Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet. 369(9570):1379–1390. https://doi.org/10.1016/S0140-6736(07)60635-7
Article
PubMed
Google Scholar
Dean LE, Jones GT, MacDonald AG, Downham C, Sturrock RD, Macfarlane GJ (2014) Global prevalence of ankylosing spondylitis. Rheumatology. 53(4):650–657. https://doi.org/10.1093/rheumatology/ket387
Article
PubMed
Google Scholar
Braun J, Bollow M, Remlinger G, Eggens U, Rudwaleit M, Distler A et al (1998) Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum 41(1):58–67. https://doi.org/10.1002/1529-0131(199801)41:1<58::AID-ART8>3.0.CO;2-G
Article
CAS
PubMed
Google Scholar
Lee W, Reveille JD, Davis JC, Learch TJ, Ward MM, Weisman MH (2007) Are there gender differences in severity of ankylosing spondylitis? Results from the PSOAS cohort. Ann Rheum Dis 66(5):633–638. https://doi.org/10.1136/ard.2006.060293
Article
PubMed
Google Scholar
Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL et al (1997) Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 40(10):1823–1828. https://doi.org/10.1002/art.1780401015
Article
CAS
PubMed
Google Scholar
JÄRvinen P. (1995) Occurrence of ankylosing spondylitis in a nationwide series of twins. Arthritis Rheum 38(3):381–383. https://doi.org/10.1002/art.1780380313
Article
PubMed
Google Scholar
Morin M, Hellgren K, Frisell T (2020) Familial aggregation and heritability of ankylosing spondylitis - a Swedish nested case-control study. Rheumatol (United Kingdom) 59(7):1695–1702
Google Scholar
Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DCO, Sturrock RD (1973 Apr) Ankylosing spondylitis and HL-A 27. Lancet. 301(7809):904–907. https://doi.org/10.1016/S0140-6736(73)91360-3
Article
Google Scholar
Sheehan NJ. The ramifications of HLA-B27. Vol. 97, J R Soc Med Royal Society of Medicine Press; 2004. p. 10–14.
Stolwijk C, Boonen A, van Tubergen A, Reveille JD (2012) Epidemiology of spondyloarthritis. Rheum Dis Clin North Am NIH Public Access 38:441–476
Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N (2017) Pathogenesis of ankylosing spondylitis-recent advances and future directions. Nat Rev Rheumatol 13(6):359–367. https://doi.org/10.1038/nrrheum.2017.56
Article
CAS
PubMed
Google Scholar
Pimentel-Santos FM, Ligeiro D, Matos M, Mourão AF, Costa J, Santos H et al (2011) Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther 13(2)
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41(D1):D991–D995
Article
CAS
PubMed
Google Scholar
Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48(D1):D498
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, Morris Q (2013) GeneMANIA Prediction Server 2013 update. Nucleic Acids Res 41(W1):W115–W122. https://doi.org/10.1093/nar/gkt533
Article
PubMed
PubMed Central
Google Scholar
Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, D’Eustachio P, Stein L, Hermjakob H (2017) Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics 18(1):142. https://doi.org/10.1186/s12859-017-1559-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics. 27(12):1739–1740. https://doi.org/10.1093/bioinformatics/btr260
