Miranovic V (2014) The incidence of congenital heart disease: previous findings and perspectives. Srp Arh Celok Lek 142(3–4):243–248
Article
PubMed
Google Scholar
van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ (2011) The changing epidemiology of congenital heart disease. Nat Rev Cardiol 8(1):50–60
Article
PubMed
Google Scholar
Bhardwaj R, Rai SK, Yadav AK, Lakhotia S, Agrawal D, Kumar A et al (2015) Epidemiology of congenital heart disease in India. Congenital Heart Dis. 10(5):437–446
Article
Google Scholar
Wei YJ, Liu BM, Zhou YH, Jia XH, Mu SG, Gao XR et al (2014) Spectrum and features of congenital heart disease in Xi'an, China as detected using fetal echocardiography. Genet Mol Res 13(4):9412–9420
Article
CAS
PubMed
Google Scholar
Bhat NK, Dhar M, Kumar R, Patel A, Rawat A, Kalra BP (2013) Prevalence and pattern of congenital heart disease in Uttarakhand, India. Indian J Pediatr 80(4):281–285
Article
PubMed
Google Scholar
Nazari P, Davoodi M, Faramarzi M, Bahadoram M, Dorestan N (2016) Prevalence of congenital heart disease: a single center experience in southwestern of Iran. Glob J Health Sci 8(10):56421
PubMed
Google Scholar
Sadoh WE, Uzodimma CC, Daniels Q (2013) Congenital heart disease in Nigerian children: a multicenter echocardiographic study. World J Pediatr Congenit Heart Surg 4(2):172–176
Article
PubMed
Google Scholar
Liu F, Yang YN, Xie X, Li XM, Ma X, Fu ZY et al (2015) Prevalence of congenital heart disease in Xinjiang multi-ethnic region of China. PLoS One 10(8):e0133961
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohammad N, Shaikh S, Memon S, Das H (2014) Spectrum of heart disease in children under 5 years of age at Liaquat University Hospital, Hyderabad, Pakistan. Indian Heart J 66(1):145–149
Article
PubMed
PubMed Central
Google Scholar
Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900
Article
PubMed
Google Scholar
Egbe A, Uppu S, Lee S, Stroustrup A, Ho D, Srivastava S (2015) Temporal variation of birth prevalence of congenital heart disease in the United States. Congenit Heart Dis 10(1):43–50
Article
PubMed
Google Scholar
Tankeu AT, Bigna JJ (2017) Prevalence and patterns of congenital heart diseases in Africa: a systematic review and meta-analysis protocol. BMJ Open 7(2):e015633
Article
PubMed
PubMed Central
Google Scholar
Dolk H, Loane M, Garne E (2011) Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation. 123(8):841–849
Article
PubMed
Google Scholar
Abid D, Elloumi A, Abid L, Mallek S, Aloulou H, Chabchoub I et al (2014) Congenital heart disease in 37,294 births in Tunisia: birth prevalence and mortality rate. Cardiol Young 24(5):866–871
Article
PubMed
Google Scholar
Yeh SJ, Chen HC, Lu CW, Wang JK, Huang LM, Huang SC et al (2013) Prevalence, mortality, and the disease burden of pediatric congenital heart disease in Taiwan. Pediatr Neonatol 54(2):113–118
Article
PubMed
Google Scholar
Rohit M, Shrivastava S (2018) Acyanotic and cyanotic congenital heart diseases. Indian J Pediatr 85(6):454–460
Article
PubMed
Google Scholar
Ratti C, Veronesi B, Grassi L, Bompani B (2012) Congenital heart diseases in clinical practice. Recenti Progressi Med 103(5):213–217
Google Scholar
Garcia RU, Peddy SB (2018) Heart disease in children. Primary Care 45(1):143–154
Article
PubMed
Google Scholar
Brunmeier A, Reis MP, Earing MG, Umfleet L, Ginde S (2018) Identifying self-reported neurocognitive deficits in the adult with congenital heart disease using a simple screening tool. Congenit Heart Dis 13(5):728–733
Article
PubMed
Google Scholar
Sanz JH, Berl MM, Armour AC, Wang J, Cheng YI, Donofrio MT (2017) Prevalence and pattern of executive dysfunction in school age children with congenital heart disease. Congenital Heart Dis 12(2):202–209
Article
Google Scholar
Klouda L, Franklin WJ, Saraf A, Parekh DR, Schwartz DD (2017) Neurocognitive and executive functioning in adult survivors of congenital heart disease. Congenital Heart Dis 12(1):91–98
Article
Google Scholar
Ilardi D, Ono KE, McCartney R, Book W, Stringer AY (2017) Neurocognitive functioning in adults with congenital heart disease. Congenital Heart Dis 12(2):166–173
Article
Google Scholar
Almesned S, Al-Akhfash A, Mesned AA (2013) Social impact on families of children with complex congenital heart disease. Ann Saudi Med 33(2):140–143
Article
PubMed
PubMed Central
Google Scholar
Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW et al (2012) Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 126(9):1143–1172
Article
PubMed
Google Scholar
Lata K, Mishra D, Mehta V, Juneja M (2015) Neurodevelopmental status of children aged 6-30 months with congenital heart disease. Indian Pediatr 52(11):957–960
Article
PubMed
Google Scholar
