National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Symptoms & Causes of Gestational Diabetes. https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/gestational/symptoms-causes
Fernández-Morera JL, Rodríguez-Rodero S, Menéndez-Torre E et al (2010) The possible role of epigenetics in gestational diabetes: cause, consequence, or both. Obstet Gynecol Int. 2010:605163. https://doi.org/10.1155/2010/605163
Article
PubMed
PubMed Central
Google Scholar
American Diabetes Association (ADA). Standards of medical care in diabetes- 2018”. Diabetes Care. 2018;41(Suppl 1):S13–S27, doi: https://doi.org/10.2337/dc18-S002
Rayanagoudar G, Hashi AA, Zamora J et al (2016) Quantification of the type 2 diabetes risk in women with gestational diabetes: a systematic review and meta-analysis of 95,750 women. Diabetologia 59:1403–1411. https://doi.org/10.1007/s00125-016-3927-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Burlina S, Dalfrà MG, Lapolla A. Clinical and biochemical approach to predicting post-pregnancy metabolic decompensation. Diabetes Res Clin Pract, 2018;145:178–183. DOI:10.1016/j.diabres.2018.02.035. DOI: https://doi.org/10.1016/j.diabres.2018.02.035
Article
CAS
PubMed
Google Scholar
Yessoufou A, Moutairou K. Maternal Diabetes in Pregnancy: Early and Long-Term Outcomes on the Offspring and the Concept of “Metabolic Memory. Experimental Diabetes Research, 2011; 2011: Article ID 218598. https://doi.org/10.1155/2011/218598.
Article
Google Scholar
Metzger BE (2009) The HAPO Study Cooperative Research Group. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. Associations with neonatal anthropometrics. Diabetes 58:453–459. https://doi.org/10.2337/db08-1112
Article
CAS
Google Scholar
Freinkel N (1980) Banting Lecture 1980: of pregnancy and progeny. Diabetes 29:1023–1035
Article
CAS
PubMed
Google Scholar
Farahvar S, Walfisch A, Sheiner E (2019) Gestational diabetes risk factors and long-term consequences for both mother and offspring: a literature review. Expert Rev Endocrinol Metab 14(1):63–74. https://doi.org/10.1080/17446651.2018.1476135
Article
CAS
PubMed
Google Scholar
Franzago M, Fraticelli F, Stuppia L, Vitacolonna E (2019) Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Eigenetics 14(3):215–235 https://doi.org/10.1080/15592294.2019.1582277
Article
Google Scholar
Hod M, Kapur A, Sacks A et al (2015) The international Federation of Gynecology and Obstetrics (FIGO). Initiative on gestational diabetes mellitus: a pragmatic guide for diagnosis, management, and care. J Gynecol Obstet 131(Suppl 3):S173–S211
Google Scholar
Diabetes G International Diabetes Federation – Home. Available online at www.idf.org/our-activities/care-prevention/gdm
Zhao J1, Weiler HA. Long-term effects of gestational diabetes on offspring health are more pronounced in skeletal growth than body composition and glucose tolerance. Br J Nutr, 2010;104(11):1641-9. doi: 10.1017/S0007114510002631.
Article
CAS
PubMed
Google Scholar
Damm P1, Houshmand-Oeregaard A, Kelstrup L, et al. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia, 2016;59 (7):1396-1399. doi: https://doi.org/10.1007/s00125-016-3985-5.
Article
CAS
PubMed
Google Scholar
Clausen TD, Mathiesen ER, Hansen T et al (2008) High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 31:340–346. https://doi.org/10.2337/dc07-1596
Article
PubMed
Google Scholar
Assche FAV, Holemans K, Aerts L (2011) Long-term consequences for offspring of diabetes during pregnancy. British Medical Bulletin 60(1):173–182 https://doi.org/10.1093/bmb/60.1.173
Article
Google Scholar
International Diabetes Federation. Diabetes Atlas 8th ed., 2017. Available online at http://fmdiabetes.org/wp-content/uploads/2018/03/IDF-2017.pdf
Kaaja R, Rönnemaa T (2008) Gestational Diabetes: Pathogenesis and Consequences to Mother and Offspring. Rev Diabet Stud. 5(4):194–202. https://doi.org/10.1900/RDS.2008.5.194
Article
PubMed
Google Scholar
Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes, 2008; 57: 645-653.
MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY (2001) Members of the Kv1 and Kv2 voltage-dependent K(+) channel families regulate insulin secretion. Mol Endocrinol 15(8):1423–1435. https://doi.org/10.1210/mend.15.8.0685
Article
CAS
PubMed
Google Scholar
Huerta-Chagoya A, Vázquez-Cárdenas P, Moreno-Macías H, Tapia-Maruri L, Rodríguez-Guillén R, López-Vite E (2015) Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women. PloS one 10(5):e0126408. https://doi.org/10.1371/journal.pone.0126408
Article
CAS
PubMed
PubMed Central
Google Scholar
Prokopenko I, Langenberg C, Florez JC et al (2009) Variants in MTNR1B influence fasting glucose levels. Nature genetics 41(1):77–81. 19060907
Article
CAS
PubMed
Google Scholar
Shang M, Wen Z (2018) Increased placental IGF-1/mTOR activity in macrosomia born to women with gestational diabetes. Diabetes Research and Clinical Practice 146:211–219 https://doi.org/10.1016/j.diabres.2018.10.017
Article
CAS
PubMed
Google Scholar
Casellas A, Mallol C, Salavert A, Jimenez V, Garcia M, Agudo J (2015) Insulin-like Growth Factor 2 Overexpression Induces β-Cell Dysfunction and Increases Beta-cell Susceptibility to Damage. The Journal of Biological Chemistry 290:16772–16785. https://doi.org/10.1074/jbc.M115.642041
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez VI, Miller E, Meireles CL, Gelfond J, Krummel DA, Powell TL (2014) Adiponectin and IGFBP-1 in the development of gestational diabetes in obese mothers. BMJ Open Diabetes Research and Care 2:e000010. https://doi.org/10.1136/%20bmjdrc-2013-000010
Article
PubMed
PubMed Central
Google Scholar
DeMambro VE, Clemmons DR, Horton LG, Bouxsein ML, Wood TL, Beamer WG (2008) Gender-specific changes in bone turnover and skeletal architecture in IGFBP2-null mice. Endocrinology 149:2051–2061. https://doi.org/10.1210/en.2007-1068
Article
CAS
PubMed
PubMed Central
Google Scholar
Chon SJ, Kim SY, Cho NR, Min DL, Hwang YJ, Mamura M (2013) Association of variants in PPARγ², IGF2BP2, and KCNQ1 with a susceptibility to gestational diabetes mellitus in a Korean population. Yonsei Medical Journal 54(2):352–357. https://doi.org/10.3349/ymj.2013.54.2.352
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwanstecher C, Meyer U, Schwanstecher M (2002) K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes 51:875–879. https://doi.org/10.2337/diabetes.51.3.875
Article
CAS
PubMed
Google Scholar
Ober C, Xiang KS, Thisted RA, Indovina KA, Wason CJ, Dooley S (1989) Increased risk for gestational diabetes mellitus associated with insulin receptor and insulin-like growth factor II restriction fragment length polymorphisms. Genet Epidemiol 6:559–569
Article
CAS
PubMed
Google Scholar
Ceasrine AM, Lin EE, Lumelsky DN, Iyer R, Kuruvilla R (2018) Adrb2 controls glucose homeostasis by developmental regulation of pancreatic islet vasculature. ELife 7:e39689. https://doi.org/10.7554/eLife.39689
Article
PubMed
PubMed Central
Google Scholar
Guan L, Cui X, Zhou H (2018) Meta-analysis of the association between the Trp64Arg polymorphism of the beta-3 adrenergic receptor and susceptibility to gestational diabetes mellitus. J Obstet Gynaecol 38(2):172–176. https://doi.org/10.1080/01443615.2017.1331339
Article
CAS
PubMed
Google Scholar
Feng Y, Jiang CD, Chang AM et al (2019) Interactions among insulin resistance, inflammation factors, obesity-related gene polymorphisms, environmental risk factors, and diet in the development of gestational diabetes mellitus. J Matern Fetal Neonatal Med. 32(2):339–347. https://doi.org/10.1080/14767058.2018.1446207
Article
CAS
PubMed
Google Scholar
Kapoor RR, Flanagan SE, James CT, McKiernan J, Thomas AM, Harmer SC (2011) Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations. Diabetologia 54(10):2575–2583. https://doi.org/10.1007/s00125-011-2207-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Castro-Martínez AG, Sánchez-Corona J, Vázquez-Vargas AP, García-Zapién AG, López-Quintero A, Villalpando-Velazco HJ. Association analysis of calpain 10 gene variants/haplotypes with gestational diabetes mellitus among Mexican women. Cell Mol Biol (Noisy-le-grand). 2018; 28;64(3):81-86. doi: https://doi.org/10.14715/cmb/2018.64.3.13.
Article
PubMed
Google Scholar
Megia A, Gallart L (2004) Fernández-Real J-M, Vendrell J, Simón I, Gutierrez C. Mannose-Binding Lectin Gene Polymorphisms Are Associated with Gestational Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism 89(10):5081–5087 https://doi.org/10.1210/jc.2004-0211
Article
CAS
Google Scholar
Catalano PM (2014) Trying to understand gestational diabetes. Diabet. Med 31:273–281. https://doi.org/10.1111/dme.12381
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, Graham TE, Mody N et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362
Article
CAS
PubMed
Google Scholar
Shimin Hu, Shujuan Ma, Xun Li, et al. Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population. BioMed Research International, 2018; 2019:Article ID 7398063. https://doi.org/10.1155/2019/7398063.
CAS
Google Scholar
Shimin H, Junxia Y, Yiping Y, Guilian Y, Hui Z, Xun L (2019) Association of polymorphisms in STRA6 gene with gestational diabetes mellitus in a Chinese Han population. Medicine 98(11):e14885. https://doi.org/10.1097/MD.0000000000014885
Article
CAS
Google Scholar
Zhu B, Huang K, Yan S, et al. VDR Variants rather than Early Pregnancy Vitamin D Concentrations Are Associated with the Risk of Gestational Diabetes: The Ma’anshan Birth Cohort (MABC) Study. J. Diabetes Res, 2019; 2019: Article ID 8313901. https://doi.org/10.1155/2019/8313901.