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering C (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131
Article
CAS
PubMed
Google Scholar
Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X et al (2019) Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res Sichuan University 7
Breban M, Said-Nahal R, Hugot JP, Miceli-Richard C (2003) Familial and genetic aspects of spondyloarthropathy. Rheum Dis Clin North Am WB Saunders 29:575–594
Lincoln MR, Ramagopalan SV, Chao MJ, Herrera BM, Deluca GC, Orton SM et al (2009) Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility. Proc Natl Acad Sci U S A 106(18):7542–7547. https://doi.org/10.1073/pnas.0812664106
Article
PubMed
PubMed Central
Google Scholar
Tree TIM, Duinkerken G, Willemen S, De Vries RRP, Roep BO (2004) HLA-DQ-regulated T-cell responses to islet cell autoantigens insulin and GAD65. Diabetes. 53(7):1692–1699. https://doi.org/10.2337/diabetes.53.7.1692
Article
CAS
PubMed
Google Scholar
Whyte JM, Ellis JJ, Brown MA, Kenna TJ (2019) Best practices in DNA methylation: lessons from inflammatory bowel disease, psoriasis and ankylosing spondylitis. Vol. 21, Arthritis Research and Therapy. BioMed Central Ltd:1–14
Horn GT, Bugawan TL, Long CM, Erlich HA (1988) Allelic sequence variation of the HLA-DQ loci: relationship to serology and to insulin-dependent diabetes susceptibility. Proc Natl Acad Sci U S A 85(16):6012–6016. https://doi.org/10.1073/pnas.85.16.6012
Article
CAS
PubMed
PubMed Central
Google Scholar
Todd JA, Bell JI, McDevitt HO (1987) HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 329(6140):599–604. https://doi.org/10.1038/329599a0
Article
CAS
PubMed
Google Scholar
Miyagawa T, Toyoda H, Kanbayashi T, Imanishi A, Sagawa Y, Kotorii N, Kotorii T, Hashizume Y, Ogi K, Hiejima H, Kamei Y, Hida A, Miyamoto M, Ikegami A, Wada Y, Takami M, Fujimura Y, Tamura Y, Omata N, Masuya Y, Kondo H, Moriya S, Furuya H, Kato M, Kojima H, Kashiwase K, Saji H, Khor SS, Yamasaki M, Ishigooka J, Wada Y, Chiba S, Yamada N, Okawa M, Kuroda K, Kume K, Hirata K, Uchimura N, Shimizu T, Inoue Y, Honda Y, Mishima K, Honda M, Tokunaga K (2015) An association analysis of HLA-DQB1 with narcolepsy without cataplexy and idiopathic hypersomnia with/without long sleep time in a Japanese population. Hum Genome Var 2(1):15031. https://doi.org/10.1038/hgv.2015.31
Article
PubMed
PubMed Central
Google Scholar
Murray JA, Moore SB, van Dyke CT, Lahr BD, Dierkhising RA, Zinsmeister AR, Melton LJ III, Kroning CM, el–Yousseff M, Czaja AJ (2007) HLA DQ gene dosage and risk and severity of celiac disease. Clin Gastroenterol Hepatol 5(12):1406–1412. https://doi.org/10.1016/j.cgh.2007.08.013
Article
PubMed
PubMed Central
Google Scholar
Hao J, Liu Y, Xu J, Wang W, Wen Y, He A, Fan Q, Guo X, Zhang F (2017) Genome-wide DNA methylation profile analysis identifies differentially methylated loci associated with ankylosis spondylitis. Arthritis Res Ther 19(1):177. https://doi.org/10.1186/s13075-017-1382-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Kchir MM, Hamdi W, Laadhar L, Kochbati S, Kaffel D, Saadellaoui K, Lahmar H, Ghannouchi MM, Azzouz D, Daoud L, Ben Hamida A, Zouari B, Zitouni M, Makni S (2010) HLA-B, DR and DQ antigens polymorphism in Tunisian patients with ankylosing spondylitis (a case-control study). Rheumatol Int 30(7):933–939. https://doi.org/10.1007/s00296-009-1079-0
