Segal JP, Mak JW, Mullish BH, Alexander JL, Ng SC, Marchesi JR (2020) The gut microbiome: an under-recognized contributor to the COVID-19 pandemic? Ther Adv Gastroenterol 13:1756284820974914. https://doi.org/10.1177/1756284820974914
Article
CAS
Google Scholar
Zeppa SD, Agostini D, Piccoli G, Stocchi V, Sestili P (2020) Gut microbiota status in COVID-19: an unrecognized player? Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.576551
Article
Google Scholar
Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B et al (2020) The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol 10:9. https://doi.org/10.3389/fcimb.2020.00009
Article
CAS
PubMed
PubMed Central
Google Scholar
Vodnar D-C, Mitrea L, Teleky B-E, Szabo K, Călinoiu L-F, Nemeş S-A et al (2020) Coronavirus disease (Covid-19) caused by (sars-cov-2) infections: a real challenge for human gut microbiota. Front Cell Infect Microbiol 10:786. https://doi.org/10.3389/fcimb.2020.575559
Article
Google Scholar
Nicolae C, Dan D, Lavinia S, Ioan L, Călin J, Oana M (2010) Probiotics–identification and ways of actions. Innov Romanian Food Biotechnol 6:1–11
Google Scholar
Hajavi J, Esmaeili SA, Varasteh AR, Vazini H, Atabati H, Mardani F et al (2019) The immunomodulatory role of probiotics in allergy therapy. J Cell Physiol 234(3):2386–2398. https://doi.org/10.1002/jcp.27263
Article
CAS
PubMed
Google Scholar
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R (2020) The COVID-19 cytokine storm; what we know so far. Front Immunol 11:1446. https://doi.org/10.3389/fimmu.2020.01446
Article
CAS
PubMed
PubMed Central
Google Scholar
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Kashani HH (2020) Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 19(1):1–25
Article
Google Scholar
Sundararaman A, Ray M, Ravindra P, Halami PM (2020) Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-020-10832-4
Article
PubMed
PubMed Central
Google Scholar
Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D (2017) Regulation of inflammation by microbiota interactions with the host. Nat Immunol 18(8):851–860. https://doi.org/10.1038/ni.3780
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandenborght L, Enaud R, Coron N, Denning D, Delhaes L (2019) From culturomics to metagenomics: the mycobiome in chronic respiratory diseases. Lung Microbiome. https://doi.org/10.1183/2312508X.10015918
Article
Google Scholar
Han Y, Jia Z, Shi J, Wang W, He K (2020) The active lung microbiota landscape of COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.08.20.20144014
Grier A, McDavid A, Wang B, Qiu X, Java J, Bandyopadhyay S et al (2018) Neonatal gut and respiratory microbiota: coordinated development through time and space. Microbiome 6(1):1–19. https://doi.org/10.1186/s40168-018-0566-5
Article
Google Scholar
Looft T, Allen HK (2012) Collateral effects of antibiotics on mammalian gut microbiomes. Gut microbes 3(5):463–467. https://doi.org/10.4161/gmic.21288
Article
PubMed
PubMed Central
Google Scholar
Barcik W, Boutin RC, Sokolowska M, Finlay BB (2020) The role of lung and gut microbiota in the pathology of asthma. Immunity 52(2):241–255. https://doi.org/10.1016/j.immuni.2020.01.007
Article
CAS
PubMed
PubMed Central
Google Scholar
Gou W, Fu Y, Yue L, Chen G-d, Cai X, Shuai M et al (2020) Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. MedRxiv. https://doi.org/10.1101/2020.04.22.20076091
Li N, Ma W-T, Pang M, Fan Q-L, Hua J-L (2019) The commensal microbiota and viral infection: a comprehensive review. Front Immunol 10:1551. https://doi.org/10.3389/fimmu.2019.01551
Article
CAS
PubMed
PubMed Central
Google Scholar
Botić T, Danø T, Weingartl H, Cencič A (2007) A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int J Food Microbiol 115(2):227–234. https://doi.org/10.1016/j.ijfoodmicro.2006.10.044