Matos SM, Sarmento S, Moreira S, Pereira MM, Quintas J, Peixoto B et al (2014) Impact of fetal development on neurocognitive performance of adolescents with cyanotic and acyanotic congenital heart disease. Congenit Heart Dis 9(5):373–381
Article
PubMed
Google Scholar
Tyagi M, Fteropoulli T, Hurt CS, Hirani SP, Rixon L, Davies A et al (2017) Cognitive dysfunction in adult CHD with different structural complexity. Cardiol Young 27(5):851–859
Article
PubMed
Google Scholar
Kim J, Cha C (2017) Experience of fathers of neonates with congenital heart disease in South Korea. Heart Lung 46(6):439–443
Article
PubMed
Google Scholar
Kovacs AH, Moons P (2014) Psychosocial functioning and quality of life in adults with congenital heart disease and heart failure. Heart Fail Clin 10(1):35–42
Article
PubMed
Google Scholar
Gupta S, Giuffre RM, Crawford S, Waters J (1998) Covert fears, anxiety and depression in congenital heart disease. Cardiol Young 8(4):491–499
Article
CAS
PubMed
Google Scholar
Bevilacqua F, Palatta S, Mirante N, Cuttini M, Seganti G, Dotta A et al (2013) Birth of a child with congenital heart disease: emotional reactions of mothers and fathers according to time of diagnosis. J Matern Fetal Neonatal Med 26(12):1249–1253
Article
PubMed
Google Scholar
McLaughlin ES, Schlosser BA, Border WL (2016) Fetal diagnostics and fetal intervention. Clin Perinatol 43(1):23–38
Article
PubMed
Google Scholar
Muthialu N (2018) Orthotopic heart transplantation in children. Asian Cardiovasc Thorac Ann 26(4):277–284
Article
PubMed
Google Scholar
Ohye RG, Bove EL (2001) Advances in congenital heart surgery. Curr Opin Pediatr 13(5):473–481
Article
CAS
PubMed
Google Scholar
Perez-Lescure Picarzo J, Mosquera Gonzalez M, Latasa Zamalloa P, Crespo MD (2018) Congenital heart disease mortality in Spain during a 10 year period (2003-2012). Anales de pediatria 88(5):273–279
Article
PubMed
Google Scholar
Polito A, Piga S, Cogo PE, Corchia C, Carnielli V, Da Fre M et al (2013) Increased morbidity and mortality in very preterm/VLBW infants with congenital heart disease. Intensive Care Med 39(6):1104–1112
Article
PubMed
Google Scholar
Marantz P, Saenz Tejeira MM, Pena G, Segovia A, Fustinana C (2013) Fetal and neonatal mortality in patients with isolated congenital heart diseases and heart conditions associated with extracardiac abnormalities. Arch Argentinos de pediatria 111(5):418–422
Google Scholar
Ades AM, Dominguez TE, Nicolson SC, Gaynor JW, Spray TL, Wernovsky G et al (2010) Morbidity and mortality after surgery for congenital cardiac disease in the infant born with low weight. Cardiol Young 20(1):8–17
Article
PubMed
Google Scholar
Calcagni G, Unolt M, Digilio MC, Baban A, Versacci P, Tartaglia M et al (2017) Congenital heart disease and genetic syndromes: new insights into molecular mechanisms. Expert Rev Mol Diagn 17(9):861–870
Article
CAS
PubMed
Google Scholar
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL et al (2018) Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 138(21):e653–e711
Article
PubMed
PubMed Central
Google Scholar
Soemedi R, Wilson IJ, Bentham J, Darlay R, Topf A, Zelenika D et al (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91(3):489–501
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LT, Yang TB, Wang TT, Zheng Z, Zhao LJ, Ye ZW et al (2018) Association of single nucleotide polymorphisms of transcription factors with congenital heart diseases in the Chinese population: a meta analysis. Zhongguo dang dai er ke za zhi 20(6):490–496
PubMed
Google Scholar
Su W, Zhu P, Wang R, Wu Q, Wang M, Zhang X et al (2017) Congenital heart diseases and their association with the variant distribution features on susceptibility genes. Clin Genet 91(3):349–354
Article
CAS
PubMed
Google Scholar
McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW et al (2008) NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet 17(18):2886–2893
Article
CAS
PubMed
PubMed Central
Google Scholar
Safari-Arababadi A, Behjati-Ardakani M, Kalantar SM, Jaafarinia M (2018) Silencing mutations in JAG1 gene may play crucial roles in the pathogenesis of tetralogy of Fallot. Cell Mol Biol 64(4):103–107
Article
PubMed
Google Scholar
Digilio MC, Luca AD, Lepri F, Guida V, Ferese R, Dentici ML et al (2013) JAG1 mutation in a patient with deletion 22q11.2 syndrome and tetralogy of Fallot. Am J Med Genet Part A 161a(12):3133–3136
Article
PubMed
CAS
Google Scholar
Behiry EG, Al-Azzouny MA, Sabry D, Behairy OG, Salem NE (2019) Association of NKX2-5, GATA4, and TBX5 polymorphisms with congenital heart disease in Egyptian children. Mol Genet Genomic Med. 7(5):e612
Article
PubMed
PubMed Central
CAS
Google Scholar