Google Scholar
Apaydın M, Beyse S, Eyerci N, Pinarli FA, Ulubay M, Kizilgul M. The VDR gene FokI polymorphism is associated with gestational diabetes mellitus in Turkish women. BMC Medical Genetics, 2019; 20: Article number: 82. DOI https://doi.org/10.1186/s12881-019-0820-0
Wang K, Chen Q, Feng Y, et al. Single Nucleotide Polymorphisms in CDKAL1 Gene Are Associated with Risk of Gestational Diabetes Mellitus in Chinese Population. J Diabetes Res, 2019; 2019: Article ID 3618103. https://doi.org/10.1155/2019/3618103.
CAS
Google Scholar
Okruszko A, Kinalski M, Kuźmicki M, Mirończuk K, Wawrusiewicz-Kurylonek N, Kretowski KIA (2007) Glucokinase gene mutations in gestational diabetes in Polish population. Prediction of diabetes mellitus development after delivery. Przegl Lek 64(6):401–405
PubMed
Google Scholar
Mei J, Liao S, Liu Y, Tan Y, Wang H, Liang Y (2015) Association of variants in CDKN2A/2B and CDKAL1 genes with gestational insulin sensitivity and disposition in pregnant Han Chinese women. J Diabetes Investig 6(3):295–301. https://doi.org/10.1111/jdi.12315
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Nie M, Li W et al (2011) Association of Six Single Nucleotide Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population. PLoS ONE 6(11):e26953 https://doi.org/10.1371/journal.pone.0026953
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho YM, Kim TH, Lim S, Choi SH, Shin HD, Lee HK (2009) Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetol 52:253–261. https://doi.org/10.1007/s00125-008-1196-4
Article
CAS
Google Scholar
Seman NA, Mohamud WN, Östenson CG, et al. Increased DNA methylation of the SLC30A8 gene promoter is associated with type 2 diabetes in a Malay population. Clin. Epigenetics, 2015; 7: 30. https://doi.org/10.1186/%20s13148-015-0049-5.
Marcello MA, Calixto AR, de Almeida JF, et al. Polymorphism in LEP and LEPR May Modify Leptin Levels and Represent Risk Factors for Thyroid Cancer. Int. J. Endocrinol. 2015: 173218. https://doi.org/10.1155/2015/173218.
Article
CAS
Google Scholar
Lin R, Ju H, Yuan Z, Zeng L, Sun Y, Su Z (2017) Association of maternal and fetal LEPR common variants with maternal glycemic traits during pregnancy. Sci Rep 7(1):3112. https://doi.org/10.1038/s41598-017-03518-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe RM, Xiang AH, Allayee H, et al. Variation in the P2-promoter region of hepatocyte nuclear factor-4a (HNF4A) is associated with ß-cell function in Mexican American families of a proband with gestational diabetes. Diabetes, 2005; 54 (supplement 1): A28.
Ridderstråle M, Groop L (2009) Genetic dissection of type 2 diabetes. Molecular and Cellular Endocrinology 297(1-2):10–17
Article
PubMed
CAS
Google Scholar
Ategbo JM, Grissa O, Yessoufou A, Hichami A, Dramane KL, Moutairou K (2006) Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab. 91:4137–4143
Article
CAS
PubMed
Google Scholar
Toppings NB, McMillan JM, Au P, Suchowersky O, Donovan LE. Wolfram Syndrome: A Case Report and Review of Clinical Manifestations, Genetics Pathophysiology, and Potential Therapies. Case Reports in Endocrinol, 2018; 2018: Article ID 9412676 doi:https://doi.org/10.1155/2018/9412676.
Article
Google Scholar
Vana DR, Adapa D, Prasad VSS, Choudhury A, Ahuja G. Diabetes mellitus types: Key genetic determinants and risk assessment. Genet Mol Res, 2019; 18 (2): gmr16039952.
