Li G, Fan Y, Lai Y et al (2020) Coronavirus infections and immune responses. J Med Virol 92(4):424–432
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
Article
CAS
PubMed
PubMed Central
Google Scholar
Fung TS, Liu DX (2019) Human coronavirus: host–pathogen interaction. Annu Rev Microbiol 73:529–557
Article
CAS
PubMed
Google Scholar
Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge X-Y, Li J-L, Yang X-L et al (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503(7477):535–538
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruch TR, Machamer CE (2012) The coronavirus E protein: assembly and beyond. Viruses 4(3):363–382
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirchdoerfer RN, Cottrell CA, Wang N et al (2016) Pre-fusion structure of a human coronavirus spike protein. Nature 531(7592):118–121
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Yang C, Xu X, Xu W, Liu S (2020) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41(9):1141–1149
Article
PubMed
PubMed Central
Google Scholar
Xia X (2021) Domains and functions of spike protein in Sars-Cov-2 in the context of vaccine design. Viruses 13(1):109
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Li J, Du L et al (2006) Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: revealing the critical antigenic determinants in inactivated SARS-CoV vaccine. Vaccine 24(26):5498–5508
Article
CAS
PubMed
PubMed Central
Google Scholar
Lien S-P, Shih Y-P, Chen H-W et al (2007) Identification of synthetic vaccine candidates against SARS CoV infection. Biochem Biophys Res Commun 358(3):716–721
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua R, Zhou Y, Wang Y, Hua Y, Tong G (2004) Identification of two antigenic epitopes on SARS-CoV spike protein. Biochem Biophys Res Commun 319(3):929–935
Article
CAS
PubMed
PubMed Central
Google Scholar
Prompetchara E, Ketloy C, Tharakhet K et al (2021) DNA vaccine candidate encoding SARS-CoV-2 spike proteins elicited potent humoral and Th1 cell-mediated immune responses in mice. PLoS ONE 16(3):e0248007
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian X, Li C, Huang A et al (2020) Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 9(1):382–385
Article
CAS
PubMed
PubMed Central
Google Scholar
McBride R, Van Zyl M, Fielding BC (2014) The coronavirus nucleocapsid is a multifunctional protein. Viruses 6(8):2991–3018
Article
PubMed
PubMed Central
Google Scholar
Chow SCS, Ho CYS, Tam TTY et al (2006) Specific epitopes of the structural and hypothetical proteins elicit variable humoral responses in SARS patients. J Clin Pathol 59(5):468–476
Article
CAS
PubMed
PubMed Central
Google Scholar
Che X-Y, Hao W, Wang Y et al (2004) Nucleocapsid protein as early diagnostic marker for SARS. Emerg Infect Dis 10(11):1947
Article
CAS
PubMed
PubMed Central
Google Scholar
Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A (2020) A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 27(4):671-680.e2
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao B, Wang Y, Wen D et al (2020) A trial of Lopinavir–Ritonavir in adults hospitalized with severe covid-19. N Engl J Med 382(19):1787–1799
Article
PubMed
Google Scholar
Chen L, Xiong J, Bao L, Shi Y (2020) Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 20(4):398–400
Article
CAS
PubMed
PubMed Central
Google Scholar
Raza S, Siddique K, Rabbani M et al (2019) In silico analysis of four structural proteins of aphthovirus serotypes revealed significant B and T cell epitopes. Microb Pathog 128:254–262
Article
CAS
PubMed
Google Scholar
Tahir ul Qamar M, Shokat Z, Muneer I et al (2020) Multiepitope-based subunit vaccine design and evaluation against respiratory syncytial virus using reverse vaccinology approach. Vaccines 8(2):288
Article
PubMed Central
Google Scholar
Ashfaq UA, Ahmed B (2016) De novo structural modeling and conserved epitopes prediction of Zika virus envelop protein for vaccine development. Viral Immunol 29(7):436–443
Article
CAS
PubMed
Google Scholar
Ahmad B, Ashfaq UA, Rahman M, Masoud MS, Yousaf MZ (2019) Conserved B and T cell epitopes prediction of ebola virus glycoprotein for vaccine development: an immuno-informatics approach. Microb Pathog 132:243–253
Article
CAS
PubMed
PubMed Central
Google Scholar
Oany AR, Emran A-A, Jyoti TP (2014) Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des Dev Ther 8:1139
Article
Google Scholar
Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A (2020) Candidate targets for immune responses to 2019-novel coronavirus (nCoV): Sequence homology- and bioinformatic-based predictions. SSRN Electron J 34:3931
Google Scholar
Amer H, Alqahtani AS, Alaklobi F, Altayeb J, Memish ZA (2018) Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): revision of screening strategies urgently needed. Int J Infect Dis 71:113–116
Article
CAS
PubMed
PubMed Central
Google Scholar
Tahir ul Qamar M, Shahid F, Aslam S et al (2020) Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect Dis Poverty 9(1):132
Article
PubMed
PubMed Central
Google Scholar
Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2(1):1–7
Article
Google Scholar
Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M (2020) Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res 19(6):2304–2315
Article
CAS
PubMed
Google Scholar
Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30(6):846–851
Article
CAS
PubMed
Google Scholar
Magnan CN, Zeller M, Kayala MA et al (2010) High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 26(23):2936–2943
Article