Han H, Chen Y, Liu G, Han Z, Zhao Z, Tang Y (2015) GATA4 transgenic mice as an in vivo model of congenital heart disease. Int J Mol Med 35(6):1545–1553
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen TA, Troelsen Kde L, Larsen LA (2014) Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 71(8):1327–1352
Article
CAS
PubMed
Google Scholar
Kodo K, Nishizawa T, Furutani M, Arai S, Ishihara K, Oda M et al (2012) Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects. Circ J 76(7):1703–1711
Article
CAS
PubMed
Google Scholar
Zakariyah AF, Rajgara RF, Veinot JP, Skerjanc IS, Burgon PG (2017) Congenital heart defect causing mutation in Nkx2.5 displays in vivo functional deficit. J Mol Cell Cardiol 105:89–98
Article
CAS
PubMed
Google Scholar
Radford DJ, Stafford G (2005) Pregnancy and the Rastelli operation. Aust N Z J Obstetr Gynaecol 45(3):243–247
Article
Google Scholar
Drenthen W, Pieper PG, Roos-Hesselink JW, van Lottum WA, Voors AA, Mulder BJ et al (2007) Outcome of pregnancy in women with congenital heart disease: a literature review. J Am Coll Cardiol 49(24):2303–2311
Article
PubMed
Google Scholar
Rios-Serna LJ, Diaz-Ordonez L, Candelo E, Pachajoa H (2018) A novel de novo TBX5 mutation in a patient with Holt-Oram syndrome. Appl Clin Genet 11:157–162
Article
PubMed
PubMed Central
Google Scholar
Guo J, Li Z, Hao C, Guo R, Hu X, Qian S et al (2019) A novel de novo CASZ1 heterozygous frameshift variant causes dilated cardiomyopathy and left ventricular noncompaction cardiomyopathy. Mol Genet Genomic Med 7(8):e828
Article
PubMed
PubMed Central
CAS
Google Scholar
Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M (2009) Recurrence of congenital heart defects in families. Circulation. 120(4):295–301
Article
PubMed
Google Scholar
Mani A, Meraji SM, Houshyar R, Radhakrishnan J, Mani A, Ahangar M et al (2002) Finding genetic contributions to sporadic disease: a recessive locus at 12q24 commonly contributes to patent ductus arteriosus. Proc National Acad Sci USA 99(23):15054–15059
Article
CAS
Google Scholar
Shieh JT, Bittles AH, Hudgins L (2012) Consanguinity and the risk of congenital heart disease. Am J Med Genet Part A 158a(5):1236–1241
Article
PubMed
Google Scholar
Jiang T, Huang M, Jiang T, Gu Y, Wang Y, Wu Y et al (2018) Genome-wide compound heterozygosity analysis highlighted 4 novel susceptibility loci for congenital heart disease in Chinese population. Clinical Genet 94(3–4):296–302
Article
CAS
PubMed
Google Scholar
Agopian AJ, Goldmuntz E, Hakonarson H, Sewda A, Taylor D, Mitchell LE (2017) Genome-wide association studies and meta-analyses for congenital heart defects. Circ Cardiovasc Genet 10(3):e001449
Article
CAS
PubMed
PubMed Central
Google Scholar
Beghetti M, Tissot C (2009) Pulmonary arterial hypertension in congenital heart diseases. Semin Respir Crit Care Med 30(4):421–428
Article
PubMed
Google Scholar
Roberts KE, McElroy JJ, Wong WP, Yen E, Widlitz A, Barst RJ et al (2004) BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J 24(3):371–374
Article
CAS
PubMed
Google Scholar
Miquerol L, Kelly RG (2013) Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol 2(1):17–29
Article
CAS
PubMed
Google Scholar
Sylva M, van den Hoff MJ, Moorman AF (2014) Development of the human heart. Am J Med Genet Part A 164a(6):1347–1371
Article
PubMed
CAS
Google Scholar
Kloesel B, DiNardo JA, Body SC (2016) Cardiac embryology and molecular mechanisms of congenital heart disease: a primer for anesthesiologists. Anesth Analg 123(3):551–569
Article
CAS
PubMed
PubMed Central
Google Scholar
Schleich JM, Abdulla T, Summers R, Houyel L (2013) An overview of cardiac morphogenesis. Arch Cardiovasc Dis 106(11):612–623
Article
PubMed
Google Scholar
Sedmera D, McQuinn T (2008) Embryogenesis of the heart muscle. Heart Fail Clin 4(3):235–245
Article
PubMed
PubMed Central
Google Scholar
MacGrogan D, Munch J, de la Pompa JL (2018) Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol 15(11):685–704
Article
PubMed
Google Scholar
Cowan JR, Ware SM (2015) Genetics and genetic testing in congenital heart disease. Clin Perinatol 42(2):373–393 ix
Article
PubMed
Google Scholar
Arrington CB, Bleyl SB, Brunelli L, Bowles NE (2013) Family-based studies to identify genetic variants that cause congenital heart defects. Futur Cardiol 9(4):507–518
Article
CAS
Google Scholar
Nicoll R (2018) Environmental Contaminants and Congenital Heart Defects: A Re-Evaluation of the Evidence. Int J Environ Res Pub Health 15(10):2096
Article
CAS
PubMed Central
Google Scholar
Dianatpour S, Khatami M, Heidari MM, Hadadzadeh M (2019) Novel point mutations of CITED2 gene are associated with non-familial congenital heart disease (CHD) in sporadic pediatric patients. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-019-03125-8. Printed online 13 Sept 2019.