Kwak SH, Park BL, Kim H, German MS, Go MJ, Jung HS. Association of Variations in TPH1 and HTR2B with Gestational Weight Gain and Measures of Obesity. Obesity, 2012; 20 (1). https://doi.org/10.1038/oby.2011.253
Article
PubMed
CAS
Google Scholar
Oh CM, Park S, Kim H (2016) Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes Metab J 40(2):89–98. https://doi.org/10.4093/dmj.2016.40.2.89
Article
PubMed
PubMed Central
Google Scholar
Beysel S, Eyerci N, Ulubay M, Caliskan M, Kizilgul M, Hafızoğlu M. Maternal genetic contribution to pre-pregnancy obesity, gestational weight gain, and gestational diabetes mellitus. Diabetol Metabol Synd, 2019; 11: Article number: 37. https://doi.org/10.1186/s13098-019-0434-x
Pollin TI, Jablonski KA, McAteer JB et al (2011) Triglyceride response to an intensive lifestyle intervention is enhanced in carriers of the GCKR Pro446Leu polymorphism. J Clin Endocrinol Metab 96:E1142–E1147. https://doi.org/10.1210/jc.2010-2324
Article
PubMed
PubMed Central
Google Scholar
Grimsby J, Coffey JW, Dvorozniak MT, Magram J, Li G, Matschinsky FM. Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem, 2000; 275 :7826 –7831. doi: https://doi.org/10.1074/jbc.275.11.7826
Article
CAS
PubMed
Google Scholar
Zheng L, Li C, Qi WH et al (2017) Expression of macrophage migration inhibitory factor gene in placenta tissue and its correlation with gestational diabetes mellitus. Zhonghua yi xue za zhi 97:3388–3391
CAS
PubMed
Google Scholar
Kawai VK, Levinson RT, Adefurin A, Kurnik D, Collier SP, Conway D (2017) Variation in the α2A-adrenergic receptor gene and risk of gestational diabetes. Pharmacog 18(15):1381–1386. https://doi.org/10.2217/pgs-2017-0079
Article
CAS
Google Scholar
Leitner M, Fragner L, Danner S, Holeschofsky N, Leitner K, Tischler S (2017) Combined metabolomic analysis of plasma and urine reveals AHBA, Tryptophan and Serotonin metabolism as potential risk factors in Gestational Diabetes Mellitus (GDM). Front Mol Biosci 4:84. https://doi.org/10.3389/fmolb.2017.00084
Article
CAS
PubMed
PubMed Central
Google Scholar
Beysel S, Eyerci N, Ulubay M, Caliskan M, Kizilgul M, Hafızoğlu M. Maternal genetic contribution to pre-pregnancy obesity, gestational weight gain, and gestational diabetes mellitus. Diabetol Metab Synd, 2019; 11: Article number: 37. https://doi.org/10.1186/s13098-019-0434-x
Mellado-Gil JM, Fuente-Martín E, Lorenzo PI, Cobo-Vuilleumier N, López-Noriega L, Martín-Montalvo, A. The type 2 diabetes-associated HMG20A gene is mandatory for islet beta cell functional maturity. Cell Death & Disease, 2018; 9: Article number: 279.
Hodson DJ, Mitchell RK, Marselli L, Pullen TJ, Gimeno Brias S, Semplici F (2014) ADCY5 couples glucose to insulin secretion in human islets. Diabetes 63(9):3009–3021. https://doi.org/10.2337/db13-1607
Article
PubMed
PubMed Central
Google Scholar
Mojtaba E, Mahdi K, Mehdi KJR, Amir S (2011) Serum interleukin-1 beta plays an important role in insulin secretion in type II diabetic. Inter J Bio 1(3):93–99
Google Scholar
Meier JJ, Ritzel RA, Maedler K, Gurlo T, Butler PC (2006) Increased vulnerability of newly forming beta cells to cytokine-induced cell death. Diabetolog 49:83–89. https://doi.org/10.1007/s00125-005-0069-3
Article
CAS
Google Scholar
Kang J, Liu C-H, Lee C-N, Li H-Y, Yang C-W, Huang S-C (2019) Novel Interleukin-10 Gene Polymorphism Is Linked to Gestational Diabetes in Taiwanese Population. Front. Genet 10:89. https://doi.org/10.3389/fgene.2019.00089
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin-Montalvo A, López-Noriega L, Jiménez-Moreno C, Herranz A, Lorenzo PI, Cobo-Vuilleumier N (2019) Transient PAX8 Expression in Islets During Pregnancy Correlates With β-Cell Survival, Revealing a Novel Candidate Gene in Gestational Diabetes Mellitus. Diabetes 68(1):109–118 https://doi.org/10.2337/db18-0285
Article
CAS
PubMed
Google Scholar
Takhshid MA, Haem Z, Aboualizadeh F (2015) The association of circulating adiponectin and + 45 T/G polymorphism of adiponectin gene with gestational diabetes mellitus in Iranian population. J Diabetes Metab Disord 14:30. https://doi.org/10.1186/s40200-015-0156-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasanvand Z, Sadeghi A, Rezvanfar MR, Goodarzi MT, Rahmannezhad G, Mashayekh FJ (2018) Association between chemerin rs17173608 and rs4721 gene polymorphisms and gestational diabetes mellitus in Iranian pregnant women. Gene 649:87–92 https://doi.org/10.1016/j.gene.2018.01.061
Article
CAS
PubMed
Google Scholar
Ademoglu E, Berberoglu Z, Dellal FD, Ariel MK, Kose A, Candan Z. Higher Levels of Circulating Chemerin in Obese Women with Gestational Diabetes Mellitus. Acta Endocrinologica (Buc), 2015; XI (1): 32-37. doi: https://doi.org/10.4183/aeb.2015.32.
Article
Google Scholar
Steppan CM, Bailey ST, Bhat S et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312
Article
CAS
PubMed
Google Scholar
Aslan M, Celik O, Celik N et al (2012) Cord blood nesfatin-1 and apelin-36 levels in gestational diabetes mellitus. Endocrine 41:424–429
Article
CAS
PubMed
Google Scholar
Franz M, Polterauer M, Springer S, Kuessel L, Haslinger P, Worda C (2018) Maternal and neonatal omentin-1 levels in gestational diabetes. Arch gynecol obst 297(4):885–889. https://doi.org/10.1007/s00404-018-4652-5
Article
CAS
Google Scholar
Ferreira AF, Rezende JC, Vaikousi E et al (2011) Maternal serum visfatin at 11-13 weeks of gestation in gestational diabetes mellitus. Clin Chem 57:609–613
Article
CAS
PubMed
Google Scholar
Mellado-Gil JM, Fuente-Martín E, Lorenzo PI, Cobo-Vuilleumier N, López-Noriega L, Martín-Montalvo A. The type 2 diabetes-associated HMG20A gene is mandatory for islet beta cell functional maturity. Cell Death & Disease, 2018; 9:Article number: 279.
