetes mellitus in a Saudi population. Diabetol Metab Syndr 7:92. https://doi.org/10.1186/s13098-015-0091-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen J, Chen YG, Reifsnyder PC, Schott WH, Lee CH, Osborne M, Scheuplein F, Haag F, Koch-Nolte F, Serreze DV et al (2006) Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ADP-ribosyltransferase 2-dependent fashion. J Immunol 176(8):4590–4599. https://doi.org/10.4049/jimmunol.176.8.4590

    Article  CAS  PubMed  Google Scholar 

  146. Harder MN, Ribel-Madsen R, Justesen JM, Sparsø T, Andersson EA, Grarup N, Jørgensen T, Linneberg A, Hansen T, Pedersen O (2013) Type 2 diabetes risk alleles near BCAR1 and in ANK1 associate with decreased β-cell function whereas risk alleles near ANKRD55 and GRB14 associate with decreased insulin sensitivity in the Danish Inter99 cohort. J Clin Endocrinol Metab 98(4):E801–E806. https://doi.org/10.1210/jc.2012-4169

    Article  CAS  PubMed  Google Scholar 

  147. Tang Z, Xia N, Yuan X, Zhu X, Xu G, Cui S, Zhang T, Zhang W, Zhao Y, Wang S et al (2015) PRDX1 is involved in palmitate induced insulin resistance via regulating the activity of p38MAPK in HepG2 cells. Biochem Biophys Res Commun 465(4):670–677. https://doi.org/10.1016/j.bbrc.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  148. Pomahačová R, Zamboryová J, Sýkora J, Paterová P, Fiklík K, Votava T, Černá Z, Jehlička P, Lád V, Šubrt I et al (2017) First 2 cases with thiamine-responsive megaloblastic anemia in the Czech Republic, a rare form of monogenic diabetes mellitus: a novel mutation in the thiamine transporter SLC19A2 gene-intron 1 mutation c.204+2T>G. Pediatr Diabetes 18(8):844–847. https://doi.org/10.1111/pedi.12479

    Article  CAS  PubMed  Google Scholar 

  149. Greenbaum L, Ravona-Springer R, Livny A, Shelly S, Sharvit-Ginon I, Ganmore I, Alkelai A, Heymann A, Schnaider BM (2019) The CADM2 gene is associated with processing speed performance: evidence among elderly with type 2 diabetes. World J Biol Psychiatry 20(7):577–583. https://doi.org/10.1080/15622975.2017.1366055

    Article  PubMed  Google Scholar 

  150. Vennekens R, Mesuere M, Philippaert K (2018) TRPM5 in the battle against diabetes and obesity. Acta Physiol 222(2):12949. https://doi.org/10.1111/apha.12949.10.1111/apha.12949

    Article  Google Scholar 

  151. Lin G, Wan X, Liu D, Wen Y, Yang C, Zhao C (2021) COL1A1 as a potential new biomarker and therapeutic target for type 2 diabetes. Pharmacol Res 165:105436. https://doi.org/10.1016/j.phrs.2021.105436

    Article  CAS  PubMed  Google Scholar 

  152. ‘t Hart LM, Fritsche A, Nijpels G, van Leeuwen N, Donnelly LA, Dekker JM, Alssema M, Fadista J, Carlotti F, Gjesing AP et al (2013) The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes 62(9):3275–3281. https://doi.org/10.2337/db13-0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rahimi R, Karimi J, Khodadadi I, Tayebinia H, Kheiripour N, Hashemnia M, Goli F (2018) Silymarin ameliorates expression of urotensin II (U-II) and its receptor (UTR) and attenuates toxic oxidative stress in the heart of rats with type 2 diabetes. Biomed Pharmacother 101:244–250. https://doi.org/10.1016/j.biopha.2018.02.075

    Article  CAS  PubMed  Google Scholar 

  154. Grieco GE, Brusco N, Fignani D, Nigi L, Formichi C, Licata G, Marselli L, Marchetti P, Salvini L, Tinti L et al (2022) Reduced miR-184-3p expression protects pancreatic β-cells from lipotoxic and proinflammatory apoptosis in type 2 diabetes via CRTC1 upregulation. Cell Death Discov 8(1):340. https://doi.org/10.1038/s41420-022-01142-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen G, Zhang Z, Adebamowo SN, Liu G, Adeyemo A, Zhou Y, Doumatey AP, Wang C, Zhou J, Yan W et al (2017) Common and rare exonic MUC5B variants associated with type 2 diabetes in Han Chinese. PLoS ONE 12(3):e0173784. https://doi.org/10.1371/journal.pone.0173784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu PJ, Yao A, Chen XY, Liu Y, Ma L, Hou YX (2021) Associations of TMPRSS6 polymorphisms with gestational diabetes mellitus in Chinese han pregnant women: a preliminary cohort study. Biol Trace Elem Res 199(2):473–481. https://doi.org/10.1007/s12011-020-02169-w