Liu Q, Van Bortle K, Zhang Y, Zhao MT, Zhang JZ, Geller BS et al (2018) Disruption of mesoderm formation during cardiac differentiation due to developmental exposure to 13-cis-retinoic acid. Sci Rep 8(1):12960
Article
PubMed
PubMed Central
CAS
Google Scholar
Khalil A, Tanos R, El-Hachem N, Kurban M, Bouvagnet P, Bitar F et al (2017) A HAND to TBX5 explains the link between thalidomide and cardiac diseases. Sci Rep 7(1):1416
Article
PubMed
PubMed Central
CAS
Google Scholar
Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258(1):1–19
Article
CAS
PubMed
Google Scholar
Cohen ED, Tian Y, Morrisey EE (2008) Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135(5):789–798
Article
CAS
PubMed
Google Scholar
Huang JB, Liu YL, Sun PW, Lv XD, Du M, Fan XM (2010) Molecular mechanisms of congenital heart disease. Cardiovasc Pathol 19(5):e183–e193
Article
CAS
PubMed
Google Scholar
Zhang L, Nomura-Kitabayashi A, Sultana N, Cai W, Cai X, Moon AM et al (2014) Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Developmental Biol 390(1):68–79
Article
CAS
Google Scholar
Kobylinska J, Dworzanski W, Cendrowska-Pinkosz M, Dworzanska A, Hermanowicz-Dryka T, Kiszka J et al (2013) Morphological and molecular bases of cardiac development. Postepy Hig Med Dosw 67:950–957
Article
Google Scholar
Materna SC, Sinha T, Barnes RM, Lammerts van Bueren K, Black BL (2019) Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage. Dev Biol 445(2):170–177
Article
CAS
PubMed
Google Scholar
Vincentz JW, Barnes RM, Firulli AB (2011) Hand factors as regulators of cardiac morphogenesis and implications for congenital heart defects. Birth Defects Res Clin Mol Teratol 91(6):485–494
Article
CAS
Google Scholar
Morikawa Y, Cserjesi P (2008) Cardiac neural crest expression of Hand2 regulates outflow and second heart field development. Circ Res 103(12):1422–1429
Article
CAS
PubMed
Google Scholar
Hoffmann AD, Yang XH, Burnicka-Turek O, Bosman JD, Ren X, Steimle JD et al (2014) Foxf genes integrate tbx5 and hedgehog pathways in the second heart field for cardiac septation. PLoS Genet 10(10):e1004604
Article
PubMed
PubMed Central
CAS
Google Scholar
McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277
Article
CAS
PubMed
PubMed Central
Google Scholar
Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D et al (2009) Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol 326(2):368–377
Article
CAS
PubMed
Google Scholar
Mori AD, Bruneau BG (2004) TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol 19(3):211–215
Article
PubMed
Google Scholar
Chen HX, Zhang X, Hou HT, Wang J, Yang Q, Wang XL et al (2017) Identification of a novel and functional mutation in the TBX5 gene in a patient by screening from 354 patients with isolated ventricular septal defect. Eur J Med Genet 60(7):385–390
Article
CAS
PubMed
Google Scholar
Granados-Riveron JT, Pope M, Bu'lock FA, Thornborough C, Eason J, Setchfield K et al (2012) Combined mutation screening of NKX2-5, GATA4, and TBX5 in congenital heart disease: multiple heterozygosity and novel mutations. Congenit Heart Dis 7(2):151–159
Article
PubMed
PubMed Central
Google Scholar
Ching YH, Ghosh TK, Cross SJ, Packham EA, Honeyman L, Loughna S et al (2005) Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet 37(4):423–428
Article
CAS
PubMed
Google Scholar
Peng T, Wang L, Zhou SF, Li X (2010) Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genet. 138(11–12):1231–1240
Article
CAS
Google Scholar
Zhu W, Shiojima I, Hiroi Y, Zou Y, Akazawa H, Mizukami M et al (2000) Functional analyses of three Csx/Nkx-2.5 mutations that cause human congenital heart disease. J Biol Chem 275(45):35291–35296
Article
CAS
PubMed
Google Scholar
Pang S, Shan J, Qiao Y, Ma L, Qin X, Wanyan H et al (2012) Genetic and functional analysis of the NKX2-5 gene promoter in patients with ventricular septal defects. Pediatr Cardiol 33(8):1355–1361
Article
PubMed
Google Scholar
McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42(9):1650–1655
Article
CAS
PubMed
Google Scholar
Elliott DA, Kirk EP, Yeoh T, Chandar S, McKenzie F, Taylor P et al (2003) Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol 41(11):2072–2076
Article
CAS
PubMed
Google Scholar
Ellesoe SG, Johansen MM, Bjerre JV, Hjortdal VE, Brunak S, Larsen LA (2016) Familial atrial septal defect and sudden cardiac death: identification of a novel NKX2-5 mutation and a review of the literature. Congenit Heart Dis 11(3):283–290
Article
PubMed
Google Scholar
Reamon-Buettner SM, Borlak J (2010) NKX2-5: an update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum Mutat 31(11):1185–1194
Article
CAS
PubMed
Google Scholar
Reamon-Buettner SM, Sattlegger E, Ciribilli Y, Inga A, Wessel A, Borlak J (2013) Transcriptional defect of an inherited NKX2-5 haplotype comprising a SNP, a nonsynonymous and a synonymous mutation, associated with human congenital heart disease. PLoS One 8(12):e83295
Article
PubMed
PubMed Central
CAS
Google Scholar
Qiao XH, Wang F, Zhang XL, Huang RT, Xue S, Wang J et al (2017) MEF2C loss-of-function mutation contributes to congenital heart defects. Int J Med Sci 14(11):1143–1153
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu CX, Wang W, Wang Q, Liu XY, Yang YQ (2018) A novel MEF2C loss-of-function mutation associated with congenital double outlet right ventricle. Pediatr Cardiol 39(4):794–804
Article
PubMed
Google Scholar