Article
CAS
PubMed
Google Scholar
Wang Z, Chai W, Burwinkel M, Twardziok S, Wrede P, Palissa C et al (2013) Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro. PLoS ONE 8(1):e53043. https://doi.org/10.1371/journal.pone.0053043
Article
CAS
PubMed
PubMed Central
Google Scholar
Mastromarino P, Cacciotti F, Masci A, Mosca L (2011) Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: role of cell wall associated components. Anaerobe 17(6):334–336. https://doi.org/10.1016/j.anaerobe.2011.04.022
Article
PubMed
Google Scholar
Tuyama AC, Cheshenko N, Carlucci MJ, Li J-H, Goldberg CL, Waller DP et al (2006) ACIDFORM inactivates herpes simplex virus and prevents genital herpes in a mouse model: optimal candidate for microbicide combinations. J Infect Dis 194(6):795–803. https://doi.org/10.1086/506948
Article
PubMed
Google Scholar
Chen H-W, Liu P-F, Liu Y-T, Kuo S, Zhang X-Q, Schooley RT et al (2016) Nasal commensal Staphylococcus epidermidis counteracts influenza virus. Sci Rep 6(1):1–12. https://doi.org/10.1038/srep27870
Article
CAS
Google Scholar
Sharma RK, Stevens BR, Obukhov AG, Grant MB, Oudit GY, Li Q et al (2020) ACE2 (Angiotensin-Converting Enzyme 2) in cardiopulmonary diseases: ramifications for the control of SARS-CoV-2. Hypertension 76(3):651–661. https://doi.org/10.1161/HYPERTENSIONAHA.120.15595
Article
CAS
PubMed
Google Scholar
Yang T, Chakraborty S, Saha P, Mell B, Cheng X, Yeo J-Y et al (2020) Gnotobiotic rats reveal that gut microbiota regulates colonic mRNA of Ace2, the receptor for SARS-CoV-2 infectivity. Hypertension 76(1):e1–e3. https://doi.org/10.1161/HYPERTENSIONAHA.120.15360
Article
CAS
PubMed
Google Scholar
Cole-Jeffrey CT, Liu M, Katovich MJ, Raizada MK, Shenoy V (2015) ACE2 and microbiota: emerging targets for cardiopulmonary disease therapy. J Cardiovasc Pharmacol 66(6):540. https://doi.org/10.1097/FJC.0000000000000307
Article
CAS
PubMed
PubMed Central
Google Scholar
Koester ST, Li N, Lachance DM, Morella NM, Dey N (2021) Variability in digestive and respiratory tract Ace2 expression is associated with the microbiome. PLoS ONE 16(3):e0248730. https://doi.org/10.1038/nature11228
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M et al (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487(7408):477–81. https://doi.org/10.1038/nature11228
Article
CAS
PubMed
PubMed Central
Google Scholar
Elson CO, Alexander KL (2015) Host-microbiota interactions in the intestine. Dig Dis 33(2):131–136. https://doi.org/10.1159/000369534
Article
PubMed
Google Scholar
Dickson RP, Erb-Downward JR, Falkowski NR, Hunter EM, Ashley SL, Huffnagle GB (2018) The lung microbiota of healthy mice are highly variable, cluster by environment, and reflect variation in baseline lung innate immunity. Am J Respir Crit Care Med 198(4):497–508. https://doi.org/10.1164/rccm.201711-2180OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Skelly AN, Sato Y, Kearney S, Honda K (2019) Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 19(5):305–323. https://doi.org/10.1038/s41577-019-0144-5
Article
CAS
PubMed
Google Scholar
Fulde M, Sommer F, Chassaing B, van Vorst K, Dupont A, Hensel M et al (2018) Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature 560(7719):489–493. https://doi.org/10.1038/s41586-018-0395-5
Article
CAS
PubMed
Google Scholar
Lawley TD, Walker AW (2013) Intestinal colonization resistance. Immunology 138(1):1–11. https://doi.org/10.1111/j.1365-2567.2012.03616.x
Article
CAS
PubMed
Google Scholar
Kho ZY, Lal SK (2018) The human gut microbiome—a potential controller of wellness and disease. Front Microbiol 9:1835. https://doi.org/10.3389/fmicb.2018.01835
Article
PubMed
PubMed Central
Google Scholar
