Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN et al (2021) Heart disease and stroke statistics—2021 update. Circulation 143(8):e254–e743. https://doi.org/10.1161/CIR.0000000000000950
Article
PubMed
Google Scholar
Madole MB, Bachewar NP, Aiyar CM (2015) Study of oxidants and antioxidants in patients of acute myocardial infarction. Adv Biomed Res 4:241. https://doi.org/10.4103/2277-9175.168608
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Montero J, Brito R, Gajardo AI, Rodrigo R (2018) Myocardial reperfusion injury and oxidative stress: therapeutic opportunities. World J Cardiol 10(9):74–86. https://doi.org/10.4330/wjc.v10.i9.74
Article
PubMed
PubMed Central
Google Scholar
Lin Z, Jiang Y, Yang P, Sun L, Lu D (2020) A frog antioxidant peptide protects against myocardial ischemia reperfusion injury in rats. All Life 13(1):45–53. https://doi.org/10.1080/21553769.2019.1699171
Article
CAS
Google Scholar
Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24(1):9–23. https://doi.org/10.1038/cr.2013.169
Article
CAS
PubMed
Google Scholar
Li Q, Xie J, Li R, Shi J, Sun J, Gu R, Ding L, Wang L, Xu B (2014) Overexpression of MicroRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J Cell Mol Med 18(5):919–928. https://doi.org/10.1111/JCMM.12242
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Qian H-L, Chen S-Y, Huang W-P, Huang D-N, Hao H-Y, Ren K-F, Wang Y-B, Fu G-S, Ji J (2021) MiR-22 eluting cardiovascular stent based on a self-healable spongy coating inhibits in-stent restenosis. Bioact Mater 6(12):4686–4696
Article
CAS
PubMed
PubMed Central
Google Scholar
Cong BH, Zhu XY, Ni X (2017) The roles of microRNA-22 in myocardial infarction. Sheng Li Xue Bao 69(5):571–578
PubMed
Google Scholar
Xiao Y, Zhang Y, Chen Y, Li J, Zhang Z, Sun Y, Shen H, Zhao Z, Huang Z, Zhang W et al (2019) Inhibition of microRNA-9-5p protects against cardiac remodeling following myocardial infarction in mice. Hum Gene Ther 30(3):286–301. https://doi.org/10.1089/HUM.2018.059
Article
CAS
PubMed
Google Scholar
Sciarretta S, De Falco E, Frati G, Sadoshima J (2017) How to be young at heart? MiR-22 as a potential therapeutic target to boost autophagy and protect the old myocardium. Ann Transl Med 1:1
Google Scholar
Wu X, Qin Y, Zhu X, Liu D, Chen F, Xu S, Zheng D, Zhou Y, Luo J (2018) Increased expression of DRAM1 confers myocardial protection against ischemia via restoring autophagy flux. J Mol Cell Cardiol 124:70–82. https://doi.org/10.1016/J.YJMCC.2018.08.018
Article
CAS
PubMed
Google Scholar
Matkovich SJ, Dorn GW (2016) Feed my heart or eat it: MiR-22 decides∗. J Am Coll Cardiol 68(14):1572–1574. https://doi.org/10.1016/J.JACC.2016.07.740
Article
PubMed
Google Scholar
Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, Lv J, Li Y, Yu Y, Bai Y et al (2019) Metformin inhibits the NLRP3 inflammasome via AMPK/MTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci 15(5):1010–1019. https://doi.org/10.7150/IJBS.29680
Article
CAS
PubMed
PubMed Central
Google Scholar
Hesen NA, Riksen NP, Aalders B, Ritskes-Hoitinga M, El Messaoudi S, Wever KE (2017) A systematic review and meta-analysis of the protective effects of metformin in experimental myocardial infarction. PLoS ONE 12(8):e183664. https://doi.org/10.1371/journal.pone.0183664
Article
CAS
Google Scholar
Fei Q, Ma H, Zou J, Wang W, Zhu L, Deng H, Meng M, Tan S, Zhang H, Xiao X et al (2020) Metformin Protects against ischaemic myocardial injury by alleviating autophagy-ROS-NLRP3-mediated inflammatory response in macrophages. J Mol Cell Cardiol 145:1–13
Article
CAS
PubMed
Google Scholar
Ren J, Zhang Y (2018) Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol Sci 39:1064–1076
Article
CAS
PubMed
PubMed Central
Google Scholar
Kowara M, Borodzicz-Jazdzyk S, Rybak K, Kubik M, Cudnoch-Jedrzejewska A (2021) Therapies targeted at non-coding RNAs in prevention and limitation of myocardial infarction and subsequent cardiac remodeling—current experience and perspectives. Int J Mol Sci 22(11):5718. https://doi.org/10.3390/ijms22115718
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo L-L, Guo M, Yao J, Weng Y, Zhang X (2020) MicroRNA-421 improves ischemia/reperfusion injury via regulation toll-like receptor 4 pathway. J Int Med Res 48(3):300060519871863. https://doi.org/10.1177/0300060519871863