Pikkarainen S, Tokola H, Kerkela R, Ruskoaho H (2004) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63(2):196–207
Article
CAS
PubMed
Google Scholar
Misra C, Sachan N, McNally CR, Koenig SN, Nichols HA, Guggilam A et al (2012) Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet 8(5):e1002690
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen MW, Pang YS, Guo Y, Liu BL, Shen J, Song HD et al (2009) Association between GATA-4 mutations and congenital cardiac septal defects in Han Chinese patients. Zhonghua Xin Xue Guan Bing Za Zhi 37(5):409–412
CAS
PubMed
Google Scholar
Chen J, Qi B, Zhao J, Liu W, Duan R, Zhang M (2016) A novel mutation of GATA4 (K300T) associated with familial atrial septal defect. Gene. 575(2 Pt 2):473–477
Article
CAS
PubMed
Google Scholar
Butler TL, Esposito G, Blue GM, Cole AD, Costa MW, Waddell LB et al (2010) GATA4 mutations in 357 unrelated patients with congenital heart malformation. Genet Test Mol Biomarkers 14(6):797–802
Article
CAS
PubMed
Google Scholar
Steimle JD, Moskowitz IP (2017) TBX5: a key regulator of heart development. Curr Top Dev Biol 122:195–221
Article
CAS
PubMed
Google Scholar
Ryan K, Chin AJ (2003) T-box genes and cardiac development. Birth Defects Res C Embryo Today 69(1):25–37
Article
CAS
PubMed
Google Scholar
Dressen M, Lahm H, Lahm A, Wolf K, Doppler S, Deutsch MA et al (2016) A novel de novo TBX5 mutation in a patient with Holt-Oram syndrome leading to a dramatically reduced biological function. Mol Genet Genomic Med 4(5):557–567
Article
CAS
PubMed
PubMed Central
Google Scholar
Postma AV, van de Meerakker JB, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A et al (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102(11):1433–1442
Article
CAS
PubMed
Google Scholar
Baban A, Postma AV, Marini M, Trocchio G, Santilli A, Pelegrini M et al (2014) Identification of TBX5 mutations in a series of 94 patients with tetralogy of Fallot. Ame J Med Genet A 164a(12):3100–3107
Article
CAS
Google Scholar
Liu CX, Shen AD, Li XF, Jiao WW, Bai S, Yuan F et al (2009) Association of TBX5 gene polymorphism with ventricular septal defect in the Chinese Han population. Chin Med J 122(1):30–34
CAS
PubMed
Google Scholar
Xin N, Qiu GR, Gong LG, Xu XY, Sun KL (2009) The mechanism of TBX5 abnormal expression in simple congenital heart disease. Yi Chuan 31(4):374–380
Article
CAS
PubMed
Google Scholar
Qiao XH, Wang Q, Wang J, Liu XY, Xu YJ, Huang RT et al (2018) A novel NR2F2 loss-of-function mutation predisposes to congenital heart defect. Eur J Med Genet. 61(4):197–203
Article
PubMed
Google Scholar
Yang Y, Xia Y, Wu Y, Huang S, Teng Y, Liu X et al (2019) Ankyrin repeat domain 1: a novel gene for cardiac septal defects. J Gene Med 21(4):e3070
Article
CAS
PubMed
Google Scholar
Huang RT, Xue S, Wang J, Gu JY, Xu JH, Li YJ et al (2016) CASZ1 loss-of-function mutation associated with congenital heart disease. Gene. 595(1):62–68
Article
CAS
PubMed
Google Scholar
Sun YM, Wang J, Qiu XB, Yuan F, Li RG, Xu YJ et al (2016) A HAND2 loss-of-function mutation causes familial ventricular septal defect and pulmonary stenosis. G3 6(4):987–992
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Wang J, Liu XY, Liu H, Shi HY, Yang XX et al (2017) HAND1 loss-of-function mutation contributes to congenital double outlet right ventricle. Int J Mol Med 39(3):711–718
Article
CAS
PubMed
Google Scholar
Postma AV, van Engelen K, van de Meerakker J, Rahman T, Probst S, Baars MJ et al (2011) Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet 4(1):43–50
Article
CAS
PubMed
Google Scholar
Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T et al (1997) Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc National Acad Sci USA. 94(9):4406–4411
Article
CAS
Google Scholar
Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P et al (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation. 117(22):2893–2901
Article
CAS
PubMed
Google Scholar
Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488
Article
CAS
PubMed
Google Scholar
Fischer SE (2015) RNA interference and microRNA-mediated silencing. Curr Protoc Mol Biol 112:26.1.1–26.1.5
Article
Google Scholar
Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35(1):3–11
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith T, Rajakaruna C, Caputo M, Emanueli C (2015) MicroRNAs in congenital heart disease. Ann Transl Med 3(21):333
PubMed
PubMed Central
Google Scholar
Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20(1):5–20
Article
CAS
PubMed
Google Scholar
Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R et al (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 140(5):652–665
Article
CAS
PubMed
PubMed Central
Google Scholar
Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science. 318(5858):1931–1934
Article
CAS
PubMed
Google Scholar
Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D et al (2012) Nuclear miRNA regulates the mitochondrial genome in the heart. Circulation Res 110(12):1596–1603
Article
CAS
PubMed
Google Scholar
Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J et al (2012) An unconventional role for miRNA: let-7 activates toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835
Article
CAS
PubMed
Google Scholar
Yan HL, Hua YM. Research advances on role of microRNAs in congenital heart diseases. Zhongguo dang dai er ke za zhi = Chinese J Contemp Pediatr 2014;16(10):1070–1074