    Article  PubMed  Google Scholar 

  157. Qu Y, Hao L, Wang X (2023) A young-onset type 2 diabetic Chinese girl with familial renal glycosuria caused by a novel mutation in SLC5A2: a case report. J Diabetes 15(7):622–626. https://doi.org/10.1111/1753-0407.13410

    Article  PubMed  PubMed Central  Google Scholar 

  158. Wolford JK, Hanson RL, Kobes S, Bogardus C, Prochazka M (2001) Analysis of linkage disequilibrium between polymorphisms in the KCNJ9 gene with type 2 diabetes mellitus in Pima Indians. Mol Genet Metab 73(1):97–103. https://doi.org/10.1006/mgme.2001.3167

    Article  CAS  PubMed  Google Scholar 

  159. Giacconi R, Kanoni S, Mecocci P, Malavolta M, Richter D, Pierpaoli S, Costarelli L, Cipriano C, Muti E, Mangialasche F et al (2010) Association of MT1A haplotype with cardiovascular disease and antioxidant enzyme defense in elderly Greek population: comparison with an Italian cohort. J Nutr Biochem 21(10):1008–1014. https://doi.org/10.1016/j.jnutbio.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  160. Cho H, Shen GQ, Wang X, Wang F, Archacki S, Li Y, Yu G, Chakrabarti S, Chen Q, Wang QK (2019) Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J Biol Chem 294(11):3881–3898. https://doi.org/10.1074/jbc.RA118.005050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wu Y, Wang S, Zhou Y, Yang Y, Li S, Yin W, Ding Y (2023) Clinical indicators combined with S100A12/TLR2 signaling molecules to establish a new scoring model for coronary artery lesions in Kawasaki disease. PLoS ONE 18(10):e0292653. https://doi.org/10.1371/journal.pone.0292653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gao H, Liu S, Zhao Z, Yu X, Liu Q, Xin Y, Xuan S (2019) Association of GCKR gene polymorphisms with the risk of nonalcoholic fatty liver disease and coronary artery disease in a Chinese Northern Han population. J Clin Transl Hepatol 7(4):297–303. https://doi.org/10.14218/JCTH.2019.00030

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chen Z, Ma G, Qian Q, Yao Y, Feng Y, Tang C (2009) Toll-like receptor 8 polymorphism and coronary artery disease. Mol Biol Rep 36(7):1897–1901. https://doi.org/10.1007/s11033-008-9396-z

    Article  CAS  PubMed  Google Scholar 

  164. Yarnazari A, Hassanpour P, Hosseini-Fard SR, Amirfarhangi A, Najafi M (2017) The sdLDL reduces MRC1 expression level and secretion of histamin E in differentiated M2-macrophages from patients with coronary artery stenosis. Cardiovasc Hematol Disord Drug Targets 17(1):28–32. https://doi.org/10.2174/1871529X17666170106095554

    Article  CAS  PubMed  Google Scholar 

  165. Li X, Wu N, Ji H, Huang Y, Hu H, Li J, Mi S, Duan S, Chen X (2020) A male-specific association between AGTR1 hypermethylation and coronary heart disease. Bosn J Basic Med Sci 20(1):31–36. https://doi.org/10.17305/bjbms.2019.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhou WL, Mo ZZ, Xiao FY, Dai W, Wang G, Zhou G, Zhang W, Chen BL (2020) microRNA-605 rs2043556 polymorphisms affect clopidogrel therapy through modulation of CYP2B6 and P2RY12 in acute coronary syndrome patients. Platelets 31(7):897–905. https://doi.org/10.1080/09537104.2019.1696455