Chen T, Kim CY, Kaur A, Lamothe L, Shaikh M, Keshavarzian A et al (2017) Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food Funct 8(3):1166–1173. https://doi.org/10.1039/c6fo01532h
Article
CAS
PubMed
Google Scholar
Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD et al (2014) Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 20(6):642–647. https://doi.org/10.1038/nm.3568
Article
CAS
PubMed
Google Scholar
Allie SR, Bradley JE, Mudunuru U, Schultz MD, Graf BA, Lund FE et al (2019) The establishment of resident memory B cells in the lung requires local antigen encounter. Nat Immunol 20(1):97–108. https://doi.org/10.1038/s41590-018-0260-6
Article
CAS
PubMed
Google Scholar
Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M et al (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13(5):440–447. https://doi.org/10.1038/embor.2012.32
Article
CAS
PubMed
PubMed Central
Google Scholar
McAleer JP, Kolls JK (2018) Contributions of the intestinal microbiome in lung immunity. Eur J Immunol 48(1):39–49. https://doi.org/10.1002/eji.201646721
Article
CAS
PubMed
Google Scholar
Anand S, Mande SS (2018) Diet, microbiota and gut-lung connection. Front Microbiol 9:2147. https://doi.org/10.3389/fmicb.2018.02147
Article
PubMed
PubMed Central
Google Scholar
Cait A, Hughes M, Antignano F, Cait J, Dimitriu P, Maas K et al (2018) Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 11(3):785–795. https://doi.org/10.1038/mi.2017.75
Article
CAS
PubMed
Google Scholar
Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166. https://doi.org/10.1038/nm.3444
Article
CAS
PubMed
Google Scholar
Yin Y, Wang Y, Zhu L, Liu W, Liao N, Jiang M et al (2013) Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J 7(3):615–621. https://doi.org/10.1038/ismej.2012.128
Article
CAS
PubMed
Google Scholar
Pruitt RN, Chumbler NM, Rutherford SA, Farrow MA, Friedman DB, Spiller B et al (2012) Structural determinants of Clostridium difficile toxin A glucosyltransferase activity. J Biol Chem 287(11):8013–8020. https://doi.org/10.1074/jbc.M111.298414
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A et al (2015) Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149(1):223–237. https://doi.org/10.1053/j.gastro.2015.05.008
Article
PubMed
Google Scholar
Papanicolas LE, Choo JM, Wang Y, Leong LE, Costello SP, Gordon DL et al (2019) Bacterial viability in faecal transplants: which bacteria survive? EBioMedicine 41:509–516. https://doi.org/10.1016/j.ebiom.2019.02.023
Article
PubMed
PubMed Central
Google Scholar
Chehoud C, Dryga A, Hwang Y, Nagy-Szakal D, Hollister EB, Luna RA et al (2016) Transfer of viral communities between human individuals during fecal microbiota transplantation. MBio 7(2):e00322-e416. https://doi.org/10.1128/mBio.00322-16
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayasinghe TN, Chiavaroli V, Holland DJ, Cutfield WS, O’Sullivan JM (2016) The new era of treatment for obesity and metabolic disorders: evidence and expectations for gut microbiome transplantation. Front Cell Infect Microbiol 6:15. https://doi.org/10.3389/fcimb.2016.00015
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ et al (2017) Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66(6):1727–1738. https://doi.org/10.1002/hep.29306
Article
CAS
PubMed
Google Scholar
Le Bastard Q, Ward T, Sidiropoulos D, Hillmann BM, Chun CL, Sadowsky MJ et al (2018) Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep 8(1):1–11. https://doi.org/10.1038/s41598-018-24342-x
Article
CAS
Google Scholar
Gupta S, Allen-Vercoe E, Petrof E (2016) Fecal microbiota transplantation: in perspective. Ther Adv Gastroenterol 9:229–239. https://doi.org/10.1177/1756283X15607414
Article
Google Scholar
