Honda H, Ushijima T, Wakazono K, Oda H, Tanaka Y, Aizawa S, Ishikawa T, Yazaki Y, Hirai H (2000) Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a transgenic study for blast crisis of human CML. Blood. 95(4):1144–1150. https://doi.org/10.1182/blood.V95.4.1144.004k04_1144_1150
Article
CAS
PubMed
Google Scholar
Cilloni D, Saglio G (2012) Molecular pathways: BCR-ABL. Clin Cancer Res. 18(4):930–937. https://doi.org/10.1158/1078-0432.CCR-10-1613
Article
CAS
PubMed
Google Scholar
Zamecnikova A (2010) Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia as a model of rational drug design in cancer. Expert Rev Hematol. 3(1):45–56. https://doi.org/10.1586/ehm.09.66
Article
CAS
PubMed
Google Scholar
Di Stefano C, Mirone G, Perna S, Marfe G (2016) The roles of microRNAs in the pathogenesis and drug resistance of chronic myelogenous leukemia. Oncol Rep. 35(2):614–624. https://doi.org/10.3892/or.2015.4456
Article
CAS
PubMed
Google Scholar
Elias MH, Baba AA, Husin A, Abdullah AD, Hassan R, Sim GA, Wahid SF, Ankathil R (2012) Contribution of BCR-ABL kinase domain mutations to imatinib mesylate resistance in Philadelphia chromosome positive Malaysian chronic myeloid leukemia patients. Hematol Rep. 4(4):e23. https://doi.org/10.4081/hr.2012.e23
Article
CAS
PubMed
PubMed Central
Google Scholar
Walz C, Sattler M (2006) Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol. 57(2):145–164. https://doi.org/10.1016/j.critrevonc.2005.06.007
Article
PubMed
Google Scholar
Yap E, Tumian NR, Azma RZ, Sharifah NA, Salwati S, Hamidah NH, Elias MH, Wong CL (2017) Primary imatinib resistance in chronic myeloid leukemia patients in a developing country: BCR-ABL kinase domain mutations or BCR-ABL independent mechanisms? Malays J Pathol. 39(2):107–113
CAS
PubMed
Google Scholar
To KKW, Fong W, Tong CWS, Wu M, Yan W, Cho WCS (2020) Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments. Expert Opin Drug Discov. 15(1):63–83. https://doi.org/10.1080/17460441.2020.1690449
Article
CAS
PubMed
Google Scholar
Hosseinahli N, Aghapour M, Duijf PH, Baradaran B (2018) Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol. 233(8):5574–5588. https://doi.org/10.1002/jcp.26514
Article
CAS
PubMed
Google Scholar
Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6(4):259–269. https://doi.org/10.1038/nrc1840
Article
CAS
PubMed
Google Scholar
He L, He X, Lowe SW, Hannon GJ (2007) microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer. 7(11):819–822. https://doi.org/10.1038/nrc2232
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanna J, Hossain GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research. Front Genet. 10:478. https://doi.org/10.3389/fgene.2019.00478
Article
CAS
PubMed
PubMed Central
Google Scholar
Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16(3):203–222. https://doi.org/10.1038/nrd.2016.246
Article
CAS
PubMed
Google Scholar
Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, Wang SE (2016) Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 26(2):217–228. https://doi.org/10.1038/cr.2016.13
Article
CAS
PubMed
PubMed Central
Google Scholar
Pirrò S, Minutolo A, Galgani A, Potestà M, Colizzi V, Montesano C (2016) Bioinformatics prediction and experimental validation of microRNAs involved in cross-kingdom interaction. J Comput Biol. 23(12):976–989. https://doi.org/10.1089/cmb.2016.0059
Article
CAS
PubMed
Google Scholar
Newman V, Moore B, Sparrow H, Perry E (2018) The Ensembl Genome Browser: strategies for accessing eukaryotic genome data. Methods Mol Biol. 1757:115–139
Article
CAS
Google Scholar
Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46(W1):W49–W54. https://doi.org/10.1093/nar/gky316
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39(Database issue):D152–D157. https://doi.org/10.1093/nar/gkq1027
Article
CAS
PubMed
Google Scholar
Loher P, Rigoutsos I (2012) Interactive exploration of RNA22 microRNA target predictions. Bioinformatics. 28(24):3322–3323. https://doi.org/10.1093/bioinformatics/bts615
Article
CAS
PubMed
Google Scholar
Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA. 13(11):1894–1910. https://doi.org/10.1261/rna.768207
Article
CAS
PubMed
PubMed Central
Google Scholar
Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5. 0: service integration into miRNA functional analysis workflows. Nucleic acids Res. 41(W1):W169–WW73. https://doi.org/10.1093/nar/gkt393
Article
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11):2498–2504. https://doi.org/10.1101/gr.1239303
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhutra S, Lenkala D, LaCroix B, Ye M, Huang RS (2014) Identifying and validating a combined mRNA and microRNA signature in response to imatinib treatment in a chronic myeloid leukemia cell line. PLoS One. 9(12):e115003. https://doi.org/10.1371/journal.pone.0115003
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee C-T, Risom T, Strauss WM (2007) Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol. 26(4):209–218. https://doi.org/10.1089/dna.2006.0545
Article
CAS
PubMed
Google Scholar