Ding M, Chavarro J, Olsen S, Lin Y, Ley SH, Bao W. Genetic variants of gestational diabetes mellitus: a study of 112 SNPs among 8722 women in two independent populations. Diabetolog, 2018; 61 (8): 1758–1768. https://doi.org/10.1007/s00125-018-4637-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan IA, Shaik NA, Pasupuleti N, Chav S, Jahan P, Hasan Q (2015) Screening of mitochondrial mutations and insertion–deletion polymorphism in gestational diabetes mellitus in the Asian Indian population. Saudi J Bio Sci 22(3):243–248 https://doi.org/10.1016/j.sjbs.2014.11.001
Article
CAS
Google Scholar
Banerjee RR, Cyphert HA, Walker EM, Chakravarthy H, Peiris H, Gu X (2016) Gestational Diabetes Mellitus From Inactivation of Prolactin Receptor and MafB in Islet β-Cells. Diabetes 65(8):2331–2341. https://doi.org/10.2337/db15-1527
Article
CAS
PubMed
PubMed Central
Google Scholar
Zha W, Ho HTB, Hu T, Hebert MF, Wang MJ. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Sci Rep, 2017; 7: Article number: 1137. DOI https://doi.org/10.1038/s41598-017-01291-5.
Leipold H, Knoefler M, Gruber C, Klein K, Haslinger P, Worda C (2006) Plasminogen activator inhibitor 1 gene polymorphism and gestational diabetes mellitus. Obstet Gynecol 107(3):651–656. https://doi.org/10.1097/01.AOG.0000199953.27961.f9
Article
PubMed
Google Scholar
Stuebe AM, Wise A, Nguyen T, Herring A, North KE, Siega-Riz AM (2014) Maternal genotype and gestational diabetes. Am J Perinatol. 31(1):69–76. https://doi.org/10.1055/s-0033-1334451
Article
PubMed
Google Scholar
Chagnon MJ, Elchebly M, Uetani N, Dombrowski L, Cheng A, Mooney RA (2006) Altered glucose homeostasis in mice lacking the receptor protein tyrosine phosphatase sigma. Can J Physiol Pharmacol 84:755–763. https://doi.org/10.1139/y06-020
Article
CAS
PubMed
Google Scholar
Alamolhoda SH, Yazdkhasti M, Namdari M, Zakariayi SJ, Mirabi P (2019) Association between C-reactive protein and gestational diabetes: a prospective study. J Obstet Gynaecol 9:1–5. https://doi.org/10.1080/01443615.2019.1631767
Article
CAS
Google Scholar
Zhang YH, Van Hove JL, McCabe ER, Dipple KM (2015) Gestational Diabetes Associated with a Novel Mutation (378-379insTT) in the Glycerol Kinase Gene. Mol Genet Metab Rep 4:42–45. https://doi.org/10.1016/j.ymgmr.2015.06.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu T, Shi Y, Liu J, Liu Y, Zhu A, Xie C (2017) The rs10229583 polymorphism near paired box gene 4 is associated with gestational diabetes mellitus in Chinese women. J Inter Med Res 46(1):116–121. https://doi.org/10.1177/0300060517714934
Article
CAS
Google Scholar
Gong M, Yu Y, Liang L, Vuralli D, Froehler S, Kuehnen P (2019) HDAC4 mutations cause diabetes and induce β-cell FoxO1 nuclear exclusion. Mol Genet Gen med 7(5):e602. https://doi.org/10.1002/mgg3.602
Article
CAS
Google Scholar
Farhan S, Handisurya A, Todoric J, Tura A, Pacini G, Wagner O (2012) Fetuin-A Characteristics during and after Pregnancy: Result from a Case Control Pilot Study. Inter J endocrinol 896736. https://doi.org/10.1155/2012/896736
Article
CAS
Google Scholar
Kralisch S, Hoffmann A, Lössner U (2017) Kratzsch J3, Blüher M, Stumvoll M. Regulation of the novel adipokines/ hepatokines fetuin A and fetuin B in gestational diabetes mellitus. Metab 68:88–94. https://doi.org/10.1016/j.metabol.2016.11.017
Article
CAS
Google Scholar
Bonakdaran S, Khorasani ZM, Jafarzadeh F (2017) Increased Serum Level of Fgf21 in Gestational Diabetes Mellitus. Acta Endocrinol 13(3):278–281. https://doi.org/10.4183/aeb.2017.278
Article
CAS
Google Scholar
Xie K, Chen T, Zhang Y, Wen J, Cui X, You L. Association of rs10830962 polymorphism with gestational diabetes mellitus risk in a Chinese population. Sci Rep, 2019; 9:Article number: 5357. DOI https://doi.org/10.1038/s41598-019-41605-3
Huerta-Chagoya A, Vázquez-Cárdenas P, Moreno-Macías H et al (2015) Genetic Determinants for Gestational Diabetes Mellitus and Related Metabolic Traits in Mexican Women. PLoS ONE 10(5):e0126408 https://doi.org/10.1371/journal.pone.0126408
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu L, Cui L, Tam W et al (2016) Genetic variants associated with gestational diabetes mellitus: a meta-analysis and subgroup analysis. Sci Rep 6:30539. https://doi.org/10.1038/srep30539
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaat N, Lernmark A, Karlsson E et al (2007) A variant in the transcription factor 7-like 2 (TCF7L2) gene is associated with an increased risk of gestational diabetes mellitus. Diabetologia 50:972–979