    Article  CAS  PubMed  Google Scholar 

  167. Piechota M, Banaszewska A, Dudziak J, Slomczynski M, Plewa R (2012) Highly upregulated expression of CD36 and MSR1 in circulating monocytes of patients with acute coronary syndromes. Protein J 31(6):511–518. https://doi.org/10.1007/s10930-012-9431-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhou YY, Sun JH, Wang L, Cheng YY (2023) Genetic polymorphism of NQO1 influences susceptibility to coronary heart disease in a Chinese population: a cross-sectional study and meta-anaylsis. Pharmgenomics Pers Med 16:825–833. https://doi.org/10.2147/PGPM.S420874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Brandt J, Warnke K, Jörgens S, Arolt V, Beer K, Domschke K, Haverkamp W, Kuhlmann SL, Müller-Nordhorn J, Rieckmann N et al (2020) Association of FKBP5 genotype with depressive symptoms in patients with coronary heart disease: a prospective study. J Neural Transm 127(12):1651–1662. https://doi.org/10.1007/s00702-020-02243-6

    Article  CAS  PubMed  Google Scholar 

  170. Zhang JW, Liu TF, Chen XH, Liang WY, Feng XR, Wang L, Fu SW, McCaffrey TA, Liu ML (2017) Validation of aspirin response-related transcripts in patients with coronary artery disease and preliminary investigation on CMTM5 function. Gene 624:56–65. https://doi.org/10.1016/j.gene.2017.04.041

    Article  CAS  PubMed  Google Scholar 

  171. Ebrahim S, Lawlor DA, Shlomo YB, Timpson N, Harbord R, Christensen M, Baban J, Kiessling M, Day I, Gaunt T et al (2008) Alcohol dehydrogenase type 1C (ADH1C) variants, alcohol consumption traits, HDL-cholesterol and risk of coronary heart disease in women and men: British Women’s Heart and Health Study and Caerphilly cohorts. Atherosclerosis 196(2):871–878. https://doi.org/10.1016/j.atherosclerosis.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  172. Wang Y, Liu W, Xiao Y, Yuan H, Wang F, Jiang P, Luo Z (2020) Association of apelin and apelin receptor polymorphisms with the risk of comorbid depression and anxiety in coronary heart disease patients. Front Genet 11:893. https://doi.org/10.3389/fgene.2020.00893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ji Q, Zhang J, Du Y, Zhu E, Wang Z, Que B, Miao H, Shi S, Qin X, Zhao Y et al (2017) Human epicardial adipose tissue-derived and circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with coronary artery disease. Cardiovasc Diabetol 16(1):133. https://doi.org/10.1186/s12933-017-0612-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhong Y, Du G, Liu J, Li S, Lin J, Deng G, Wei J, Huang J (2022) RUNX1 and CCL3 in diabetes mellitus-related coronary artery disease: a bioinformatics analysis. Int J Gen Med 15:955–963. https://doi.org/10.2147/IJGM.S350732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sheu JJ, Lin YJ, Chang JS, Wan L, Chen SY, Huang YC, Chan C, Chiu IW, Tsai FJ (2010) Association of COL11A2 polymorphism with susceptibility to Kawasaki disease and development of coronary artery lesions. Int J Immunogenet 37(6):487–492. https://doi.org/10.1111/j.1744-313X.2010.00952.x

    Article  CAS  PubMed  Google Scholar 

  176. Li X, Ma YT, Xie X, Yang YN, Ma X, Zheng YY, Pan S, Liu F, Chen BD (2014) Association of Egr3 genetic polymorphisms and coronary artery disease in the Uygur and Han of China. Lipids Health Dis 13:84. https://doi.org/10.1186/1476-511X-13-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chen X, Wang X, Zhang Z, Chen Y, Wang C (2021) Role of IL-9, IL-2RA, and IL-2RB genetic polymorphisms in coronary heart disease. Herz. https://doi.org/10.1007/s00059-020-05004-z.10.1007/s00059-020-05004-z

    Article  PubMed  Google Scholar 

  178. Nagai T, Ogimoto A, Okayama H, Ohtsuka T, Shigematsu Y, Hamada M, Miki T, Higaki J (2007) A985G polymorphism of the endothelin-2 gene and atrial fibrillation in patients with hypertrophic cardiomyopathy. Circ J 71(12):1932–1936. https://doi.org/10.1253/circj.71.1932

    Article  CAS  PubMed  Google Scholar 

  179. Yao J, Hou J, Lv L, Song C, Zhang M, Wu Z (2021) Does decreased SNX10 serve as a novel risk factor in atrial fibrillation of the valvular heart disease?—A case-control study. Braz J Cardiovasc Surg 36(1):71–77. https://doi.org/10.21470/1678-9741-2019-0413