Article
CAS
PubMed
Google Scholar
Reveille JD, Zhou X, Lee MJ, Weisman MH, Yi L, Gensler LS, Zou H, Ward MM, Ishimori ML, Learch TJ, He D, Rahbar MH, Wang J, Brown MA (2019) HLA class I and II alleles in susceptibility to ankylosing spondylitis. Ann Rheum Dis 78(1):66–73. https://doi.org/10.1136/annrheumdis-2018-213779
Article
CAS
PubMed
Google Scholar
Cortes A, Pulit SL, Leo PJ, Pointon JJ, Robinson PC, Weisman MH, Ward M, Gensler LS, Zhou X, Garchon HJ, Chiocchia G, Nossent J, Lie BA, Førre Ø, Tuomilehto J, Laiho K, Bradbury LA, Elewaut D, Burgos-Vargas R, Stebbings S, Appleton L, Farrah C, Lau J, Haroon N, Mulero J, Blanco FJ, Gonzalez-Gay MA, Lopez-Larrea C, Bowness P, Gaffney K, Gaston H, Gladman DD, Rahman P, Maksymowych WP, Crusius JBA, van der Horst-Bruinsma IE, Valle-Oñate R, Romero-Sánchez C, Hansen IM, Pimentel-Santos FM, Inman RD, Martin J, Breban M, Wordsworth BP, Reveille JD, Evans DM, de Bakker PIW, Brown MA (2015) Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat Commun 6(1):7146. https://doi.org/10.1038/ncomms8146
Article
PubMed
Google Scholar
Namkoong S, Lee KI, Lee JI, Park R, Lee EJ, Jang IS, Park J (2015) The integral membrane protein ITM2A, a transcriptional target of PKA-CREB, regulates autophagic flux via interaction with the vacuolar ATPase. Autophagy [Internet] 11(5):756–768 Available from: http://www.tandfonline.com/doi/full/10.1080/15548627.2015.1034412
Article
CAS
PubMed Central
Google Scholar
Deleersnijder W, Hong G, Cortvrindt R, Poirier C, Tylzanowski P, Pittois K et al (1996) Isolation of markers for chondro-osteogenic differentiation using cDNA library subtraction. Molecular cloning and characterization of a gene belonging to a novel multigene family of integral membrane proteins. J Biol Chem [Internet] 271(32):19475–19482 Available from: http://www.jbc.org/
Article
CAS
Google Scholar
Plas D, Merregaert J (2004) In vitro studies on Itm2a reveal its involvement in early stages of the chondrogenic differentiation pathway. Biol Cell 96(6):463–470. https://doi.org/10.1016/j.biolcel.2004.04.007
Article
CAS
PubMed
Google Scholar
Boeuf S, Börger M, Hennig T, Winter A, Kasten P, Richter W (2009) Enhanced ITM2A expression inhibits chondrogenic differentiation of mesenchymal stem cells. Differentiation. 78(2–3):108–115. https://doi.org/10.1016/j.diff.2009.05.007
Article
CAS
PubMed
Google Scholar
Zhou C, Wang M, Yang J, Xiong H, Wang Y, Tang J (2019) Integral membrane protein 2A inhibits cell growth in human breast cancer via enhancing autophagy induction. Cell Commun Signal [Internet] 17(1):105 Available from: https://biosignaling.biomedcentral.com/articles/10.1186/s12964-019-0422-7
Article
Google Scholar
Nguyen TMH, Shin IW, Lee TJ, Park J, Kim JH, Park MS, Lee EJ (2016) Loss of ITM2A, a novel tumor suppressor of ovarian cancer through G2/M cell cycle arrest, is a poor prognostic factor of epithelial ovarian cancer. Gynecol Oncol 140(3):545–553. https://doi.org/10.1016/j.ygyno.2015.12.006
