Skip to main content

Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis

Abstract

Background

Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.

Methods

Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.

Results

A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.

Conclusions

This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.

Background

Endometriosis is one of the most important chronic inflammatory diseases and has become the key cause of serious reproductive and general health condition [1]. Endometriosis is characterized by the presence of endometrial-type mucosa outside the uterine cavity [2]. The outbreak of their first period occurs through menopause, disregarding of ethnic origin or social status [2]. The clinical incidence of endometriosis is high, and its main features include dysmenorrhea, dyspareunia, chronic pelvic pain, irregular uterine bleeding and infertility [3], which places a great burden on the economy of health and reduces quality of life in worldwide; 10% of women of reproductive age are diagnosed with endometriosis each year [4]. These patients might have various complications including gynecological cancer (ovarian, endometrial and cervical cancers) [5], polycystic ovary syndrome [6], cardiovascular diseases [7], obesity [8], gestational diabetes mellitus [9], diabetes mellitus [10] and hypertension [11]. Endometriosis is recognized to be vulnerable on sex hormone estrogen, which rise the inflammation, growth and pain linked with the disease [6]. Studies have revealed that the progression of endometriosis is related to genetic risk factors [12] as well as environmental factors [13]. Because of this disorder complex pathogenesis, it is mainly treated by gynecological surgery [14], oral contraceptives [15], progestins [16], nonsteroidal anti-inflammatory drugs [17] and gonadotropin-releasing hormone agonists [18]. But these treatments have not been effective for longer period. Therefore, it is urgent to find specific molecular biomarkers for early assessment of the prognosis of patients with endometriosis, so as to further advancing the treatment and prognosis of patients. In current years, molecular biomarkers were demonstrated highly useful as clinical tools for endometriosis diagnosis and treatment [19].

The underlying complex molecular mechanisms in endometriosis pose a special challenge to daily clinical practice. Studies have found that genes including cyr61 [20], esr2 and cyp19a1 [21], hoxa10 [22], foxd3 [23], loxl1 and htra1 [24] can be used as an important marker for early diagnosis, prognosis and treatment of endometriosis. Studies have shown that signaling pathways including AKT and ERK signaling pathways [25], Wnt/β-catenin signaling pathway [26], PI3K-Akt-mTOR and MAPK signaling pathways [27], notch signaling pathway [28] and MAPK/ERK signal pathway [29] are involved in the progression of endometriosis. Taken together, current evidence suggests that the genes and signaling pathways are closely related to the progression of endometriosis.

The mechanisms of endometriosis at the molecular level are essentially for treating the disease. With the wide application of next-generation sequencing (NGS) technology, endometriosis-related genes have been widely identified, which is a key step in exploring the complex pathology of endometriosis and finding drugs that combat the illness. Numerous NGS data of gene expression have been published in public databases such as NCBI Gene Expression Omnibus (GEO) [https://www.ncbi.nlm.nih.gov/geo/] [30] during the past few years, and they are being increasingly used in bioinformatics and NGS data analysis to explore target genes or proteins associated in various diseases [31, 32].

Bioinformatics and network analysis of NGS data are an effective way to explore biomarkers in the pathogenesis of various diseases. Therefore, this investigation aimed to use bioinformatics analysis to identify hub genes and molecular pathways involved in endometriosis, to identify key diagnostic or therapeutic biomarkers. We obtained DEGs between endometriosis and normal control samples from GSE243039, a gene expression profile downloaded from the GEO database. Immediately after, we performed gene ontology (GO) and REACTOME pathway enrichment analysis on these DEGs. By constructing PPI networks, we screened for the significant modules and hub genes. We constructed miRNA-hub gene regulatory network and TF-hub gene regulatory network, and we screened for the miRNAs, TFs and hub genes. To validate that these hub genes can serve as molecular markers of endometriosis, we determined hub genes by using receiver operating characteristic curve (ROC) analysis. This investigation might offer better insight into potential molecular mechanisms to explore preventive and therapeutic strategies for endometriosis.

Methods

Next-generation sequencing (NGS) data source

The NGS dataset GSE243039 was obtained from the GEO database (Accession Date: 11/09/2023). The GSE243039 dataset included 20 endometriosis samples and 20 normal control samples. The platform used was the GPL24676 Illumina NovaSeq 6000 (Homo sapiens).