    Article  PubMed  PubMed Central  Google Scholar 

  180. Rahm AK, Wieder T, Gramlich D, Müller ME, Wunsch MN, El Tahry FA, Heimberger T, Sandke S, Weis T, Most P et al (2021) Differential regulation of KCa 2.1 (KCNN1) K+ channel expression by histone deacetylases in atrial fibrillation with concomitant heart failure. Physiol Rep 9(11):e14835. https://doi.org/10.14814/phy2.14835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Czopek A, Moorhouse R, Guyonnet L, Farrah T, Lenoir O, Owen E, van Bragt J, Costello HM, Menolascina F, Baudrie V et al (2019) A novel role for myeloid endothelin-B receptors in hypertension. Eur Heart J 40(9):768–784. https://doi.org/10.1093/eurheartj/ehy881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hadzic S, Wu CY, Gredic M, Pak O, Loku E, Kraut S, Kojonazarov B, Wilhelm J, Brosien M, Bednorz M et al (2023) Fibroblast growth factor 10 reverses cigarette smoke- and elastase-induced emphysema and pulmonary hypertension in mice. Eur Respir J 62(5):2201606. https://doi.org/10.1183/13993003.01606-2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Leng Q, Kahle KT, Rinehart J, MacGregor GG, Wilson FH, Canessa CM, Lifton RP, Hebert SC (2006) WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1). J Physiol 571(Pt 2):275–286. https://doi.org/10.1113/jphysiol.2005.102202

    Article  CAS  PubMed  Google Scholar 

  184. Zhao W, Wang Y, Wang L, Lu X, Yang W, Huang J, Chen S, Gu D (2009) Gender-specific association between the kininogen 1 gene variants and essential hypertension in Chinese Han population. J Hypertens 27(3):484–490. https://doi.org/10.1097/hjh.0b013e32831e19f9

    Article  CAS  PubMed  Google Scholar 

  185. Lu J, Li M, Zhang R, Hu C, Wang C, Jiang F, Yu W, Qin W, Tang S, Jia W (2012) A common genetic variant of FCN3/CD164L2 is associated with essential hypertension in a Chinese population. Clin Exp Hypertens 34(5):377–382. https://doi.org/10.3109/10641963.2012.665538

    Article  CAS  PubMed  Google Scholar 

  186. da Silva IV, Santos AC, Matos A, Pereira da Silva A, Soveral G, Rebelo I, Bicho M (2021) Association of Aquaporin-3, Aquaporin-7, NOS3 and CYBA polymorphisms with hypertensive disorders in women. Pregnancy Hypertens 24:44–49. https://doi.org/10.1016/j.preghy.2021.02.008

    Article  PubMed  Google Scholar 

  187. Martin-Lorenzo M, Martinez PJ, Baldan-Martin M, Lopez JA, Minguez P, Santiago-Hernandez A, Vazquez J, Segura J, Ruiz-Hurtado G, Vivanco F et al (2019) Urine haptoglobin and haptoglobin-related protein predict response to spironolactone in patients with resistant hypertension. Hypertension 73(4):794–802. https://doi.org/10.1161/HYPERTENSIONAHA.118.12242

    Article  CAS  PubMed  Google Scholar 

  188. Katsouda A, Markou M, Zampas P, Varela A, Davos CH, Vellecco V, Cirino G, Bucci M, Papapetropoulos A (2023) CTH/MPST double ablation results in enhanced vasorelaxation and reduced blood pressure via upregulation of the eNOS/sGC pathway. Front Pharmacol 14:1090654. https://doi.org/10.3389/fphar.2023.1090654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Keranov S, Dörr O, Jafari L, Liebetrau C, Keller T, Troidl C, Kriechbaum S, Voss S, Richter M, Tello K et al (2020) SPARCL1 as a biomarker of maladaptive right ventricular remodelling in pulmonary hypertension. Biomarkers 25(3):290–295. https://doi.org/10.1080/1354750X.2020.1745889

    Article  CAS  PubMed  Google Scholar 

  190. Moura Alves Seixas G, de Souza Freitas R, Ferreira Fratelli C, de Souza Silva CM, Ramos de Lima L, Morato Stival M, Schwerz Funghetto S, Rodrigues da Silva IC (2023) MAOA uVNTR polymorphism influence on older adults diagnosed with diabetes mellitus/systemic arterial hypertension. J Aging Res 2023:8538027. https://doi.org/10.1155/2023/8538027