Article
CAS
PubMed
Google Scholar
Lee YH, Choi SJ, Ji JD, Song GG (2014) THU0494 meta-analysis of differentially expressed genes in ankylosing spondylitis. Ann Rheum Dis 73(Suppl 2):354.2-354. https://doi.org/10.1136/annrheumdis-2014-eular.1187
Article
Google Scholar
Romo-Tena J, Gómez-Martín D, Alcocer-Varela J (2013) CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev Elsevier 12:1171–1176
Rowshanravan B, Halliday N, Sansom DM (2018) Europe PMC Funders Group CTLA-4 : a moving target in immunotherapy. Blood. 131(1):58–67, CTLA-4: a moving target in immunotherapy. https://doi.org/10.1182/blood-2017-06-741033
Article
CAS
PubMed
Google Scholar
Klocke K, Sakaguchi S, Holmdahl R, Wing K (2016) Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A 113(17):E2383–E2392. https://doi.org/10.1073/pnas.1603892113
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahmani CA, Benzaoui A, Amroun H, Mecabih F, Sediki FZ, Zemani-Fodil F, Fodil M, Boughrara W, Mecheti B, Attal N, Mehtar N, Petit-Teixeira E, Boudjema A (2018) Association of the HLA-B27 antigen and the CTLA4 gene CT60/rs3087243 polymorphism with ankylosing spondylitis in Algerian population: a case–control study. Int J Immunogenet 45(3):109–117. https://doi.org/10.1111/iji.12369
Article
CAS
PubMed
Google Scholar
Karakose Okyaltırık F, Rezvani A, Turan S, Uysal Ö, Yakar F, Sozgen H, Ozkan NE, Akkoyunlu ME, Bayram M, Kutbay Ozcelik H, Sezer M, Guler M, Yaylım İ, Kart L (2017) Relationship of CTLA4 and CD28 polymorphisms with lung involvement, HRCT findings and pulmonary function tests in Turkish patients with ankylosing spondylitis. Clin Respir J 11(5):593–601. https://doi.org/10.1111/crj.12388
Article
CAS
PubMed
Google Scholar
Azizi E, Massoud A, Amirzargar AA, Mahmoudi M, Soleimanifar N, Rezaei N, Jamshidi AR, Nikbin B, Nicknam MH (2010) Association of CTLA4 gene polymorphism in iranian patients with ankylosing spondylitis. J Clin Immunol 30(2):268–271. https://doi.org/10.1007/s10875-009-9356-y
Article
CAS
PubMed
Google Scholar
Vaidya B, Imrie H, Perros P, Young ET, Kelly WF, Carr D, Large DM, Toft AD, McCarthy M, Kendall-Taylor P, Pearce SH (1999) The cytotoxic T lymphocyte antigen-4 is a major Graves’ disease locus. Hum Mol Genet 8(7):1195–1199. https://doi.org/10.1093/hmg/8.7.1195
Article
CAS
PubMed
Google Scholar
García-Chagollán M, Ledezma-Lozano IY, Hernández-Bello J, Sánchez-Hernández PE, Gutiérrez-Ureña SR, Muñoz-Valle JF (2020) Expression patterns of CD28 and CTLA-4 in early, chronic, and untreated rheumatoid arthritis. J Clin Lab Anal 34(5)
Wong S, Moore S, Orisio S, Millward A, Demaine AG (2008) Susceptibility to type I diabetes in women is associated with the CD3 epsilon locus on chromosome 11. Clin Exp Immunol 83(1):69–73. https://doi.org/10.1111/j.1365-2249.1991.tb05590.x
Article
Google Scholar
Brophy K, Ryan AW, Turner G, Trimble V, Patel KD, O’Morain C, et al. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study. BMC Med Genet 2010;11(1):1–8, DOI: https://doi.org/10.1186/1471-2350-11-76.