Article
CAS
PubMed
Google Scholar
Lu T, Zhu Z, Wu J, She H, Han R, Xu H, Qin Z-H (2019) DRAM1 regulates autophagy and cell proliferation via inhibition of the phosphoinositide 3-kinase-Akt-MTOR-ribosomal protein s6 pathway. Cell Commun Signal 17(1):28. https://doi.org/10.1186/s12964-019-0341-7
Article
PubMed
PubMed Central
Google Scholar
Akkoc Y, Gozuacik D (2020) MicroRNAs as major regulators of the autophagy pathway. Biochim Biophys Acta Mol Cell Res 1867(5):118662. https://doi.org/10.1016/j.bbamcr.2020.118662
Article
CAS
PubMed
Google Scholar
Wu J, Li X, Zhu G, Zhang Y, He M, Zhang J (2016) The role of resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp Cell Res 341:42–53
Article
CAS
PubMed
Google Scholar
Bromage DI, Godec TR, Pujades-Rodriguez M, Gonzalez-Izquierdo A, Denaxas S, Hemingway H, Yellon DM (2019) Metformin use and cardiovascular outcomes after acute myocardial infarction in patients with type 2 diabetes: a cohort study. Cardiovasc Diabetol 18(1):168. https://doi.org/10.1186/s12933-019-0972-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Elmadhun NY, Sabe AA, Lassaletta AD, Chu LM, Sellke FW (2014) Metformin mitigates apoptosis in ischemic myocardium. J Surg Res 192(1):50–58. https://doi.org/10.1016/j.jss.2014.05.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo F, Das A, Chen J, Wu P, Li X, Fang Z (2019) Metformin in patients with and without diabetes: a paradigm shift in cardiovascular disease management. Cardiovasc Diabetol 18(1):54. https://doi.org/10.1186/s12933-019-0860-y
Article
PubMed
PubMed Central
Google Scholar
Basnet S, Kozikowski A, Makaryus AN, Pekmezaris R, Zeltser R, Akerman M, Lesser M, Wolf-Klein G (2015) Metformin and myocardial injury in patients with diabetes and ST-segment elevation myocardial infarction: a propensity score matched analysis. J Am Heart Assoc 4(10):e2314. https://doi.org/10.1161/JAHA.115.002314
Article
CAS
Google Scholar
Calvert JW, Gundewar S, Jha S, Greer JJM, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-ENOS-mediated signaling. Diabetes 57(3):696–705. https://doi.org/10.2337/db07-1098
Article
CAS
PubMed
Google Scholar
Alfaro IE, Albornoz A, Molina A, Moreno J, Cordero K, Criollo A, Budini M (2019) Chaperone mediated autophagy in the crosstalk of neurodegenerative diseases and metabolic disorders. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2018.00778/FULL
Article
Google Scholar
Ren J, Zhang Y (2018) Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol Sci 39(12):1064. https://doi.org/10.1016/J.TIPS.2018.10.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces Cerevisiae. FEBS Lett 581(11):2156–2161. https://doi.org/10.1016/J.FEBSLET.2007.01.096
Article
CAS
PubMed
Google Scholar
Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19(6):349–364. https://doi.org/10.1038/S41580-018-0003-4
Article
CAS
PubMed
Google Scholar
Gatica D, Chiong M, Lavandero S, Klionsky DJ (2015) Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 116(3):456–467. https://doi.org/10.1161/CIRCRESAHA.114.303788
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Malta C, Cinque L, Settembre C (2019) Transcriptional regulation of autophagy: mechanisms and diseases. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2019.00114/BIBTEX
Article
PubMed
PubMed Central
Google Scholar
Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB III (2013) Autophagy: Regulation and role in development. Autophagy 9(7):951–972. https://doi.org/10.4161/auto.24273
Article
CAS
PubMed
PubMed Central
Google Scholar
Marin-Aguilar F, Lechuga-Vieco AV, Alcocer-Gomez E, Castejon-Vega B, Lucas J, Garrido C et al (2020) NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell 19:e13050
Article
CAS
PubMed
Google Scholar
Dai J, Zhang X, Li L, Chen H, Chai Y (2017) Autophagy inhibition contributes to ROS-producing NLRP3-dependent inflammasome activation and cytokine secretion in high glucose-induced macrophages. Cell Physiol Biochem 43:247–256
Article
CAS
PubMed
Google Scholar