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chida A, Shintani M, Nakayama T, Furutani Y, Hayama E, Inai K, Saji T, Nonoyama S, Nakanishi T (2012) Missense mutations of the BMPR1B (ALK6) gene in childhood idiopathic pulmonary arterial hypertension. Circ J 76(6):1501–1508. https://doi.org/10.1253/circj.cj-11-1281

    Article  CAS  PubMed  Google Scholar 

  192. Zhou C, Chen Y, Kang W, Lv H, Fang Z, Yan F, Li L, Zhang W, Shi J (2019) Mir-455-3p-1 represses FGF7 expression to inhibit pulmonary arterial hypertension through inhibiting the RAS/ERK signaling pathway. J Mol Cell Cardiol 130:23–35. https://doi.org/10.1016/j.yjmcc.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  193. Sano M, Kuroi N, Nakayama T, Sato N, Izumi Y, Soma M, Kokubun S (2005) Association study of calcitonin-receptor-like receptor gene in essential hypertension. Am J Hypertens 18(3):403–408. https://doi.org/10.1016/j.amjhyper.2004.10.016

    Article  CAS  PubMed  Google Scholar 

  194. Ekwunife OI, Aguwa CN, Igboeli NU (2013) Health Utilities Index Mark 3 (HUI3) demonstrated construct validity in a Nigerian population with hypertension. Qual Life Res 22(2):455–458. https://doi.org/10.1007/s11136-012-0150-6

    Article  PubMed  Google Scholar 

  195. Yokoyama A, Mizukami T, Matsui T, Yokoyama T, Kimura M, Matsushita S, Higuchi S, Maruyama K (2013) Genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and liver cirrhosis, chronic calcific pancreatitis, diabetes mellitus, and hypertension among Japanese alcoholic men. Alcohol Clin Exp Res 37(8):1391–1401. https://doi.org/10.1111/acer.12108

    Article  CAS  PubMed  Google Scholar 

  196. Foroozanfard F, Rafiei H, Samimi M, Gilasi HR, Gorjizadeh R, Heidar Z, Asemi Z (2017) The effects of dietary approaches to stop hypertension diet on weight loss, anti-Müllerian hormone and metabolic profiles in women with polycystic ovary syndrome: a randomized clinical trial. Clin Endocrinol 87(1):51–58. https://doi.org/10.1111/cen.13333

    Article  CAS  Google Scholar 

  197. Säleby J, Bouzina H, Ahmed S, Lundgren J, Rådegran G (2019) Plasma receptor tyrosine kinase RET in pulmonary arterial hypertension diagnosis and differentiation. ERJ Open Res 5(4):00037–02019. https://doi.org/10.1183/23120541.00037-2019

    Article  PubMed  PubMed Central  Google Scholar 

  198. Griffiths M, Yang J, Nies M, Vaidya D, Brandal S, Williams M, Matsui EC, Grant T, Damico R, Ivy D et al (2020) Pediatric pulmonary hypertension: insulin-like growth factor-binding protein 2 is a novel marker associated with disease severity and survival. Pediatr Res 88(6):850–856. https://doi.org/10.1038/s41390-020-01113-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ueno T, Tabara Y, Fukuda N, Tahira K, Matsumoto T, Kosuge K, Haketa A, Matsumoto K, Sato Y, Nakayama T et al (2009) Association of SLC6A9 gene variants with human essential hypertension. J Atheroscler Thromb 16(3):201–206. https://doi.org/10.5551/jat.e125

    Article  CAS  PubMed  Google Scholar 

  200. Zhang H, Mo X, Zhou Z, Zhu Z, HuangFu X, Xu T, Wang A, Guo Z, Zhang Y (2019) Associations among NPPA gene polymorphisms, serum ANP levels, and hypertension in the Chinese Han population. J Hum Hypertens 33(9):641–647. https://doi.org/10.1038/s41371-019-0219-6

    Article  PubMed  Google Scholar 

  201. Zaw AM, Sekar R, Mak SOK, Law HKW, Chow BKC (2019) Loss of secretin results in systemic and pulmonary hypertension with cardiopulmonary pathologies in mice. Sci Rep 9(1):14211. https://doi.org/10.1038/s41598-019-50634-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hwang IK, Yoon YS, Choi JH, Yoo KY, Yi SS, Chung DW, Kim HJ, Kim CS, DO SG, Seong JK, et al (2008) Doublecortin-immunoreactive neuronal precursors in the dentate gyrus of spontaneously hypertensive rats at various age stages: comparison with Sprague–Dawley rats. J Vet Med Sci 70(4):373–377. https://doi.org/10.1292/jvms.70.373

