Southern India is one of the oldest geophysical regions of the world [18]. The majority of the people of southern India speak languages belonging to the Dravidian language family. The original name for the Dravidian family was ‘Tamulic’, but the term ‘Dravidian’ was substituted by Bishop Caldwell, in order that the designation ‘Tamil’ might be reserved for the language of that name [19]. Studies on HLA polymorphism allow the delineation of their origin, geographic distribution patterns of these gene variants (alleles) and phylogenetic relatedness with world populations. In this study, the immunogenetic polymorphism of HLA-A/-B/-C/-DRB1*/-DQB1* alleles were genotyped by PCR using sequence specific primers (SSP). The present study on Kallars of Thanjavur, Piramalai Kallar and Vanniyar populations, three ancient and sympatrically isolated endogamous caste groups of Tamil Nadu, have revealed their unique HLA-DRB1/DQB1 allele and haplotype profiles.
The HLA class II alleles DRB1*04, DRB1*07, DRB1*10, DRB1*12, DRB1*14 and DRB1*15, were found with higher frequencies in study populations of south India. However, these alleles were completely absent in some ethnic populations: such as the allele DRB1*04, was completely absent in Berber and Guanche; allele DRB1*07, was completely absent in Australian Aborigine, Melanesian, Micronesian and Polynesian populations; allele DRB1*10, was completely absent in Amerindian, Australian Aborigine, Berber, Caucasoid, Guanche, Hispanic, Jew, Kurd, Melanesian, Mestizo, Micronesian, Mulatto, Oriental, Persian and Siberian; allele DRB1*12, was completely absent in Amerindian, Arab, Berber, Guanche, Hispanic, Jew, Kurd, Mestizo, Mulatto and Persian and allele DRB1*15 was completely absent in Guanche and Mulatto populations [20].
The alleles DQB1*05, DQB1*06, DQB1*02 and DQB1*03:02 were identified with higher frequencies in all the three study populations. Further, the two-locus haplotypes such as DRB1*15-DQB1*06, DRB1*07-DQB1*02, DRB1*15-DQB1*05, DRB1*10-DQB1*05, DRB1*12-DQB1*05, DRB1*10-DQB1*06 and DRB1*04-DQB1*05 were present in significant frequencies. The predominant extended haplotypes (more than 10 nos in all the 3 populations combined together) were: A*24-B*35-C*04-DRB1*15-DQB1*06 (n, 18), A*03-B*07-C*07-DRB1*15-DQB1*06 (n, 17), A*11-B*35-C*12-DRB1*07-DQB1*02 (n, 16), A*03-B*40-C*04-DRB1*15-DQB1*06 (n, 16), A*03-B*35-C*04-DRB1*15-DQB1*06 (n, 15), A*24-B*35-C*07-DRB1*15-DQB1*06 (n, 14), A*03-B*35-C*12-DRB1*07-DQB1*02 (n, 11), A*24-B*35-C*12-DRB1*15-DQB1*06 (n, 10) and A*11-B*07-C*07-DRB1*15-DQB1*06 (n, 10). Thus, the presence of HLA-DRB1*/DQB1* alleles, two-locus and 5-locus extended haplotypes, are evolutionarily conserved for long periods of time in South India. These observations throw interesting insights in the understanding of mosaic immunogenetic architecture in the context of health and disease in this ancient geo-physical region.
However, AEH represented less than 10 includes 12 numbers in Kallars of Thanjavur, 4 numbers in Piramalai Kallar and 2 in Vanniyar (Table 4). Thus, the number of AEH is more in Kallars of Thanjavur than Piramalai Kallar and Vanniyar: this could be attributed to a number of socio-political and biological attributes. The Kallars of Thajavur were strategically located in a region of rich agricultural practice in the fertile plains of river Cauvery river water-fed area bordered on its eastern side by the Bay of Bengal coastal region. This region is more prone for biological / genetic amalgamation from outsiders, new immigrants into their region through coastal routes and also from plains of all direction (due to its fertile agriculture) that resulted in population admixture and genetic amalgamation. Also, Kallars of Thanjavur are less rigid in terms of their mate selection by having more number of marital clans (1300 clans), whereas the other two populations (Piramalai Kallar and Vanniyar) were relatively more rigid for genetic amalgamation (including miscegenation by socio-biological amalgamation) by way of mate selection outside their group. Also, the marital clans in these later groups are comparatively less than the former.
The alleles DRB1*01, DRB1*08, DRB1*09, DRB1*11 and DRB1*16, were found in low frequency in all the three study populations. Interestingly, these alleles have been reported with higher frequencies in different ethnic populations. The allele DRB1*01, was highly frequent in Berber (25.0%), Mulatto (25.0%), Caucasoid (23.45%), Persian (10.0%), Jew (10.0%) and Mestizo (9.37). The allele DRB1*08 showed higher frequencies in Polynesian (33.33%), Amerindian (32.81%), Melanesian (30.0%), Mestizo (25.0%), Micronesian (25.0%), Hispanic (18.75%), Siberian (11.36%) and Oriental (11.35) populations. Allele DRB1*09 showed higher frequencies in Oriental (30.85%), Siberian (27.27%) and Polynesian (26.66%) populations. The allele DRB1*11 showed higher frequencies in Kurd (50%), Persian (40.0%), Jew (35.0%), Polynesian (26.66%), Arab (25.61%), Berber (25.0%), Caucasoid (25.0%), Mulatto (25.0%), Black (23.33%), Melanesian (12.0%) and Siberian (11.36%) populations. However, the allele DRB1*16 was highly frequent in Melanesian (28.0%) and Amerindian (19.53%) populations [20].