Manjithaya R, Nazarko TY, Farré JC, Subramani Suresh S (2010) Molecular mechanism and physiological role of pexophagy. FEBS Lett 584(7):1367–1373. https://doi.org/10.1016/J.FEBSLET.2010.01.019
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y (2018) Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 25(6):1080–1093. https://doi.org/10.1038/s41418-018-0086-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang M, Linn BS, Zhang Y, Ren J (2019) Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 1865(9):2293–2302. https://doi.org/10.1016/j.bbadis.2019.05.007
Article
CAS
PubMed
Google Scholar
Qin C, Gu J, Liu R, Xu F, Qian H, He Q, Meng W (2017) Release of mitochondrial DNA correlates with peak inflammatory cytokines in patients with acute myocardial infarction. Anatol J Cardiol 17(3):224–228. https://doi.org/10.14744/AnatolJCardiol.2016.7209
Article
CAS
PubMed
Google Scholar
Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36(3):401–414. https://doi.org/10.1016/j.immuni.2012.01.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Toldo S, Abbate A (2018) The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol 15:203–214
Article
CAS
PubMed
Google Scholar
Soraya H, Rameshrad M, Mokarizadeh A, Garjani A (2015) Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. BioImpacts 5(1):3–8. https://doi.org/10.15171/bi.2015.02
Article
PubMed
PubMed Central
Google Scholar
Aoki Y, Kanki T, Hirota Y, Kurihara Y, Saigusa T, Uchiumi T, Kang D (2011) Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 22(17):3206–3217. https://doi.org/10.1091/MBC.E11-02-0145
Article
CAS
PubMed
PubMed Central
Google Scholar
Manjithaya R, Jain S, Farré JC, Subramani S (2010) A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 189(2):303–310. https://doi.org/10.1083/JCB.200909154
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan Y, Zeng J, Jin Q, Chu M, Ji K, Wang Z, Li L (2020) Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (review). Exp Ther Med 20(6):1–1. https://doi.org/10.3892/etm.2020.9398
Article
CAS
Google Scholar
Thorp EB (2012) The myocardial unfolded protein response during ischemic cardiovascular disease. Biochem Res Int 2012:1–7. https://doi.org/10.1155/2012/583170
Article
CAS
Google Scholar
Ren J, Bi Y, Sowers JR, Hetz C, Zhang Y (2021) Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 18(7):499–521. https://doi.org/10.1038/s41569-021-00511-w
Article
PubMed
Google Scholar
Marzoog BA, Vlasova TI (2021) Membrane lipids under norm and pathology. Eur J Clin Exp Med 19(1):59–75. https://doi.org/10.15584/ejcem.2021.1.9
Article
Google Scholar
Yan B, Liu S, Li X, Zhong Y, Tong F, Yang S (2019) Preconditioning with endoplasmic reticulum stress alleviated heart ischemia/reperfusion injury via modulating IRE1/ATF6/RACK1/PERK and PGC-1α in diabetes mellitus. Biomed Pharmacother 118:109407. https://doi.org/10.1016/j.biopha.2019.109407
Article
CAS
PubMed
Google Scholar
Yang Y, Wang H, Song N, Jiang Y, Zhang J, Meng X, Feng X, Liu H, Peng K, Ji F (2021) Dexmedetomidine attenuates ischemia/reperfusion-induced myocardial inflammation and apoptosis through inhibiting endoplasmic reticulum stress signaling. J Inflamm Res 14:1217–1233. https://doi.org/10.2147/JIR.S292263
Article
PubMed
PubMed Central
Google Scholar
Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190(6):1005–1022. https://doi.org/10.1083/JCB.200912089
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawamata T, Kamada Y, Kabeya Y, Sekito T, Ohsumi Y (2008) Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19(5):2039–2050. https://doi.org/10.1091/MBC.E07-10-1048
Article
CAS
PubMed
PubMed Central
Google Scholar
Marzoog BA, Vlasova TI (2021) Transcription factors are the heart of heart regeneration; A potential novel therapeutic strategy. Curr Mol Med. https://doi.org/10.2174/1566524021666210712144638
Article
Google Scholar
Kang J, Hu J, Karra R, Dickson AL, Tornini VA, Nachtrab G, Gemberling M, Goldman JA, Black BL, Poss KD (2016) Modulation of tissue repair by regeneration enhancer elements. Nature 532(7598):201–206. https://doi.org/10.1038/NATURE17644
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Q, Pei F, Silverman GA, Pak SC, Perlmutter DH, Liu B, Bahar I (2020) Mechanisms of action of autophagy modulators dissected by quantitative systems pharmacology analysis. Int J Mol Sci 21(8):2855. https://doi.org/10.3390/ijms21082855