Holst J, Wang H, Eder KD, Workman CJ, Boyd KL, Baquet Z, Singh H, Forbes K, Chruscinski A, Smeyne R, van Oers NSC, Utz PJ, Vignali DAA (2008) Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol [Internet] 9(6):658–666. Available from: https://www.nature.com/articles/ni.1611. https://doi.org/10.1038/ni.1611
Article
Google Scholar
Yu H, Liu Y, Zhang L, Wu L, Zheng M, Cheng L, Luo L, Kijlstra A, Yang P (2014) FoxO1 gene confers genetic predisposition to acute anterior uveitis with ankylosing spondylitis. Investig Ophthalmol Vis Sci 55(12):7970–7974. https://doi.org/10.1167/iovs.14-15460
Article
CAS
Google Scholar
Lindner E, Weger M, Steinwender G, Griesbacher A, Posch U, Ulrich S, Wegscheider B, Ardjomand N, el-Shabrawi Y (2011) IL2RA gene polymorphism rs2104286 A>G seen in multiple sclerosis is associated with intermediate uveitis: Possible parallel pathways? Investig Ophthalmol Vis Sci 52(11):8295–8299. https://doi.org/10.1167/iovs.11-8163
Article
CAS
Google Scholar
Zhu Z-Q, Tang J-S, Cao X-J (2013) Transcriptome network analysis reveals potential candidate genes for ankylosing spondylitis. Eur Rev Med Pharmacol Sci 17(23):3178–3185
PubMed
Google Scholar
Hendriks J, Gravestein LA, Tesselaar K, Van Lier RAW, Schumacher TNM, Borst J (2000) CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 1(5):433–440. https://doi.org/10.1038/80877
Article
CAS
PubMed
Google Scholar
Wajant H (2016) Therapeutic targeting of CD70 and CD27 [Internet]. Expert Opin Ther Targets Taylor and Francis Ltd 20:959–973 [cited 2021 Mar 12], Available from: https://www.tandfonline.com/doi/abs/10.1517/14728222.2016.1158812
Borst J, Hendriks J, Xiao Y (2005) CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol 17(3):275–281. https://doi.org/10.1016/j.coi.2005.04.004
Article
CAS
PubMed
Google Scholar
Han BK, Olsen NJ, Bottaro A (2016) The CD27-CD70 pathway and pathogenesis of autoimmune disease. Semin Arthritis Rheum WB Saunders 45:496–501
Mamedov IZ, Britanova OV, Chkalina AV, Staroverov DB, Amosova AL, Mishin AS, Kurnikova MA, Zvyagin IV, Mutovina ZY, Gordeev AV, Khaidukov SV, Sharonov GV, Shagin DA, Chudakov DM, Lebedev YB (2009) Individual characterization of stably expanded T cell clones in ankylosing spondylitis patients. Autoimmunity. 42(6):525–536. https://doi.org/10.1080/08916930902960362
Article
CAS
PubMed
Google Scholar
Niu XY, Zhang HY, Liu YJ, Zhao D, Shan YX, Jiang YF (2013 Nov) Peripheral B-cell activation and exhaustion markers in patients with ankylosing spondylitis. Life Sci 93(18–19):687–692. https://doi.org/10.1016/j.lfs.2013.09.003
Article
CAS
PubMed
Google Scholar
Guillonneau C, Aubry V, Renaudin K, Séveno C, Usal C, Tezuka K, Anegon I (2005) Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade. Transplantation. 80(2):255–263. https://doi.org/10.1097/01.TP.0000165429.57421.D6
Article
CAS
PubMed
Google Scholar
Wikenheiser DJ, Stumhofer JS (2016) ICOS co-stimulation: friend or foe? Front Immunol Frontiers Media SA 7:1
Metzger TC, Long H, Potluri S, Pertel T, Bailey-Bucktrout SL, Lin JC, Fu T, Sharma P, Allison JP, Feldman RMR (2016) ICOS promotes the function of CD4+ effector T cells during anti-OX40-mediated tumor rejection. Cancer Res 76(13):3684–3689. https://doi.org/10.1158/0008-5472.CAN-15-3412
Article
CAS
PubMed
Google Scholar
Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature. 397(6716):263–266. https://doi.org/10.1038/16717
Article
CAS
PubMed
Google Scholar
Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature. 409(6816):97–101. https://doi.org/10.1038/35051100
Article
CAS
PubMed
Google Scholar
Beier KC, Hutloff A, Dittrich AM, Heuck C, Rauch A, Bchner K et al (2000) Induction, binding specificity and function of human ICOS. Eur J Immunol 30(12):3707–3717. https://doi.org/10.1002/1521-4141(200012)30:12<3707::AID-IMMU3707>3.0.CO;2-Q