    Article  CAS  PubMed  Google Scholar 

  203. Garcia SM, Yellowhair TR, Detweiler ND, Ahmadian R, Herbert LM, Gonzalez Bosc LV, Resta TC, Jernigan NL (2022) Smooth muscle Acid-sensing ion channel 1a as a therapeutic target to reverse hypoxic pulmonary hypertension. Front Mol Biosci 9:989809. https://doi.org/10.3389/fmolb.2022.989809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Miller RL, Knuepfer MM, Wang MH, Denny GO, Gray PA, Loewy AD (2012) Fos-activation of FoxP2 and Lmx1b neurons in the parabrachial nucleus evoked by hypotension and hypertension in conscious rats. Neuroscience 218:110–125. https://doi.org/10.1016/j.neuroscience.2012.05.049

    Article  CAS  PubMed  Google Scholar 

  205. Zhao Q, Sun H, Yin L, Wang L (2019) miR-126a-5p-Dbp and miR-31a-Crot/Mrpl4 interaction pairs crucial for the development of hypertension and stroke. Mol Med Rep 20(5):4151–4167. https://doi.org/10.3892/mmr.2019.10679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ueno T, Tabara Y, Fukuda N, Tahira K, Matsumoto T, Kosuge K, Haketa A, Matsumoto K, Sato Y, Nakayama T, Katsuya T et al (2009) Association of SLC6A9 gene variants with human essential hypertension. J Atheroscler Thromb 16(3):201–206. https://doi.org/10.5551/jat.e125

    Article  CAS  PubMed  Google Scholar 

  207. Hochberg A, Patz M, Karrasch T, Schäffler A, Schmid A (2021) Serum levels and adipose tissue gene expression of cathelicidin antimicrobial peptide (CAMP) in obesity and during weight loss. Horm Metab Res 53(3):169–177. https://doi.org/10.1055/a-1323-3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yang H, Graham LC, Reagan AM, Grabowska WA, Schott WH, Howell GR (2019) Transcriptome profiling of brain myeloid cells revealed activation of Itgal, Trem1, and Spp1 in western diet-induced obesity. J Neuroinflammation 16(1):169. https://doi.org/10.1186/s12974-019-1527-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Moreno B, Hueso L, Ortega R, Benito E, Martínez-Hervas S, Peiro M, Civera M, Sanz MJ, Piqueras L, Real JT et al (2022) Association of chemokines IP-10/CXCL10 and I-TAC/CXCL11 with insulin resistance and enhance leukocyte endothelial arrest in obesity. Microvasc Res 139:104254. https://doi.org/10.1016/j.mvr.2021.104254

    Article  CAS  PubMed  Google Scholar 

  210. Qiu J, Zhang Z, Hu Y, Guo Y, Liu C, Chen Y, Wang D, Su J, Wang S, Ni M et al (2024) Transferrin receptor levels and its rare variant are associated with human obesity. J Diabetes 16(1):e13467. https://doi.org/10.1111/1753-0407.13467

    Article  PubMed  Google Scholar 

  211. Hulsmans M, Geeraert B, Arnould T, Tsatsanis C, Holvoet P (2013) PPAR agonist-induced reduction of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irak3 expression. PLoS ONE 8(4):e62253. https://doi.org/10.1371/journal.pone.0062253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Koc G, Soyocak A, Alis H, Kankaya B, Kanigur G (2021) Changes in VGF and C3aR1 gene expression in human adipose tissue in obesity. Mol Biol Rep 48(1):251–257. https://doi.org/10.1007/s11033-020-06043-9

    Article  CAS  PubMed  Google Scholar 

  213. Shi Y, Long F (2017) Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice. Elife 6:e31649. https://doi.org/10.7554/eLife.31649

    Article  PubMed  PubMed Central  Google Scholar 

  214. Al-Ameri HW, Shetty S, Rahman B, Gopalakrishnan ARK, Ismail AA, Acharya AB (2023) Evaluation of salivary Thy-1 in health, periodontitis, and obesity. Oral Dis. https://doi.org/10.1111/odi.1465