Article
CAS
PubMed Central
Google Scholar
Marzoog B (2021) Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev. https://doi.org/10.2174/1573399817666210915101321
Article
Google Scholar
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y et al (2021) Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res 40(1):206. https://doi.org/10.1186/s13046-021-02012-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua J, Liu Z, Liu Z, An D, Lai W, Zhan Q et al (2018) Metformin increases cardiac rupture after myocardial infarction via the AMPK-MTOR/PGC-1alpha signaling pathway in rats with acute myocardial infarction. Med Sci Monit 24:6989–7000
Article
CAS
PubMed
PubMed Central
Google Scholar
Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014) Macrophages are required for neonatal heart regeneration. J Clin Investig 124(3):1382–1392. https://doi.org/10.1172/JCI72181
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Pan SS, Wang QT, Yuan Y (2018) Alterations of cardiac KATP channels and autophagy contribute in the late cardioprotective phase of exercise preconditioning. Int Heart J 59(5):1106–1115. https://doi.org/10.1536/IHJ.17-003
Article
CAS
PubMed
Google Scholar
Füllgrabe J, Klionsky DJ, Joseph B (2014) The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol 15(1):65–74. https://doi.org/10.1038/NRM3716
Article
PubMed
Google Scholar
Gupta SK, Foinquinos A, Thum S, Remke J, Zimmer K, Bauters C, de Groote P, Boon RA, de Windt LJ, Preissl S, Hein L, Batkai S, Pinet F, Thum T (2016) Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction. J Am Coll Cardiol 68(14):1557–1571. https://doi.org/10.1016/j.jacc.2016.07.739
Article
CAS
PubMed
Google Scholar
Chávez MN, Morales RA, López-Crisosto C, Roa JC, Allende ML, Lavandero S (2020) Autophagy activation in zebrafish heart regeneration. Sci Rep 10(1):2191. https://doi.org/10.1038/s41598-020-59106-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorzadeh S, Kohan L, Ghavami S, Azarpira N (2021) Autophagy and the Wnt signaling pathway: a focus on Wnt/β-catenin signaling. Biochim Biophys Acta Mol Cell Res 1868(3):118926. https://doi.org/10.1016/j.bbamcr.2020.118926
Article
CAS
PubMed
Google Scholar
Mukherjee S, Ray D, Lekli I, Bak I, Tosaki A, Das DK (2010) Effects of Longevinex (modified resveratrol) on cardioprotection and its mechanisms of action. Can J Physiol Pharmacol 88(11):1017–1025. https://doi.org/10.1139/Y10-082/ASSET/IMAGES/LARGE/Y10-082F7.JPEG
Article
CAS
PubMed
Google Scholar
Cui L, Zhao L-PP, Ye J-YY, Yang L, Huang YY, Jiang X-PP, Zhang Q, Jia J-ZZ, Zhang D-XX, Huang YY (2020) The lysosomal membrane protein Lamp2 alleviates lysosomal cell death by promoting autophagic flux in ischemic cardiomyocytes. Front Cell Dev Biol 8:31
Article
PubMed
PubMed Central
Google Scholar
Law CY, Siu CW, Fan K, Lai WH, Au KW, Lau YM, Wong LY, Ho JCY, Lee Y, Tse HF et al (2016) Lysosomal membrane permeabilization is involved in oxidative stress-induced apoptotic cell death in LAMP2-deficient IPSCs-derived cerebral cortical neurons. Biochem Biophys Rep 5:335–345. https://doi.org/10.1016/J.BBREP.2016.01.010
Article
PubMed
PubMed Central
Google Scholar
Gómez-Sintes R, Ledesma MD, Boya P (2016) Lysosomal cell death mechanisms in aging. Ageing Res Rev 32:150–168. https://doi.org/10.1016/J.ARR.2016.02.009
Article
PubMed
Google Scholar
Repnik U, Česen MH, Turk B (2016) Measuring cysteine cathepsin activity to detect lysosomal membrane permeabilization. Cold Spring Harb Protoc 2016(5):453–458. https://doi.org/10.1101/PDB.PROT087114
Article
Google Scholar
Rowland TJ, Sweet ME, Mestroni L, Taylor MRG (2016) Danon disease—dysregulation of autophagy in a multisystem disorder with cardiomyopathy. J Cell Sci 129(11):2135–2143. https://doi.org/10.1242/jcs.184770
Article
CAS
PubMed
PubMed Central
Google Scholar
Galati S, Boni C, Gerra MC, Lazzaretti M, Buschini A (2019) Autophagy: a player in response to oxidative stress and DNA damage. Oxid Med Cell Longev 2019(4):1–12. https://doi.org/10.1155/2019/5692958
Article
CAS
Google Scholar