Chen X (2012) Small RNAs in development - insights from plants. Curr Opin Genet Dev. 22(4):361–367. https://doi.org/10.1016/j.gde.2012.04.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivashuta SI, Petrick JS, Heisel SE, Zhang Y, Guo L, Reynolds TL, Rice JF, Allen E, Roberts JK (2009) Endogenous small RNAs in grain: semi-quantification and sequence homology to human and animal genes. Food Chem Toxicol. 47(2):353–360. https://doi.org/10.1016/j.fct.2008.11.025
Article
CAS
PubMed
Google Scholar
Elias MH, Nordin N, Abdul HN (2020) In silico study of potential cross-kingdom plant microRNA based regulation in chronic myeloid leukemia. Curr Pharmacogenomics Personalized Med. 2020;17(2):125-132. https://doi.org/10.2174/1875692118666200106113610
Li Y, Wang H, Tao K, Xiao Q, Huang Z, Zhong L, Cao W, Wen J, Feng W (2013) miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res. 319(8):1094–1101. https://doi.org/10.1016/j.yexcr.2013.02.002
Article
CAS
PubMed
Google Scholar
Awan HM, Shah A, Rashid F, Wei S, Chen L, Shan G (2018) Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression. RNA Biol. 15(1):55–61. https://doi.org/10.1080/15476286.2017.1391441
Article
PubMed
Google Scholar
Subramanian M, Li XL, Hara T, Lal A (2015) A biochemical approach to identify direct microRNA targets. Methods Mol Biol. 1206:29–37. https://doi.org/10.1007/978-1-4939-1369-5_3
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HY, Han SS, Rhee H, Park JH, Lee JS, Oh YM et al (2015) Differential expression of microRNAs and their target genes in non-small-cell lung cancer. Mol Med Rep. 11(3):2034–2040. https://doi.org/10.3892/mmr.2014.2890
Article
CAS
PubMed
Google Scholar
Zhang Z, Xu L, He L, Wang J, Shi X, Li Z, Shi S, Hou K, Teng Y, Qu X (2020) MiR-891a-5p as a prognostic marker and therapeutic target for hormone receptor-positive breast cancer. J Cancer. 11(13):3771–3782. https://doi.org/10.7150/jca.40750
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian J, Zeng L, Jiang X, Zhang Z, Luo X (2019) Novel multiple miRNA-based signatures for predicting overall survival and recurrence-free survival of colorectal cancer patients. Med Sci Monit. 25:7258–7271. https://doi.org/10.12659/MSM.916948
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong HX, Zhou YH, Hou YY, Zhang Y, Huang Y, Xie B, Wang JY, Jiang Q, He JY, Shao YB, Han WM, Tan RY, Zhu J, Lu WQ (2015) Expression profile of microRNAs in gastrointestinal stromal tumors revealed by high throughput quantitative RT-PCR microarray. World J Gastroenterol. 21(19):5843–5855. https://doi.org/10.3748/wjg.v21.i19.5843
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS (2016) MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget. 7(27):42683–42697. https://doi.org/10.18632/oncotarget.7977
Article
PubMed
PubMed Central
Google Scholar
Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 1802(4):396–405. https://doi.org/10.1016/j.bbadis.2009.12.009
Article
CAS
PubMed
Google Scholar
Torii S, Yamamoto T, Tsuchiya Y, Nishida E (2006) ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci 97(8):697–702. https://doi.org/10.1111/j.1349-7006.2006.00244.x
Article
CAS
PubMed
Google Scholar
Chu S, Holtz M, Gupta M, Bhatia R (2004) BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood. 103(8):3167–3174. https://doi.org/10.1182/blood-2003-04-1271
Article
CAS
PubMed
Google Scholar
Kang CD, Yoo SD, Hwang BW, Kim KW, Kim DW, Kim CM, Kim SH, Chung BS (2000) The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res. 24(6):527–534. https://doi.org/10.1016/S0145-2126(00)00010-2
Article
CAS
PubMed
Google Scholar
Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD (2000) STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood. 95(6):2118–2125. https://doi.org/10.1182/blood.V95.6.2118
Article
CAS
PubMed
Google Scholar
Kaymaz BT, Gunel NS, Ceyhan M, Cetintas VB, Ozel B, Yandim MK et al (2015) Revealing genome-wide mRNA and microRNA expression patterns in leukemic cells highlighted “hsa-miR-2278” as a tumor suppressor for regain of chemotherapeutic imatinib response due to targeting STAT5A. Tumour Biol. 36(10):7915–7927. https://doi.org/10.1007/s13277-015-3509-9
Article
CAS
PubMed
Google Scholar
Turhan AG (2011) STAT5 as a CML target: STATinib therapies? Blood 117(12):3252–3253
Article
CAS
Google Scholar
Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science. 303(5654):83–86. https://doi.org/10.1126/science.1091903
Article
CAS
PubMed
Google Scholar
Teruel-Montoya R, Kong X, Abraham S, Ma L, Kunapuli SP, Holinstat M, Shaw CA, McKenzie SE, Edelstein LC, Bray PF (2014) MicroRNA expression differences in human hematopoietic cell lineages enable regulated transgene expression. PLoS One. 9(7):e102259. https://doi.org/10.1371/journal.pone.0102259
Article
PubMed
PubMed Central
Google Scholar
Ruan Y, Kim HN, Ogana H, Kim Y-M (2020) Wnt Signaling in leukemia and its bone marrow microenvironment. Int J Mol Sci. 21(17):6247. https://doi.org/10.3390/ijms21176247
Article
CAS
PubMed Central
Google Scholar
Khan NI, Bradstock KF, Bendall LJ (2007) Activation of Wnt/β-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol. 138(3):338–348. https://doi.org/10.1111/j.1365-2141.2007.06667.x
Article
CAS
PubMed
Google Scholar