Kullar R, Johnson S, McFarland LV, Goldstein EJ (2021) Potential roles for probiotics in the treatment of COVID-19 patients and prevention of complications associated with increased antibiotic use. Antibiotics 10(4):408. https://doi.org/10.3390/antibiotics10040408
Article
CAS
PubMed
PubMed Central
Google Scholar
Nair A, Chattopadhyay D, Saha B (2019) Plant-derived immunomodulators. New look to phytomedicine. Elsevier, Amsterdam, pp 435–499
Google Scholar
Foligné B, Dewulf J, Breton J, Claisse O, Lonvaud-Funel A, Pot B (2010) Probiotic properties of non-conventional lactic acid bacteria: immunomodulation by Oenococcus oeni. Int J Food Microbiol 140(2–3):136–145. https://doi.org/10.1016/j.ijfoodmicro.2010.04.007
Article
CAS
PubMed
Google Scholar
Zhang Z, Lv J, Pan L, Zhang Y (2018) Roles and applications of probiotic Lactobacillus strains. Appl Microbiol Biotechnol 102(19):8135–8143. https://doi.org/10.1007/s00253-018-9217-9
Article
CAS
PubMed
Google Scholar
de Roock S, van Elk M, Hoekstra MO, Prakken BJ, Rijkers GT, de Kleer IM (2011) Gut derived lactic acid bacteria induce strain specific CD4+ T cell responses in human PBMC. Clin Nutr 30(6):845–851. https://doi.org/10.1016/j.clnu.2011.05.005
Article
CAS
PubMed
Google Scholar
Fu L, Song J, Wang C, Fu S, Wang Y (2017) Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic cell-dependent induction of regulatory T cells and alterations in gut microbiota. Front Immunol 8:1536. https://doi.org/10.3389/fimmu.2017.01536
Article
CAS
PubMed
PubMed Central
Google Scholar
Balzaretti S, Taverniti V, Guglielmetti S, Fiore W, Minuzzo M, Ngo HN et al (2017) A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl Environ Microbiol 83(3):e02702-e2716. https://doi.org/10.1128/AEM.02702-16
Article
PubMed
PubMed Central
Google Scholar
Olaimat AN, Aolymat I, Al-Holy M, Ayyash M, Ghoush MA, Al-Nabulsi AA et al (2020) The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. NPJ Sci Food 4(1):1–7. https://doi.org/10.1038/s41538-020-00078-9
Article
Google Scholar
Chang TL-Y, Chang C-H, Simpson DA, Xu Q, Martin PK, Lagenaur LA et al (2003) Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4. Proc Natl Acad Sci 100(20):11672–7. https://doi.org/10.1073/pnas.1934747100
Article
CAS
PubMed
PubMed Central
Google Scholar
Olaya Galán N, Ulloa Rubiano J, Velez Reyes F, Fernandez Duarte K, Salas Cardenas S, Gutierrez FM (2016) In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP 4 protein production. J Appl Microbiol 120(4):1041–1051. https://doi.org/10.1111/jam.13069
Article
CAS
PubMed
Google Scholar
Ang LYE, Too HKI, Tan EL, Chow T-KV, Shek P-CL, Tham E et al (2016) Antiviral activity of Lactobacillus reuteri protectis against Coxsackievirus A and Enterovirus 71 infection in human skeletal muscle and colon cell lines. Virol J. 13(1):1–12. https://doi.org/10.1186/s12985-016-0567-6
Article
CAS
Google Scholar
Khani S, Motamedifar M, Golmoghaddam H, Hosseini HM, Hashemizadeh Z (2012) In vitro study of the effect of a probiotic bacterium Lactobacillus rhamnosus against herpes simplex virus type 1. Braz J Infect Dis 16(2):129–135. https://doi.org/10.1590/S1413-86702012000200004
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim K, Lee G, Thanh HD, Kim J-H, Konkit M, Yoon S et al (2018) Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. J Dairy Sci 101(7):5702–5712. https://doi.org/10.3168/jds.2017-14151
Article
CAS
PubMed
Google Scholar
Yang Y, Song H, Wang L, Dong W, Yang Z, Yuan P et al (2017) Antiviral effects of a probiotic metabolic products against transmissible gastroenteritis coronavirus. J Prob Health 5(3):1–6
Article
Google Scholar
Khan R, Petersen FC, Shekhar S (2019) Commensal bacteria: an emerging player in defense against respiratory pathogens. Front Immunol 10:1203. https://doi.org/10.3389/fimmu.2019.01203
