Ray A, Vasudevan S, Sengupta S (2015) 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of Notch signaling pathway and induction of autophagic cell death. PLoS ONE 10(9):e0137614
Article
PubMed
PubMed Central
Google Scholar
Weng CJ, Wu CF, Huang HW, Ho CT, Yen GC (2010) Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol Nutr Food Res 54(11):1618–1627
Article
CAS
PubMed
Google Scholar
Kou X, Wang X, Ji R, Liu L, Qiao Y, Lou Z et al (2018) Occurrence, biological activity and metabolism of 6-shogaol. Food Funct 9(3):1310–1327
Article
CAS
PubMed
Google Scholar
Ling H, Yang H, Tan SH, Chui WK, Chew EH (2010) 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation. Br J Pharmacol 161(8):1763–1777
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan MH, Hsieh MC, Kuo JM, Lai CS, Wu H, Sang S et al (2008) 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol Nutr Food Res 52(5):527–537
Article
CAS
PubMed
Google Scholar
Lechner JF, Stoner GD (2019) Gingers and their purified components as cancer chemopreventative agents. Molecules 24(16):2859
Article
CAS
PubMed Central
Google Scholar
Gan H, Zhang Y, Zhou Q, Zheng L, Xie X, Veeraraghavan VP et al (2019) Zingerone induced caspase-dependent apoptosis in MCF-7 cells and prevents 7, 12-dimethylbenz (a) anthracene-induced mammary carcinogenesis in experimental rats. J Biochem Mol Toxicol 33(10):e22387
Article
CAS
PubMed
Google Scholar
Zhao Q, Zhang J-L, Li F (2018) Application of metabolomics in the study of natural products. Nat Prod Bioprospect 8(4):321–334
Article
PubMed
PubMed Central
Google Scholar
Sanni DM, Fatoki TH (2017) Computational evaluation of pharmacokinetics and potential protein targets of ginger (Zingiber officinale). J Microbiol Biotechnol Res 7(1):14–17
Article
CAS
Google Scholar
Chang T-T, Chen K-C, Chang K-W, Chen H-Y, Tsai F-J, Sun M-F et al (2011) In silico pharmacology suggests ginger extracts may reduce stroke risks. Mol Biosyst 7(9):2702–2710
Article
CAS
PubMed
Google Scholar
Carvalho B (2015) pd.hugene.1.0.st.v1: Platform Design Info for Affymetrix HuGene-1_0-st-v1. R package
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57
Article
CAS
Google Scholar
da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13
Article
Google Scholar
Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. NAR 47(W1):W234–W241
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia J, Gill EE, Hancock REW (2015) NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10(6):823–844
Article
CAS
PubMed
Google Scholar
Akhmedov M, Kedaigle A, Chong RE, Montemanni R, Bertoni F, Fraenkel E et al (2017) PCSF: An R-package for network-based interpretation of high-throughput data. PLoS Comput Biol 13(7):e1005694
Article
PubMed
PubMed Central
Google Scholar
Lánczky A, Győrffy B (2021) Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J Med Internet Res 23(7):e27633
Article
PubMed
PubMed Central
Google Scholar
Deng M, Brägelmann J, Kryukov I, Saraiva-Agostinho N, Perner S (2017) FirebrowseR: an R client to the Broad Institute's Firehose Pipeline. Database (Oxford) 2017.
Wu C-H, Hong B-H, Ho C-T, Yen G-C (2015) Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. J Agric Food Chem 63(9):2432–2441
Article
CAS
PubMed
Google Scholar
Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR et al (2018) Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med 16(1):242
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Lu X, Shi P, Yang G, Zhou Z, Li W et al (2020) TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Sci Rep 10(1):1804
Article
CAS
PubMed
PubMed Central
Google Scholar
Burow ME, Weldon CB, Tang Y, Navar GL, Krajewski S, Reed JC et al (1998) Differences in susceptibility to tumor necrosis factor α-induced apoptosis among MCF-7 breast cancer cell variants. Cancer Res 58(21):4940–4946
CAS
PubMed
Google Scholar
Denard B, Jiang S, Peng Y, Ye J (2018) CREB3L1 as a potential biomarker predicting response of triple negative breast cancer to doxorubicin-based chemotherapy. BMC Cancer 18(1):813
Article
PubMed
PubMed Central
Google Scholar
Ward AK, Mellor P, Smith SE, Kendall S, Just NA, Vizeacoumar FS et al (2016) Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers. Breast Cancer Res 18(1):12
Article
PubMed
PubMed Central
Google Scholar
Wang H, Lu C, Li Q, Xie J, Chen T, Tan Y et al (2014) The role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells. Mol Cells 37(11):812
Article
PubMed
PubMed Central
Google Scholar
Gabrovska PN (2012) Gene Expression Analysis in Human Breast Cancer: Griffith University
Zhang H, Yang K, Ren T, Huang Y, Tang X, Guo W (2018) miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis 9(6):680
Article
PubMed
PubMed Central
Google Scholar
Qu Y, Liu H, Lv X, Liu Y, Wang X, Zhang M et al (2017) MicroRNA-16-5p overexpression suppresses proliferation and invasion as well as triggers apoptosis by targeting VEGFA expression in breast carcinoma. Oncotarget 8(42):72400
Article
PubMed
PubMed Central
Google Scholar
Ruan L, Qian X (2019) MiR-16–5p inhibits breast cancer by reducing AKT3 to restrain NF-κB pathway. Biosci Rep 39(8).
Wang Y, Chen L, Wu Z, Wang M, Jin F, Wang N et al (2016) miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer 16(1):826
Article
PubMed
PubMed Central
Google Scholar
Liu F, Hu H, Zhao J, Zhang Z, Ai X, Tang L et al (2018) miR-124-3p acts as a potential marker and suppresses tumor growth in gastric cancer. Biomed Rep 9(2):147–155
CAS
PubMed
PubMed Central
Google Scholar
Makari-Judson G, Braun B, Jerry DJ, Mertens WC (2014) Weight gain following breast cancer diagnosis: implication and proposed mechanisms. World J Clin Oncol 5(3):272
Article
PubMed
PubMed Central
Google Scholar
Vance V, Mourtzakis M, McCargar L, Hanning R (2011) Weight gain in breast cancer survivors: prevalence, pattern and health consequences. Obes Rev 12(4):282–294
Article
CAS
PubMed
Google Scholar
Luh S-p, Kuo C, Tsao TC-y (2008) Breast metastasis from small cell lung carcinoma. J Zhejiang Univ Sci B 9(1):39–43
Article
PubMed
PubMed Central
Google Scholar
Raber B, Dao T, Howard E, Bredeweg A (2017) Primary small-cell carcinoma of the breast. Proc (Bayl Univ Med Cent) 30(2):200–202
Google Scholar
Petreni A, Bonardi A, Lomelino C, Osman SM, AL Othman ZA, Eldehna WM et al (2020) Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase IX and XII inhibitors produced a targeted action against MDA-MB-231 and T47D breast cancer cells. Eur J Med Chem 190:112112
Article
CAS
PubMed
Google Scholar
Singh J, Singh R, Gupta P, Rai S, Ganesher A, Badrinarayan P et al (2017) Targeting progesterone metabolism in breast cancer with L-proline derived new 14-azasteroids. Biorg Med Chem 25(16):4452–4463
Article
CAS
Google Scholar
Jiang K, He B, Lai L, Chen Q, Liu Y, Guo Q et al (2012) Cyclosporine A inhibits breast cancer cell growth by downregulating the expression of pyruvate kinase subtype M2. Int J Mol Med 30(2):302–308
Article
CAS
PubMed
Google Scholar