Article
CAS
PubMed
Google Scholar
Araujo LM, Fert I, Jouhault Q, Labroquère K, Andrieu M, Chiocchia G, Breban M (2014) Increased production of interleukin-17 over interleukin-10 by Treg cells implicates inducible costimulator molecule in experimental spondyloarthritis. Arthritis Rheum 66(9):2412–2422. https://doi.org/10.1002/art.38737
Article
CAS
Google Scholar
Wu S, Yang T, Pan F, Xia G, Hu Y, Liu L, Fan D, Duan Z, Ding N, Xu S, Cai G, Wang L (2014) Increased frequency of circulating follicular helper T cells in patients with ankylosing spondylitis. Mod Rheumatol 25(1):110–115. https://doi.org/10.3109/14397595.2014.902149
Article
CAS
PubMed
Google Scholar
Xiao F, Zhang HY, Liu YJ, Zhao D, Shan YX, Jiang YF (2013) Higher frequency of peripheral blood interleukin 21 positive follicular helper T cells in patients with ankylosing spondylitis. J Rheumatol 40(12):2029–2037. https://doi.org/10.3899/jrheum.130125
Article
CAS
PubMed
Google Scholar
Long S, Ma L, Wang D, Shang X (2018) High frequency of circulating follicular helper T cells is correlated with B cell subtypes in patients with ankylosing spondylitis. Exp Ther Med 15(5):4578–4586. https://doi.org/10.3892/etm.2018.5991
Article
CAS
PubMed
PubMed Central
Google Scholar
Bautista-Caro M-B, Arroyo-Villa I, Castillo-Gallego C, de Miguel E, Peiteado D, Plasencia-Rodríguez C, et al. Decreased frequencies of circulating dollicular helper T cell counterparts and plasmablasts in ankylosing spondylitis patients naïve for TNF blockers. Szodoray P, editor. PLoS One. 2014;9(9):e107086.
Brooks DLP, Schwab LP, Krutilina R, Parke DN, Sethuraman A, Hoogewijs D, Schörg A, Gotwald L, Fan M, Wenger RH, Seagroves TN (2016) ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer 15(1):26. https://doi.org/10.1186/s12943-016-0510-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin YP, Hu YP, Wu XS, Wu YS, Ye YY, Li HF et al (2018) MiR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3K/AKT pathway in gallbladder carcinoma. Cell Death Dis 9(2):1–15
Google Scholar
Ma H, Xu D, Fu Q (2012) Identification of ankylosing spondylitis-associated genes by expression profiling. Int J Mol Med 30(3):693–696. https://doi.org/10.3892/ijmm.2012.1047
Article
CAS
PubMed
Google Scholar
Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL (2018) Systematic analysis of differential expression profile in rheumatoid arthritis chondrocytes using next-generation sequencing and bioinformatics approaches. Int J Med Sci 15(11):1129–1142. https://doi.org/10.7150/ijms.27056
Article
CAS
PubMed
PubMed Central
Google Scholar
Kingma DW, Imus P, Xie XY, Jasper G, Sorbara L, Stewart C, Stetler-Stevenson M (2002) CD2 is expressed by a subpopulation of normal B cells and is frequently present in mature B-cell neoplasms. Cytometry. 50(5):243–248. https://doi.org/10.1002/cyto.10131
Article
PubMed
Google Scholar
Potocnik AJ, Menninger H, Yang SY, Pirner K, Krause A, Burmester GR et al (1991) Expression of the CD2 activation epitope T11-3 (CD2R) on T cells in rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus urythematosus, ankylosing spondylitis, and lyme disease: phenotypic and functional analysis. Scand J Immunol 34(3):351–358. https://doi.org/10.1111/j.1365-3083.1991.tb01556.x
Article
CAS
PubMed
Google Scholar
Li X, Zhao D, Guo Z, Li T, Qili M, Xu B et al (2016) Overexpression of SerpinE2/protease nexin-1 contribute to pathological cardiac fibrosis via increasing collagen deposition. Sci Rep 6(1):1–12
Article
Google Scholar
Santoro A, Conde J, Scotece M, Abella V, Lois A, Lopez V, et al. SERPINE2 inhibits IL-1α-induced MMP-13 expression in human chondrocytes: involvement of ERK/NF-κB/AP-1 pathways. d’Acquisto F, editor. PLoS One. 2015;10(8):e0135979.