Identification of DEGs

The limma R/Bioconductor software package [33] was used to perform the identification of DEGs between endometriosis samples and normal control samples. We adjusted p-value to correct the false positive error caused by the multiple tests and determined it by the Benjamini and Hochberg method [34], which is the common tools to minimize the false discovery rate. The cutoff criteria were |logFC|> 1.304 (log2 fold change) for upregulated genes, |logFC|> 1.304 (log2 fold change) < − 1.2644 for downregulated genes and a adj.P.Val < 0.05. Thereafter, we used R packages “ggplot2” and “gplot” to show the DEGs with upregulated and downregulated expression in volcano plot and heatmap, respectively.

GO and pathway enrichment analyses of DEGs

GO enrichment analysis (http://www.geneontology.org) [35] (Accession Date: 26/02/2024) was frequently used to annotate the degree of gene function terms in DEGs, which included biological process (BP), cellular component (CC) and molecular function (MF). REACTOME (https://reactome.org/) (Accession Date: 26/02/2024) [36] pathway enrichment analysis was used to demonstrate enriched signaling pathways in DEGs. The g:Profiler (http://biit.cs.ut.ee/gprofiler/) (Accession Date: 26/02/2024) [37] was used to perform GO and REACTOME pathway enrichment analysis of DEGs. P < 0.05 was considered to represent statistical significance.

Construction of the PPI network and module analysis

To ensure the optimal graphical display of protein interactions of DEGs, Human Integrated Protein–Protein Interaction rEference (HIPIE) (https://cn.string-db.org/) [38] (Accession Date: 23/02/2024) was used to generate the PPI network. The software Cytoscape (version 3.10.1) (http://www.cytoscape.org/) [39] (Accession Date: 23/02/2024) was used to visualize the PPI network. The Network Analyzer in Cytoscape was utilized to calculate node degree [40], betweenness [41], stress [42] and closeness [43]. The PEWCC Cytoscape software plugin [44] was used to create modules in the PPI network of endometriosis.

Construction of the miRNA-hub gene regulatory network

The significant miRNAs were identified from miRNA-hub gene regulatory network analysis through the TarBase, miRTarBase, miRecords, miRanda (S mansoni only), miR2Disease, HMDD, PhenomiR, SM2miR, PharmacomiR, EpimiR, starBase, TransmiR, ADmiRE and TAM 2 via miRNet database (https://www.mirnet.ca/) [45] (Acession Date: 26/02/2024). This network was visualized with Cytoscape [39] (Accession Date: 26/02/2024), and the significant hub genes and miRNAs were selected via the Network Analyzer plugin in Cytoscape based on the degree connectivity.

Construction of the TF-hub gene regulatory network

The significant transcription factors (TFs) were identified from TF-hub gene regulatory network analysis through the CHEA via NetworkAnalyst database (https://www.networkanalyst.ca/) [46] (Acession Date: 01/05/2024). This network was visualized with Cytoscape [39] (Accession Date: 01/05/2024), and the significant hub genes and TFs were selected via the Network Analyzer plugin in Cytoscape based on the degree connectivity.

Receiver operating characteristic curve (ROC) analysis

ROC analysis was performed to predict the diagnostic effectiveness of biomarkers by pROC package of R software [47]. The area under the curve (AUC) value was utilized to determine the diagnostic effectiveness in discriminating endometriosis from normal control samples.

Results

Identification of DEGs

The DEGs were screened by “limma” package (|logFC|> 1.304 (log2 fold change) for upregulated genes and |logFC|> 1.304 (log2 fold change) < − 1.2644 for downregulated genes and adj.P.Val < 0.05). The GSE243039 dataset contained 958 DEGs, including 479 upregulated genes and 479 downregulated genes, and is listed in Table 1. The volcano plot (Fig. 1) was used to show the expression pattern of DEGs in endometriosis. The heatmap of the DEGs is shown in Fig. 2.

Table 1 The statistical metrics for key differentially expressed genes (DEGs)
Fig. 1
figure 1

Volcano plot of differentially expressed genes. Genes with a significant change of more than twofold were selected. Green dot represented upregulated significant genes and red dot represented downregulated significant genes

Fig. 2
figure 2

Heat map of differentially expressed genes. Legend on the top left indicates log fold change of genes. (A1 – A20 = Endometriosis samples; B1 – B20 = Normal control samples)

GO and pathway enrichment analyses of DEGs

GO enrichment and REACTOME pathway enrichment analyses were performed on the DEGs using the g:Profiler database. GO enrichment analysis covers three aspects: BP, CC and MF (Table 2). The upregulated genes were mainly related to multicellular organismal process, regulation of biological process, membrane, extracellular region, signaling receptor binding and molecular transducer activity, while the downregulated genes were mainly involved in developmental process, biological regulation, cell periphery, cytoplasm, molecular function regulator activity and calcium ion binding. The REACTOME pathway enrichment analysis showed that the genes upregulated genes in endometriosis were enriched in signaling by GPCR, extracellular matrix organization, muscle contraction and glycosaminoglycan metabolism (Table 3).