Article
CAS
PubMed
Google Scholar
Adeyemo AA, Zaghloul NA, Chen G et al (2019) ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response. Nat Commun 10:3195. https://doi.org/10.1038/s41467-019-10967-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin P-C, Lin W-T, Yeh Y-H, Wung S-F (2016) Transcription Factor 7-Like 2 (TCF7L2) rs7903146 Polymorphism as a Risk Factor for Gestational Diabetes Mellitus: A Meta-Analysis. PLoS One 11(4):e0153044 https://doi.org/10.1371/journal.pone.0153044
Article
PubMed
PubMed Central
CAS
Google Scholar
Lauenborg J, Grarup N, Damm P et al (2009) Common Type 2 Diabetes Risk Gene Variants Associate with Gestational Diabetes. J Clin Endocrinol & Metab 94(1):145–150 https://doi.org/10.1210/jc.2008-1336
Article
CAS
Google Scholar
Kawai VK, Levinson RT, Adefurin A et al (2017) A genetic risk score that includes common type 2 diabetes risk variants is associated with gestational diabetes. Clin Endocrinol 87(2):149–155. https://doi.org/10.1111/cen.13356
Article
CAS
Google Scholar
Kwak SH, Kim TH, Cho YM, Choi SH, Jang HC, Park KS (2010) Polymorphisms in KCNQ1 are associated with gestational diabetes in a Korean population. Horm Res Paediatr. 74:333–338
Article
CAS
PubMed
Google Scholar
Fatima SS, Chaudhry B, Khan TA, Farooq S. KCNQ1 rs2237895 polymorphism is associated with Gestational Diabetes in Pakistani Women. Pak J Med Sci. 2016 Nov-Dec;32(6):1380-1385. doi: https://doi.org/10.12669/pjms.326.11052.
Kwak SH, Jang HC, Park KS (2012) Finding Genetic Risk Factors of Gestational Diabetes. Genomics Inform. 10(4):239–243. https://doi.org/10.5808/GI.2012.10.4.239
Article
PubMed
PubMed Central
Google Scholar
Ding M (2018) Chavarro J1, Olsen S, Lin Y, Ley SH1, Bao W, et al. Genetic Variants of Gestational Diabetes Mellitus: a Study of 112 SNPs Among 8,722 Women in Two Independent Populations. Diabetologia. 61(8):1758–1768. https://doi.org/10.1007/s00125-018-4637-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Alharbi KK, Al-Sulaiman AM, Bin Shedaid MK, et al. MTNR1B genetic polymorphisms as risk factors for gestational diabetes mellitus: a case-control study in a single tertiary care center. Ann Saudi Med. 2019; 39(5): 309-318. doi: https://doi.org/10.5144/0256-4947.2019.309.
Article
PubMed
PubMed Central
Google Scholar
Mansoori Y, Daraei A, Naghizadeh MM, Salehi R (2015) Significance of a common variant in the CDKAL1 gene with susceptibility to type 2 diabetes mellitus in Iranian population. Adv Biomed Res 4:45. https://doi.org/10.4103/2277-9175.151256
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaat N, Ekelund M, Lernmark A et al (2005) Association of the E23K polymorphism in the KCNJ11 gene with gestational diabetes mellitus. Diabetolog 48:2544–2551
Article
CAS
Google Scholar
Fallucca F, Dalfra MG, Sciullo E et al (2006) Polymorphisms of insulin receptor substrate 1 and beta3-adrenergic receptor genes in gestational diabetes and normal pregnancy. Metab 55:1451–1456
Article
CAS
Google Scholar
Alharbi KK, Khan IA, Abotalib Z, Al-Hakeem MM. Insulin Receptor Substrate-1 (IRS-1) Gly927Arg: Correlation with Gestational Diabetes Mellitus in Saudi Women. BioMed Res Intern, 2014, Article ID 146495. https://doi.org/10.1155/2014/146495.
Article
CAS
Google Scholar
Rosta K, Al-Aissa Z, Hadarits O et al (2017) Association study with 77 SNPs confirms the robust role for the rs10830963/G of MTNR1B variant and identifies two novel associations in gestational diabetes mellitus development. PLoS One 12:e0169781
Article
PubMed
PubMed Central
CAS
Google Scholar
Cho YM, Kim TH, Lim S et al (2009) Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetolog 52(2):253–261
Article
CAS
Google Scholar
Wang Y, Nie M, Li W et al (2011) Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PloS One 6(11):e26953
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauenborg J, Grarup N, Damm P et al (2009) Common type 2 diabetes risk gene variants associate with gestational diabetes. J Clin Endocrinol Metab 94(1):145–150
Article
CAS
PubMed
Google Scholar
Stuebe A, Wise A, Nguyen T, Herring A, North K, Siega-Riz A (2013) Maternal Genotype and Gestational Diabetes. Am. J. Perinatol. 31:069–076
Article
Google Scholar
Jamalpour S, Zain SM, Mosavat M, Mohamed Z, Omar S.Z. A case-control study and meta-analysis confirm glucokinase regulatory gene rs780094 is a risk factor for gestational diabetes mellitus. Gene 2018, 650, 34–40.