    Article  PubMed  Google Scholar 

  215. Zemva J, Schilbach K, Stöhr O, Moll L, Franko A, Krone W, Wiesner RJ, Schubert M (2012) Central FoxO3a and FoxO6 expression is down-regulated in obesity induced diabetes but not in aging. Exp Clin Endocrinol Diabetes 120(6):340–350. https://doi.org/10.1055/s-0031-1297970

    Article  CAS  PubMed  Google Scholar 

  216. Michaelides M, Miller ML, Egervari G, Primeaux SD, Gomez JL, Ellis RJ, Landry JA, Szutorisz H, Hoffman AF, Lupica CR et al (2020) Striatal Rgs4 regulates feeding and susceptibility to diet-induced obesity. Mol Psychiatry 25(9):2058–2069. https://doi.org/10.1038/s41380-018-0120-7

    Article  CAS  PubMed  Google Scholar 

  217. Kuem N, Song SJ, Yu R, Yun JW, Park T (2014) Oleuropein attenuates visceral adiposity in high-fat diet-induced obese mice through the modulation of WNT10b- and galanin-mediated signalings. Mol Nutr Food Res 58(11):2166–2176. https://doi.org/10.1002/mnfr.201400159

    Article  CAS  PubMed  Google Scholar 

  218. Zhang L, Reidy SP, Nicholson TE, Lee HJ, Majdalawieh A, Webber C, Stewart BR, Dolphin P, Ro HS (2005) The role of AEBP1 in sex-specific diet-induced obesity. Mol Med 11(1–12):39–47. https://doi.org/10.2119/2005-00021.Ro

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang B, Yan J, Peng Z, Wang J, Liu S, Xie X, Ma X (2011) Teratocarcinoma-derived growth factor 1 (TDGF1) sequence variants in patients with congenital heart defect. Int J Cardiol 146(2):225–227. https://doi.org/10.1016/j.ijcard.2009.08.046

    Article  PubMed  Google Scholar 

  220. Louw JJ, Nunes Bastos R, Chen X, Verdood C, Corveleyn A, Jia Y, Breckpot J, Gewillig M, Peeters H, Santoro MM et al (2018) Compound heterozygous loss-of-function mutations in KIF20A are associated with a novel lethal congenital cardiomyopathy in two siblings. PLoS Genet 14(1):e1007138. https://doi.org/10.1371/journal.pgen.1007138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen HX, Yang ZY, Hou HT, Wang J, Wang XL, Yang Q, Liu L, He GW (2020) Novel mutations of TCTN3/LTBP2 with cellular function changes in congenital heart disease associated with polydactyly. J Cell Mol Med 24(23):13751–13762. https://doi.org/10.1111/jcmm.15950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chen MC, Chang TH, Chang JP, Huang HD, Ho WC, Lin YS, Pan KL, Liu WH, Huang YK (2016) Circulating miR-148b-3p and miR-409-3p as biomarkers for heart failure in patients with mitral regurgitation. Int J Cardiol 222:148–154. https://doi.org/10.1016/j.ijcard.2016.07.179

    Article  PubMed  Google Scholar 

  223. Li M, Zhang J (2015) Circulating MicroRNAs: Potential and Emerging Biomarkers for Diagnosis of Cardiovascular and Cerebrovascular Diseases. Biomed Res Int 2015:730535. https://doi.org/10.1155/2015/730535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang S, Li L, Hu X, Liu T, Jiang W, Wu R, Ren Y, Wang M (2021) Effects of atrial fibrillation-derived exosome delivery of miR-107 to human umbilical vein endothelial cells. DNA Cell Biol 40(4):568–579. https://doi.org/10.1089/dna.2020.6356

    Article  CAS  PubMed  Google Scholar 

  225. Zhao C, Liu J, Ge W, Li Z, Lv M, Feng Y, Liu X, Liu B, Zhang Y (2021) Identification of regulatory circRNAs involved in the pathogenesis of acute myocardial infarction. Front Genet 11:626492. https://doi.org/10.3389/fgene.2020.626492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lin F, Tan YQ, He XH, Guo LL, Wei BJ, Li JP, Chen Z, Chen HW, Wang J (2020) Huoxue huatan decoction ameliorates myocardial ischemia/reperfusion injury in hyperlipidemic rats via PGC-1α-PPARα and PGC-1α-NRF1-mtTFA pathways. Front Pharmacol 11:546825. https://doi.org/10.3389/fphar.2020.546825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Liao B, Dong S, Xu Z, Gao F, Zhang S, Liang R (2020) LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1. Life Sci 256:117811. https://doi.org/10.1016/j.lfs.2020.117811