We have analyzed and compared the DRB1* allele frequency results of 3 endogamous groups with 19 ethnic populations using neighbor-joining (NJ) method and Principal Component Analysis (PCA) (Figs. 1 and 2). The dendrogram analysis based on HLA-DRB1 profile, showed a unique genetic architecture of the south Indian study populations. These three populations groups have been connected to both N4 (Micronesian, Australian Aborigine and Austronesian) and N5 (Melanesian) nodes in one side, and joined with Polynesian cluster on the other side. The Australian continent holds some of the earliest archaeological evidence for the expansion of modern humans out of Africa, with the initial occupation ~ 40,000 years ago [21]. Austronesian are populations living mainly on islands in the north and east of New Guinea and coastal patches, and also in places as far away as Taiwan, Easter Islands, New Zealand and Madagascar, and in many densely populated areas such as Malaysia, Indonesia and the Philippines [22]. The origins of the Polynesians remain an enigma. Linguistic reconstructions of proto-Austronesian languages suggest a shared origin for Polynesians. Micronesians are from northern Borneo and Sulawesi [23] and Melanesians are from the Papua New Guinean coast (Madang), islands (Rabaul) and highlands (Goroka), and from New Caledonia and Fiji [24]. We recently reported that the phylogenetic affinities of South Indian populations with the South East Asia, most particularly with Austronesians possibly by forward migration of Indian population into South East Asia [2]. Perhaps, it was established that, the ancestral population from Africa left a genetic trail in Indian sub-continent en route Australia, in the distant past.
The Mediterranean populations are divided from N1 node and form a different branch and clustered with Black. We have reported earlier that the Mukkuvar of Tamil Nadu (predominantly the eastern coastal inhabitants of South India) and Hispanic and Guanche populations share a very similar HLA genetic pool not withstanding with the fact of their distant geographic inhabitation [2]. The Guanches confirmed a North African origin and that they were genetically most similar to modern North African Berber people of the nearby North African mainland [25]. Some Guanches were known to be agriculturists and fish hunting communities in Spain. The Mukkuvar of south India were primarily fishers of east coast region of the country. These published evidences corroborate the HLA genetic affinities of Guanche, North African and South Indian Population.
The extended haplotype (EH), A*03-B*35-C*12-DRB1*07-DQB1*02 showed a higher frequency in the Kallars of Thanjavur (HF:0.1041) and Piramalai Kallar (HF:0.1000). Interestingly, this extended haplotype was not reported in any of the world population so far. However, A*24-B*35-C*04- DRB1*15-DQB1*06 haplotype observed in Kallars of Thanjavur (HF:0.1600) and Piramalai Kallar (HF:0.1166), already reported in Asian, Hispanic and Caucasoid populations (Table 4). Similarly, a number of other extended haplotypes observed in the present study with different HLA-A/-B/-C alleles were reported in various ethnic populations: A*11-B*35-C*04-DRB1*07-DQB1*02 in Asian, Hispanic and Caucasoid, A*11-B*35-C*12- DRB1*07-DQB1*02 in Caucasoid, A*24-B*35-C*12-DRB1*15-DQB1*06 in Asian and Hispanic, A*03-B*07-C*07-DRB1*15-DQB1*06 in Asian, Hispanic and Caucasoid and A*03-B*35-C*04-DRB1*15-DQB1*06 Hispanic and Balck. Similarly, A*24-B*35-C*07-DRB1*15-DQB1*06 haplotype was observed in Kallars of Thanjavur (HF-0.1800) (Table 4). Such a complicated patterns of presence of different extended haplotypes in South India, compared to extended haplotypes from global populations throws interesting insights on the population dynamics and turn-over ostensibly influenced by frequent migrations and invasions during pre-historic and historic times.
A substantial amount of research has been conducted on the association of HLA polymorphisms with TB in different populations. HLA-DR2 is most consistently associated with TB in a diverse ethnic populations, including south Indian population [26, 27], Polish [28], Thai [29], Indonesian and Russian [30]. Inter-population variations in HLA-TB associations have been established. DR14 was found at a significantly higher frequency among Iranian TB patients than controls [31]. HLA-DQB1*05:03 was found to influence TB progression in the Cambodian population [32], and DQB1*06:01 was associated with TB susceptibility in the South Indian, Thai and Uganda populations [26, 29, 33]. These alleles are very common in South Indian Population. Such an analysis for other highly frequent HLA alleles and haplotypes of south Indian population is worth exploring further.
The current level of diversity and the variation observed in allelic distributions for different populations could probably result from evolutionary forces that have changed as human populations have encountered new environments in their spread around the globe [34]. Maintenance of high levels of MHC polymorphism is crucial to counteract novel pathogenic challenges and to ensure long-term survival of organisms. Further, HLA alleles found in tropical countries tend to vary a lot from those in temperate parts of the globe, because the pathogens found there are different and highly divergent.