Article
CAS
PubMed
Google Scholar
Anghebem-Oliveira MI, Webber S, Alberton D et al (2017) The GCKR Gene Polymorphism rs780094 is a Risk Factor for Gestational Diabetes in a Brazilian Population. J. Clin. Lab. Anal 31:e22035
Article
CAS
Google Scholar
Bonakdaran S, Khorasani ZM, Jafarzadeh F (2017) Increased Serum Level of Fgf21 in Gestational Diabetes Mellitus. Acta Endocrinol (Buchar). 13(3):278–281. https://doi.org/10.4183/aeb.2017.278
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Cheung BM, Tso AW et al (2011) High plasma level of fibroblast growth factor 21 is an Independent predictor of type 2 diabetes: a 5.4-year population-based prospective study in Chinese subjects. Diabetes Care. 34(9):2113–2115. https://doi.org/10.2337/dc11-0294
Article
CAS
PubMed
PubMed Central
Google Scholar
Nitert D, Barrett HL, Kubala MH et al (2014) Increased Placental Expression of Fibroblast Growth Factor 21 in Gestational Diabetes Mellitus. J Clin Endocrinol & Metab 99(4):E591–E598 https://doi.org/10.1210/jc.2013-2581
Article
CAS
Google Scholar
Rissanen J, Markkanen A, Karkkainen P et al (2000) Sulfonylurea receptor 1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin. Diabetes Care 23:70–73
Article
CAS
PubMed
Google Scholar
Hasanvand Z, Sadeghi A, Rezvanfar MR, Goodarzi MT, Rahmannezhad G, Mashayekhi FJ (2018) Association between chemerin rs17173608 and rs4721 gene polymorphisms and gestational diabetes mellitus in Iranian pregnant women. Gene. 649:87–92. https://doi.org/10.1016/j.gene.2018.01.061
Article
CAS
PubMed
Google Scholar
Litou H, Anastasiou E, Thalassinou L et al (2007) Increased prevalence of VNTR III of the insulin gene in women with gestational diabetes mellitus (GDM). Diabetes Res Clin Pract 76:223–228
Article
CAS
PubMed
Google Scholar
Handy DE, Castro R, Loscalzo J (2011) Epigenetic Modifications: Basic Mechanisms and Role in Cardiovascular Disease. Circulation. 123(19):2145–2156. https://doi.org/10.1161/CIRCULATIONAHA.110.956839
Article
PubMed
PubMed Central
Google Scholar
Feil R, Fraga MF (2011) Epigenetics and the environment: Emerging patterns and implications. Nat Rev Genet 13:97–109. https://doi.org/10.1038/nrg3142
Article
CAS
Google Scholar
Ordovas JM, Smith CE (2010) Epigenetics and cardiovascular disease. Nat Rev Cardiol 7:510–519. https://doi.org/10.1038/nrcardio.2010.104
Article
CAS
PubMed
PubMed Central
Google Scholar
Stankov K, Benc D, Draskovic D (2013) Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatr 132:1112–1122
Article
Google Scholar
Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47:174–192
Article
CAS
PubMed
Google Scholar
Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434(7033):583–589
Article
CAS
PubMed
Google Scholar
Kang J, Lee C-N, Li H-Y, Hsu K-H, Wang S-H, Lin S-Y (2018) Association of Interleukin-10 Methylation Levels With Gestational Diabetes in a Taiwanese Population. Front Genet 9:222. https://doi.org/10.3389/fgene.2018.00222
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacovetti C, Abderrahmani A, Parnaud G, Jonas JC, Peyot ML, Cornu M (2012) MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 122(10):3541–3551. https://doi.org/10.1172/JCI64151
Article
CAS
PubMed
PubMed Central
Google Scholar
Stirm L, Huypens P, Sass S, Batra R, Fritsche L, Brucker S. Maternal whole blood cell miRNA-340 is elevated in gestational diabetes and inversely regulated by glucose and insulin. Sci Rep, 2018; 8:1366-1378. | DOI:https://doi.org/10.1038/s41598-018-19200-9.
Jo H, Eckel SP, Chen J-C, Cockburn M, Martinez MP, Chow T (2019) Associations of gestational diabetes mellitus with residential air pollution exposure in a large Southern California pregnancy cohort. Environ Inter 130:104933–104939 https://doi.org/10.1016/j.envint.2019.104933
Article
CAS
Google Scholar
Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol, 2011; (2011): Article 487074
Saldana TM, Basso O, Hoppin JA, Baird DD, Knott C, Blair A (2007) Pesticide Exposure and Self-Reported Gestational Diabetes Mellitus in the Agricultural Health Study. Diabetes Care 30(3):529–534. https://doi.org/10.2337/dc06-1832
Article
PubMed
Google Scholar
Vu BG, Stach CS, Kulhankova K, Salgado-Pabón W, Klingelhutz AJ, Schlievert PM. Chronic Superantigen Exposure Induces Systemic Inflammation, Elevated Bloodstream Endotoxin, and Abnormal Glucose Tolerance in Rabbits: Possible Role in Diabetes. mBio, 2015; 6 (2): e02554-14 DOI: https://doi.org/10.1128/mBio.02554-14.