    Article  CAS  PubMed  Google Scholar 

  228. Izadpanah P, Khabbzi E, Erfanian S, Jafaripour S, Shojaie M (2021) Case-control study on the association between the GATA2 gene and premature myocardial infarction in the Iranian population. Fall-Kontroll-Studie zur Assoziation zwischen GATA2-Gen und frühzeitigem Myokardinfarkt in der iranischen Bevölkerung. Herz 46(1):71–75. https://doi.org/10.1007/s00059-019-04841-x

    Article  PubMed  Google Scholar 

  229. Wang K, Zhou LY, Wang JX, Wang Y, Sun T, Zhao B, Yang YJ, An T, Long B, Li N et al (2015) E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nat Commun 6:7619. https://doi.org/10.1038/ncomms8619

    Article  CAS  PubMed  Google Scholar 

  230. Hakobjanyan A, Stahelova A, Mrazek F, Petrkova J, Navratilova Z, Petrek M (2018) TP53 rs1042522 and rs8064946 variants in myocardial infarction. Bratisl Lek Listy 119(12):747–751. https://doi.org/10.4149/BLL_2018_136

    Article  CAS  PubMed  Google Scholar 

  231. Jiang G, Ma Y, An T, Pan Y, Mo F, Zhao D, Liu Y, Miao JN, Gu YJ, Wang Y et al (2017) Relationships of circular RNA with diabetes and depression. Sci Rep 7(1):7285. https://doi.org/10.1038/s41598-017-07931-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Stępień EŁ, Durak-Kozica M, Kamińska A, Targosz-Korecka M, Libera M, Tylko G, Opalińska A, Kapusta M, Solnica B, Georgescu A et al (2018) Circulating ectosomes: determination of angiogenic microRNAs in type 2 diabetes. Theranostics 8(14):3874–3890. https://doi.org/10.7150/thno.23334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Demirsoy İH, Ertural DY, Balci Ş, Çınkır Ü, Sezer K, Tamer L, Aras N (2018) Profiles of circulating MiRNAs following metformin treatment in patients with type 2 diabetes. J Med Biochem 37(4):499–506. https://doi.org/10.2478/jomb-2018-0009

    Article  CAS  PubMed  Google Scholar 

  234. Xu Y, Song R, Long W, Guo H, Shi W, Yuan S, Xu G, Zhang T (2018) CREB1 functional polymorphisms modulating promoter transcriptional activity are associated with type 2 diabetes mellitus risk in Chinese population. Gene 665:133–140. https://doi.org/10.1016/j.gene.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  235. Fogarty MP, Cannon ME, Vadlamudi S, Gaulton KJ, Mohlke KL (2014) Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet 10(9):e1004633. https://doi.org/10.1371/journal.pgen.1004633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Li C, Zhang Z, Xu Q, Shi R (2020) Comprehensive analyses of miRNA-mRNA network and potential drugs in idiopathic pulmonary arterial hypertension. Biomed Res Int 2020:5156304. https://doi.org/10.1155/2020/5156304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chen Z, Ding Z, Ma G, Liu N, Qian Q (2011) Sterol regulatory element-binding transcription factor (SREBF)-2, SREBF cleavage-activating protein (SCAP), and premature coronary artery disease in a Chinese population. Mol Biol Rep 38(5):2895–2901. https://doi.org/10.1007/s11033-010-9951-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Juan Pablo Romero, CIMA, Hemato-Oncology, Advanced Genomics, Pamplona, Navarra, Spain, very much, the author who deposited their profiling by high-throughput sequencing dataset GSE132143, into the public GEO database.

Funding

The authors received no financial support for the research.

Author information

Authors and Affiliations

Authors

Contributions

BV contributed to writing original draft and review and editing. CV contributed to the software and investigation.

Corresponding author

Correspondence to Chanabasayya Vastrad.

Ethics declarations

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vastrad, B., Vastrad, C. Identification and interaction analysis of molecular markers in myocardial infarction by bioinformatics and next-generation sequencing data analysis. Egypt J Med Hum Genet 25, 117 (2024). https://doi.org/10.1186/s43042-024-00584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s43042-024-00584-5

Keywords