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh K, Rao A (2021) Probiotics: a potential immunomodulator in COVID-19 infection management. Nutr Res 87:1–12. https://doi.org/10.1016/j.nutres.2020.12.014
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS et al (2020) Extrapulmonary manifestations of COVID-19. Nat Med 26(7):1017–1032. https://doi.org/10.1038/s41591-020-0968-3
Article
CAS
PubMed
Google Scholar
Anwar F, Altayb HN, Al-Abbasi FA, Al-Malki AL, Kamal MA, Kumar V (2020) Antiviral effects of probiotic metabolites on COVID-19. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1775123
Article
PubMed
PubMed Central
Google Scholar
Kanmani P, Satish Kumar R, Yuvaraj N, Paari K, Pattukumar V, Arul V (2013) Probiotics and its functionally valuable products—a review. Crit Rev Food Sci Nutr 53(6):641–658. https://doi.org/10.1080/10408398.2011.553752
Article
CAS
PubMed
Google Scholar
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H et al (2020) Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fuaa039
Article
PubMed Central
Google Scholar
Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22(8):1255. https://doi.org/10.3390/molecules22081255
Article
CAS
PubMed Central
Google Scholar
Wu M-H, Pan T-M, Wu Y-J, Chang S-J, Chang M-S, Hu C-Y (2010) Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A. 1 macrophages) and antimicrobial properties. Int J Food Microbiol 144(1):104–10. https://doi.org/10.1016/j.ijfoodmicro.2010.09.003
Article
CAS
PubMed
Google Scholar
Trabelsi I, Ktari N, Slima SB, Triki M, Bardaa S, Mnif H et al (2017) Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. Int J Biol Macromol. 103:194–201. https://doi.org/10.1016/j.ijbiomac.2017.05.017
Article
CAS
PubMed
Google Scholar
Ayyash M, Abu-Jdayil B, Itsaranuwat P, Galiwango E, Tamiello-Rosa C, Abdullah H et al (2020) Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. Int J Biol Macromol 144:938–946. https://doi.org/10.1016/j.ijbiomac.2019.09.171
Article
CAS
PubMed
Google Scholar
Rajoka MSR, Jin M, Haobin Z, Li Q, Shao D, Jiang C et al (2018) Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. Lwt 89:638–647. https://doi.org/10.1016/j.lwt.2017.11.034
Article
CAS
Google Scholar
Rani RP, Anandharaj M, Ravindran AD (2018) Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. Int J Biol Macromol 109:772–783. https://doi.org/10.1016/j.ijbiomac.2017.11.062
Article
CAS
PubMed
Google Scholar
Angelin J, Kavitha M (2020) Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 162:853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.1907
Article
CAS
PubMed
PubMed Central
Google Scholar
Angurana SK, Bansal A (2020) Probiotics and COVID-19: think about the link. Br J Nutr. https://doi.org/10.1017/S000711452000361X
Article
PubMed
PubMed Central
Google Scholar
Dhar D, Mohanty A (2020) Gut microbiota and Covid-19-possible link and implications. Virus Res. https://doi.org/10.1016/j.virusres.2020.198018
Article
PubMed
PubMed Central
Google Scholar
Gogineni VK, Morrow LE, Malesker MA (2013) Probiotics: mechanisms of action and clinical applications. J Prob Health 1(101):2. https://doi.org/10.1039/C8FO00376A
Article
Google Scholar
Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x
Article
CAS
PubMed
Google Scholar
Fedorak RN, Madsen KL (2004) Probiotics and the management of inflammatory bowel disease. Inflamm Bowel Dis 10(3):286–299. https://doi.org/10.1097/00054725-200405000-00018
Article
PubMed
Google Scholar
Amer M, Nadeem M, Nazir R, Ur S, Fakhar M, Abid F, Ain QU (2018) Probiotics and their use in inflammatory bowel disease. Altern Ther Health Med 24(3).
Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S et al (2020) Management of corona virus disease-19 (COVID-19): the Zhejiang experience. J Zhejiang Univ (Med Sci). https://doi.org/10.3785/j.issn.1008-9292.2020.02.02
Article
Google Scholar