Crusell MKW, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P (2018) Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 6:89 https://doi.org/10.1186/s40168-018-0472-x
Article
PubMed
PubMed Central
Google Scholar
Mokkala K, Röytiö H, Munukka E, Pietilä S, Ekblad U, Rönnemaa T (2016) Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability. J Nutr 146(9):1694–1700. https://doi.org/10.3945/jn.116.235358
Article
CAS
PubMed
Google Scholar
Duke-NUS Medical School. Association between insufficient sleep, gestational diabetes mellitus discovered. ScienceDaily. www.sciencedaily.com/releases/2017/01/170109092634.htm (accessed October 26, 2019).
Mak JKL, Pham NM, Lee AH, Tang L, Pan X-F, Binns CW. Dietary patterns during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China. Nutr J, 2018; 17:Article number: 107. DOI https://doi.org/10.1186/s12937-018-0413-3
Cai D, Liu H, Hu Y, Jiang Y, Zhao R Gestational Betaine, Liver Metabolism, and Epigenetics. In: Patel V., Preedy V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. 2017. DOI https://doi.org/10.1007/978-3-319-31143-2_82-1
Google Scholar
Sivitz W. MItochondrial Dysfunction in Obesity and Diabetes. US Endocrinol, 2010; 6 (1): 20-27 DOI: https://doi.org/10.17925/USE.2010.06.1.20.
Article
Google Scholar
R¨onn T, Poulsen P, Hansson O, et al. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetolog, 2008; 51:1159{1168. DOI: https://doi.org/10.1007/s00125-008-1018-8.
Article
PubMed
CAS
Google Scholar
Makgoba M, Savvidou M, Steer P (2012) An analysis of the interrelationship between maternal age, body mass index and racial origin in the development of gestational diabetes mellitus. BJOG 119:276–282. https://doi.org/10.1111/j.1471-0528.2011.03156.x
Article
CAS
PubMed
Google Scholar
Ming W, Ding W, Zhang CJP, Zhong L, Long Y, Li Z. The effect of exercise during pregnancy on gestational diabetes mellitus in normal-weight women: a systematic review and meta-analysis. BMC Pregnancy and Childbirth, 2018; 18: Article number: 440. DOI https://doi.org/10.1186/s12884-018-2068-7.
Eriksson KF, Lindg¨arde F. Poor physical fitness, and impaired early insulin response but late hyperinsulinaemia, as predictors of NIDDM in middleaged Swedish men. Diabetolog, 1996; 39:573-579.
Grazioli E, Dimauro I, Mercatelli N et al (2017) Physical activity in the prevention of human diseases: role of epigenetic modifications. BIC Genomics 18(Suppl 8):802. https://doi.org/10.1186/s12864-017-4193-5
Article
CAS
Google Scholar
World Health Organization. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy. Geneva:; 2013. http://www.who.int/diabetes/publications/Hyperglycaemia_In_Pregnancy/en/
United Kingdom National Health Service. Overview: Gestational Diabetes. Updated 2019. Available at https://www.nhs.uk/conditions/gestational-diabetes/.
United States National Institute of Health. Tests & Diagnosis for Gestational Diabetes. Updated 2017. Available at https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/gestational/tests-diagnosis
Farghaly TA, Helmy NA, Abbas AM, Ahmed AGM C-reactive protein as a screening test for gestational diabetes mellitus in first-trimester of pregnancy: a prospective cohort study. Int J Reprod Contracept Obstet Gynecol, 2018;7:4798-803. DOI https://doi.org/10.18203/2320-1770.ijrcog20184922
Article
Google Scholar
Schaible B, Calhoun BC, Bush S, Ramser B, Seybold DJ, Broce M. Hemoglobin A1c as a screening strategy for gestational diabetes. Med Dent Res, 2018: 1 (1): 1-4. DOI: https://doi.org/10.15761/MDR.1000103
Fitria N, van Asselt ADI, Postma MJ (2019) Cost-effectiveness of controlling gestational diabetes mellitus: a systematic review. Eur J Health Eco 20(3):407–417. https://doi.org/10.1007/s10198-018-1006-y
Article
Google Scholar
Marseille E, Lohse N, Jiwani A, Hod M, Seshiah V, Yajnik CS. The cost-effectiveness of gestational diabetes screening including prevention of type 2 diabetes: application of a new model in India and Israel. J Maternal-Fetal & Neonat Med, 2013; 26 (8). https://doi.org/10.3109/14767058.2013.765845.
Article
Google Scholar
Saccone G, Caissutti C, Khalifeh MDA, Scifres C, Simhan HN (2017) One Step versus Two Step approach for gestational diabetes screening: systematic review and meta-analysis of the randomized trials. Journal of Maternal-Fetal and Neonat Med 32(8):1–211. https://doi.org/10.1080/14767058.2017.1408068
Article
Google Scholar
Amreen S, Suneel A, Shetty A, Vasudeva A, Kumar P Use of glycosylated HbA1c and random blood sugar as a screening tool for gestational diabetes mellitus in first trimester. Int J Reprod Contracept Obstet Gynecol, 2018;7:524-8. DOI https://doi.org/10.18203/2320-1770.ijrcog20180166
Article
Google Scholar