Hoelscher SC, Doppler SA, Dressen M, Lahm H, Lange R, Krane M (2017) MicroRNAs: pleiotropic players in congenital heart disease and regeneration. J Thorac Dis 9(Suppl 1):S64–s81
Article
PubMed
PubMed Central
Google Scholar
Xie WQ, Zhou L, Chen Y, Ni B (2016) Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects. World J Emerg Med 7(2):85–89
Article
PubMed
PubMed Central
Google Scholar
Tian J, An X, Niu L (2017) Role of microRNAs in cardiac development and disease. Exp Ther Med 13(1):3–8
Article
CAS
PubMed
Google Scholar
Cao L, Kong LP, Yu ZB, Han SP, Bai YF, Zhu J et al (2012) microRNA expression profiling of the developing mouse heart. Int J Mol Med 30(5):1095–1104
Article
CAS
PubMed
Google Scholar
Li D, Ji L, Liu L, Liu Y, Hou H, Yu K et al (2014) Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS One 9(8):e106318
Article
PubMed
PubMed Central
Google Scholar
Sucharov CC, Sucharov J, Karimpour-Fard A, Nunley K, Stauffer BL, Miyamoto SD (2015) Micro-RNA expression in hypoplastic left heart syndrome. J Cardiac Fail 21(1):83–88
Article
CAS
Google Scholar
Pulignani S, Vecoli C, Sabina S, Foffa I, Ait-Ali L, Andreassi MG (2016) 3′UTR SNPs and haplotypes in the GATA4 gene contribute to the genetic risk of congenital heart disease. Rev Esp Cardiol (Engl Ed) 69(8):760–765
Article
Google Scholar
Wang L, Tian D, Hu J, Xing H, Sun M, Wang J et al (2016) MiRNA-145 regulates the development of congenital heart disease through targeting FXN. Pediatr Cardiol 37(4):629–636
Article
CAS
PubMed
Google Scholar
Zhou Y, Jia WK, Jian Z, Zhao L, Liu CC, Wang Y et al (2017) Downregulation of microRNA199a5p protects cardiomyocytes in cyanotic congenital heart disease by attenuating endoplasmic reticulum stress. Mol Med Rep 16(3):2992–3000
Article
CAS
PubMed
Google Scholar
Huang J, Li X, Li H, Su Z, Wang J, Zhang H (2015) Down-regulation of microRNA-184 contributes to the development of cyanotic congenital heart diseases. Int J Clin Exp Pathol 8(11):14221–14227
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Yuan Y, He X, Xia X, Mo X (2017) MicroRNA-1 upregulation promotes myocardiocyte proliferation and suppresses apoptosis during heart development. Mol Med Rep 15(5):2837–2842
Article
CAS
PubMed
Google Scholar
Guo R, Feng Z, Yang Y, Xu H, Zhang J, Guo K et al (2018) Association of a MiR-499 SNP and risk of congenital heart disease in a Chinese population. Cell Mol Biol 64(10):108–112
Article
PubMed
Google Scholar
Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159
Article
CAS
PubMed
Google Scholar
Wei JW, Huang K, Yang C, Kang CS (2017) Non-coding RNAs as regulators in epigenetics (review). Oncol Rep 37(1):3–9
Article
PubMed
Google Scholar
Gu M, Zheng A, Tu W, Zhao J, Li L, Li M et al (2016) Circulating LncRNAs as novel, non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Cell Physiol Biochem 38(4):1459–1471
Article
CAS
PubMed
Google Scholar
Garcia-Padilla C, Dominguez JN, Aranega AE, Franco D (2019) Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. Biochim Biophys Acta Gene Regul mech 1862(10):194435
Article
CAS
PubMed
Google Scholar
Duenas A, Exposito A, Aranega A, Franco D (2019) The role of non-coding RNA in congenital heart diseases. J Cardiovasc Dev Dis 6(2):E15.
Article
PubMed Central
CAS
Google Scholar
Scheuermann JC, Boyer LA (2013) Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 32(13):1805–1816
Article
CAS
PubMed
PubMed Central
Google Scholar
Song G, Shen Y, Zhu J, Liu H, Liu M, Shen YQ et al (2013) Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One 8(10):e77492
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng Z, Zhang Q, Yin A, Feng M, Li H, Liu H et al (2018) The long non-coding RNA uc.4 influences cell differentiation through the TGF-beta signaling pathway. Exp Mol Med 50(2):e447
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson KM, Anderson DM, McAnally JR, Shelton JM, Bassel-Duby R, Olson EN (2016) Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature. 539(7629):433–436
Article
CAS
PubMed
PubMed Central
Google Scholar
Benhaourech S, Drighil A, Hammiri AE (2016) Congenital heart disease and Down syndrome: various aspects of a confirmed association. Cardiovasc J Afr 27(5):287–290
Article
PubMed
Google Scholar
Bergstrom S, Carr H, Petersson G, Stephansson O, Bonamy AK, Dahlstrom A, et al (2016) Trends in congenital heart defects in infants with down syndrome. Pediatrics 138(1):e20160123
Article
Google Scholar
Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nature Rev Genet 5(10):725–738
Article
CAS
PubMed
Google Scholar
Bondy CA (2009) Turner syndrome 2008. Hormone Res 71(Suppl 1):52–56
Article
CAS
PubMed
Google Scholar
Pont SJ, Robbins JM, Bird TM, Gibson JB, Cleves MA, Tilford JM et al (2006) Congenital malformations among liveborn infants with trisomies 18 and 13. Am J Med Genet A 140(16):1749–1756
Article
PubMed
Google Scholar
Monteiro RAC, de Freitas ML, Vianna GS, de Oliveira VT, Pietra RX, Ferreira LCA et al (2017) Major contribution of genomic copy number variation in syndromic congenital heart disease: the use of MLPA as the first genetic test. Mol Syndromol 8(5):227–235
Article
CAS
PubMed
PubMed Central
Google Scholar
Costain G, Silversides CK, Bassett AS (2016) The importance of copy number variation in congenital heart disease. NPJ Genom Med 1:16031
Article
PubMed
PubMed Central
Google Scholar
Wu XL, Li R, Fu F, Pan M, Han J, Yang X et al (2017) Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatr 17(1):117
Article