CAS
PubMed
PubMed Central
Google Scholar
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):4
Article
Google Scholar
Magnan CN, Randall A, Baldi P (2009) SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 25(17):2200–2207
Article
CAS
PubMed
Google Scholar
Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607
Chapter
Google Scholar
Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519
Article
CAS
PubMed
PubMed Central
Google Scholar
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291
Article
CAS
Google Scholar
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server):W407–W410
Article
PubMed
PubMed Central
Google Scholar
Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41(W1):W384–W388
Article
PubMed
PubMed Central
Google Scholar
Madeira F, Park YM, Lee J et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47(W1):W636–W641
Article
CAS
PubMed
PubMed Central
Google Scholar
Grote A, Hiller K, Scheer M et al (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33(Web Server):W526–W531
Article
CAS
PubMed
PubMed Central
Google Scholar
Vajda S, Yueh C, Beglov D et al (2017) New additions to the Clus Pro server motivated by CAPRI. Proteins Struct Funct Bioinform 85(3):435–444
Article
CAS
Google Scholar
Sayed SB, Nain Z, Abdullah F et al (2019) Immunoinformatics-guided designing of peptide vaccine against Lassa virus with dynamic and immune simulation studies. Preprints
Pandey RK, Verma P, Sharma D, Bhatt TK, Sundar S, Prajapati VK (2016) High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Biomed Pharmacother 83:141–152
Article
CAS
PubMed
Google Scholar
Awan FM, Obaid A, Ikram A, Janjua HA (2017) Mutation-structure-function relationship based integrated strategy reveals the potential impact of deleterious missense mutations in autophagy related proteins on hepatocellular carcinoma (HCC): a comprehensive informatics approach. Int J Mol Sci 18(1):139
Article
PubMed Central
Google Scholar
López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42(W1):W271–W276
Article
PubMed
PubMed Central
Google Scholar
Rapin N, Lund O, Bernaschi M, Castiglione F (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 5(4):e9862
Article
PubMed
PubMed Central
Google Scholar
Castiglione F, Mantile F, De Berardinis P, Prisco A (2012) How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Comput Math Methods Med 2012:1–9
Article
Google Scholar
Chauhan V, Singh MP (2020) Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. Eur J Pharm Sci 147:105279
Article
CAS
PubMed
Google Scholar
Tahir-ul-Qamar M, Rehman A, Tusleem K et al (2020) Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: immunoinformatics and in silico approaches. PLoS ONE 15(12):e0244176
Article
CAS
PubMed
PubMed Central
Google Scholar
Khatoon N, Pandey RK, Prajapati VK (2017) Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7(1):1–12
Article
CAS
Google Scholar
Laskowski RA (2009) PDBsum new things. Nucleic Acids Res 37(Database):D355–D359
Article
CAS
PubMed
Google Scholar
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292.e6
Amanat F, Krammer F (2020) SARS-CoV-2 vaccines: status report. Immunity 52(4):583–589
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar J, Qureshi R, Sagurthi SR, Qureshi IA (2021) Designing of nucleocapsid protein based novel multi-epitope vaccine against SARS-COV-2 using immunoinformatics approach. Int J Pept Res Ther 27(2):941–956
Article
CAS
PubMed
Google Scholar
Fournillier A, Dupeyrot P, Martin P et al (2006) Primary and memory T cell responses induced by hepatitis C virus multiepitope long peptides. Vaccine 24(16):3153–3164
Article
CAS
PubMed
Google Scholar
Mohabatkar H (2007) Prediction of epitopes and structural properties of Iranian HPV-16 E6 by bioinformatics methods. Asian Pac J Cancer Prev 8(4):602–606
PubMed
Google Scholar
Fung TS, Liu DX (2018) Post-translational modifications of coronavirus proteins: roles and function. Future Virol 13(6):405–430
Article
CAS
PubMed
PubMed Central
Google Scholar
Shajahan A, Supekar NT, Gleinich AS, Azadi P (2020) Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology 30(12):981–988
Article
CAS
PubMed
PubMed Central
Google Scholar
Walls AC, Xiong X, Park Y-J et al (2019) Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176(5):1026–1039
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang S, Tang L, Dai Y et al (2021) Bioinformatic prediction of immunodominant regions in spike protein for early diagnosis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PeerJ 9:e11232
Article
PubMed
PubMed Central
Google Scholar
Zarling AL, Ficarro SB, White FM, Shabanowitz J, Hunt DF, Engelhard VH (2000) Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J Exp Med 192(12):1755–1762
Article
CAS
PubMed
PubMed Central
Google Scholar
Shamriz S, Ofoghi H, Moazami N (2016) Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Comput Biol Med 76:24–29
Article
CAS
PubMed
Google Scholar
Oppenheim JJ, Biragyn A, Kwak LW, Yang D (2003) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62(suppl 2):ii17–ii21
CAS
PubMed
PubMed Central
Google Scholar
Takamatsu N, Watanabe Y, Yanagi H, Meshi T, Shiba T, Okada Y (1990) Production of enkephalin in tobacco protoplasts using tobacco mosaic virus RNA vector. FEBS Lett 269(1):73–76
Article
CAS
PubMed
Google Scholar
Barh D, Barve N, Gupta K et al (2013) Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds. PLoS ONE 8(1):e52773
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59(1):94–102
Article
CAS
PubMed
Google Scholar