PubMed
PubMed Central
CAS
Google Scholar
Oneda B, Rauch A (2017) Microarrays in prenatal diagnosis. Best Pract Res Clin Obstetr Gynaecol 42:53–63
Article
Google Scholar
Trevisan P, Rosa RF, Koshiyama DB, Zen TD, Paskulin GA, Zen PR (2014) Congenital heart disease and chromossomopathies detected by the karyotype. Rev Paul Pediatr 32(2):262–271
Article
PubMed
PubMed Central
Google Scholar
Zhu X, Li J, Ru T, Wang Y, Xu Y, Yang Y et al (2016) Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. Prenat Diagn 36(4):321–327
Article
CAS
PubMed
Google Scholar
Shanshen E, Rosenberg J, Van Bergen AH (2018) Identification of novel congenital heart disease candidate genes using chromosome microarray. Pediatr Cardiol 39(1):148–159
Article
PubMed
Google Scholar
Mutlu ET, Aykan HH, Karagoz T (2018) Analysis of gene copy number variations in patients with congenital heart disease using multiplex ligation-dependent probe amplification. Anatol J Cardiol 20(1):9–15
PubMed
PubMed Central
Google Scholar
Zhang X, Xu Y, Liu D, Geng J, Chen S, Jiang Z et al (2015) A modified multiplex ligation-dependent probe amplification method for the detection of 22q11.2 copy number variations in patients with congenital heart disease. BMC Genomics 16:364
Article
PubMed
PubMed Central
CAS
Google Scholar
Al-Hassnan ZN, Albawardi W, Almutairi F, AlMass R, AlBakheet A, Mustafa OM et al (2018) Identification of novel genomic imbalances in Saudi patients with congenital heart disease. Mol Cytogenet 11:9
Article
PubMed
PubMed Central
Google Scholar
Glessner JT, Bick AG, Ito K, Homsy J, Rodriguez-Murillo L, Fromer M et al (2014) Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res 115(10):884–896
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao W, Niu G, Shen B, Zheng Y, Gong F, Wang X et al (2013) High-resolution analysis of copy number variants in adults with simple-to-moderate congenital heart disease. Am J Med Genet A 161a(12):3087–3094
Article
PubMed
CAS
Google Scholar
Zhu X, Zhang Y, Wang J, Yang JF, Yang YF, Tan ZP (2013) 576 kb deletion in 1p36.33-p36.32 containing SKI is associated with limb malformation, congenital heart disease and epilepsy. Gene. 528(2):352–355
Article
CAS
PubMed
Google Scholar
Deng Q, Fu F, Li R, Jing X, Lei T, Yang X et al (2017) Application of chromosomal microarray analysis for fetuses with ventricular septal defects. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 34(5):699–704
PubMed
Google Scholar
Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F et al (2014) Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics 15:1127
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan Y, Wu Q, Zhang L, Wang X, Dan S, Deng D et al (2014) Detection of submicroscopic chromosomal aberrations by array-based comparative genomic hybridization in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 43(4):404–412
Article
CAS
PubMed
Google Scholar
Liu C, Cao R, Xu Y, Li T, Li F, Chen S et al (2018) Rare copy number variants analysis identifies novel candidate genes in heterotaxy syndrome patients with congenital heart defects. Genome Med 10(1):40
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldmuntz E, Paluru P, Glessner J, Hakonarson H, Biegel JA, White PS et al (2011) Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit Heart Dis 6(6):592–602
Article
PubMed
PubMed Central
Google Scholar
Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M et al (2012) Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics 44(9):518–541
Article
CAS
PubMed
PubMed Central
Google Scholar
Sailani MR, Makrythanasis P, Valsesia A, Santoni FA, Deutsch S, Popadin K et al (2013) The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome. Genome Res 23(9):1410–1421
Article
CAS
PubMed
PubMed Central
Google Scholar
Delea M, Espeche LD, Bruque CD, Bidondo MP, Massara LS, Oliveri J, et al (2018) Genetic imbalances in Argentinean patients with congenital conotruncal heart defects. Genes (Basel) 9(9):E454
Article
PubMed Central
CAS
Google Scholar
Amarillo IE, O'Connor S, Lee CK, Willing M, Wambach JA (2015) De novo 9q gain in an infant with tetralogy of Fallot with absent pulmonary valve: patient report and review of congenital heart disease in 9q duplication syndrome. Am J Med Genet A 167a(12):2966–2974
Article
PubMed
CAS
PubMed Central
Google Scholar
Mei M, Yang L, Zhan G, Wang H, Ma D, Zhou W et al (2014) Analysis of genomic copy number variations in two unrelated neonates with 8p deletion and duplication associated with congenital heart disease. Zhonghua Er Ke Za Zhi 52(6):460–463
PubMed
Google Scholar
Warburton D, Ronemus M, Kline J, Jobanputra V, Williams I, Anyane-Yeboa K et al (2014) The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum Genet 133(1):11–27
Article
PubMed
Google Scholar
Garside VC, Chang AC, Karsan A, Hoodless PA (2013) Co-ordinating Notch, BMP, and TGF-beta signaling during heart valve development. Cell Mol Life Sci 70(16):2899–2917
Article
CAS
PubMed
Google Scholar
Zhou XL, Liu JC (2014) Role of Notch signaling in the mammalian heart. Braz J Med Biol Res 47(1):1–10
Article
PubMed
CAS
Google Scholar
Nemir M, Pedrazzini T (2008) Functional role of Notch signaling in the developing and postnatal heart. J Mol Cell Cardiol 45(4):495–504
Article
CAS
PubMed
Google Scholar
MacGrogan D, Nus M, de la Pompa JL (2010) Notch signaling in cardiac development and disease. Curr Top Dev Biol 92:333–365
Article
CAS
PubMed
Google Scholar
Luxan G, D'Amato G, MacGrogan D, de la Pompa JL (2016) Endocardial notch signaling in cardiac development and disease. Circ Res 118(1):e1–e18
Article
CAS
PubMed
Google Scholar
Penton AL, Leonard LD, Spinner NB (2012) Notch signaling in human development and disease. Semin Cell Dev Biol 23(4):450–457
Article
CAS
PubMed
PubMed Central
Google Scholar
D'Amato G, Luxan G, de la Pompa JL (2016) Notch signalling in ventricular chamber development and cardiomyopathy. FEBS J 283(23):4223–4237
Article
CAS
PubMed
Google Scholar
Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso AR et al (2012) Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet 81(6):542–554
Article
CAS
PubMed
Google Scholar
Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N et al (2017) Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 26(16):3031–3045
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi J, Yoshida M, Tarui S, Hirata M, Nagai Y, Kasahara S et al (2014) Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS One 9(7):e102796
Article
PubMed
PubMed Central
CAS
Google Scholar
Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, et al (2016) iPSC-derived cardiomyocytes reveal abnormal TGF-beta ignalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 18(10):1031-42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim JA, Baek HJ, Jang MS, Choi EK, Lee YM, Lee SJ et al (2014) Loss of beta2-spectrin prevents cardiomyocyte differentiation and heart development. Cardiovasc Res 101(1):39–47
Article
CAS
PubMed
Google Scholar
Hill MA (2007) Early human development. Clinical Obstetr Gynecol 50(1):2–9
Article
Google Scholar
Shiota K (2009) Variability in human embryonic development and its implications for the susceptibility to environmental teratogenesis. Birth Defects Res A Clin Mol Teratol 85(8):661–666
Article
CAS
PubMed
Google Scholar
Schulkey CE, Regmi SD, Magnan RA, Danzo MT, Luther H, Hutchinson AK et al (2015) The maternal-age-associated risk of congenital heart disease is modifiable. Nature. 520(7546):230–233
Article
CAS
PubMed
PubMed Central
Google Scholar
Best KE, Rankin J. Is advanced maternal age a risk factor for congenital heart disease? Birth defects research Part A, Clin Mol Teratol 2016;106(6):461–467
Article
CAS
PubMed
Google Scholar
Chen X, Hu J, Wang J, Ma H, Bai W, Liu Z et al (2015) Clinical epidemiological study of peri-conceptional multiple risk factors and congenital heart diseases. Zhonghua Yi Xue Za Zhi 95(9):701–704
PubMed
Google Scholar
Solorzano-Santos F, Barcenas-Lopez SJ, Huerta-Garcia GC, Miranda-Novales MG, Alvarez YMMT, Vazquez-Rosales JG (2013) Perinatal infection by rubella virus in breast-fed babies with congenital heart disease. Rev Med Inst Mex Seguro Soc 51(2):158–163
PubMed
Google Scholar
Yazigi A, De Pecoulas AE, Vauloup-Fellous C, Grangeot-Keros L, Ayoubi JM, Picone O (2017) Fetal and neonatal abnormalities due to congenital rubella syndrome: a review of literature. J Mat Fetal Neonatal Med 30(3):274–278
Article
Google Scholar
Fung A, Manlhiot C, Naik S, Rosenberg H, Smythe J, Lougheed J et al (2013) Impact of prenatal risk factors on congenital heart disease in the current era. J Am Heart Assoc 2(3):e000064
Article
PubMed
PubMed Central
Google Scholar
Karatza AA, Giannakopoulos I, Dassios TG, Belavgenis G, Mantagos SP, Varvarigou AA (2011) Periconceptional tobacco smoking and isolated congenital heart defects in the neonatal period. Int J Cardiol 148(3):295–299
Article
PubMed
Google Scholar
Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S et al (2008) Maternal smoking and congenital heart defects. Pediatrics. 121(4):e810–e816
Article
PubMed
Google Scholar
Watkins ML, Rasmussen SA, Honein MA, Botto LD, Moore CA (2003) Maternal obesity and risk for birth defects. Pediatrics. 111(5 Pt 2):1152–1158
PubMed
Google Scholar
Madsen NL, Schwartz SM, Lewin MB, Mueller BA (2013) Prepregnancy body mass index and congenital heart defects among offspring: a population-based study. Congenit Heart Dis 8(2):131–141
Article
PubMed
Google Scholar
Gilboa SM, Correa A, Botto LD, Rasmussen SA, Waller DK, Hobbs CA et al (2010) Association between prepregnancy body mass index and congenital heart defects. Am J Obstetr Gynecol 202(1):51.e1–51e10
Article
Google Scholar
Basu M, Garg V (2018) Maternal hyperglycemia and fetal cardiac development: clinical impact and underlying mechanisms. Birth Defects Res 110(20):1504–1516
Article
CAS
PubMed
PubMed Central
Google Scholar
Oyen N, Olsen SF, Basit S, Leirgul E, Strom M, Carstensen L et al (2019) Association between maternal folic acid supplementation and congenital heart defects in offspring in birth cohorts from Denmark and Norway. J Am Heart Assoc 8(6):e011615
Article
PubMed
PubMed Central
Google Scholar
Leirgul E, Gildestad T, Nilsen RM, Fomina T, Brodwall K, Greve G et al (2015) Periconceptional folic acid supplementation and infant risk of congenital heart defects in Norway 1999-2009. Paediatr Perinat Epidemiol 29(5):391–400
Article
PubMed
Google Scholar
Ionescu-Ittu R, Marelli AJ, Mackie AS, Pilote L (2009) Prevalence of severe congenital heart disease after folic acid fortification of grain products: time trend analysis in Quebec, Canada. BMJ 338:b1673
Article
PubMed
PubMed Central
Google Scholar
Roodpeyma S, Kamali Z, Afshar F, Naraghi S (2002) Risk factors in congenital heart disease. Clin Pediatr 41(9):653–658
Article
Google Scholar