Table 2 The enriched GO terms of the up- and downregulated differentially expressed genes
Table 3 The enriched pathway terms of the up- and downregulated differentially expressed genes

Construction of the PPI network and module analysis

Considering the critical role of protein interactions in protein function, we used the HIPIE database and Cytoscape software to generate PPI network once we had identified the 958 DEGs. The results showed that there were dense regions in PPI, that is, genes closely related to endometriosis. A total of 4871 nodes and 8009 edges were selected to plot the PPI network (Fig. 3). The Network Analyzer plugin of Cytoscape was used to score each node gene by four selected algorithms, including node degree, betweenness, stress and closeness. Finally, we identified ten hub genes (vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1) and are listed in Table 4. The top two significant modules from PEWCC were selected for future analysis. Module 1 included 22 nodes and 41 edges (Fig. 4A). The functional enrichment analysis of genes in module 1 was conducted by g:Profiler. These genes were significantly enriched in multicellular organismal process and regulation of biological process. Module 2 included 8 nodes and 14 edges (Fig. 4B). The functional enrichment analysis of genes in module 2 was conducted by g:Profiler. These genes were significantly enriched in developmental process and biological regulation.

Fig. 3
figure 3

PPI network of DEGs. Upregulated genes are marked in parrot green; downregulated genes are marked in red

Table 4 Topology table for up- and downregulated genes
Fig. 4
figure 4

Modules selected from the PPI network. A The most significant module was obtained from PPI network with 22 nodes and 41 edges for upregulated genes B The most significant module was obtained from PPI network with 8 nodes and 14 edges for downregulated genes. Upregulated genes are marked in parrot green; downregulated genes are marked in red

Construction of the miRNA-hub gene regulatory network

We searched for target-regulated hub gene miRNAs using miRNet database and then used the results of this database. By constructing miRNA-hub gene regulatory network networks, we found 2495 nodes (miRNA: 2168; Hub Gene: 327) and 14,692 edges (Fig. 5). We identified 365 miRNAs (ex; hsa-mir-3143) targeting regulation of ccnd2, 102 mirnas (ex; hsa-mir-6888-5p) targeting regulation of vcam1, 89 mirnas (ex; hsa-mir-200a-3p) targeting regulation of ptprd, 88 mirnas (ex; hsa-mir-3122) targeting regulation of pdgfb, 81 mirnas (ex; hsa-mir-17-5p) targeting regulation of prkcb, 241 mirnas (ex; hsa-mir-2110) targeting regulation of igf2bp1, 77 mirnas (ex; hsa-mir-4432) targeting regulation of actc1, 53 mirnas (ex; hsa-mir-556-3p) targeting regulation of epb41l3, 48 mirnas (ex; hsa-mir-10b-5p) targeting regulation of dapk1 and 41 mirnas (ex; hsa-mir-1229-5p) targeting regulation of mdfi, and are listed in Table 5.

Fig. 5
figure 5

Hub gene—miRNA regulatory network. The olive green color diamond nodes represent the key miRNAs; upregulated genes are marked in green; downregulated genes are marked in red

Table 5 MiRNA–hub gene and TF–hub gene topology table

Construction of the TF-hub gene regulatory network

We searched for target-regulated hub gene TFs using NetworkAnalyst database and then used the results of this database. By constructing TF-hub gene regulatory network networks, we found 520 nodes (TF: 198; Hub Gene: 322) and 8331 edges (Fig. 6). We identified 59 TFs (ex; tcf3) targeting regulation of ptch1, 42 tfs (ex; phc1) targeting regulation of ccnd2, 37 tfs (ex; nr1i2) targeting regulation of prkcb, 36 tfs (ex; hoxc9) targeting regulation of st8sia4, 34 tfs (ex; rnf2) targeting regulation of foxq1, 44 tfs (ex; clock) targeting regulation of dapk1, 38 tfs (ex; prdm14) targeting regulation of igf2bp1, 36 tfs (ex; smarca4) targeting regulation of krt18, 34 tfs (ex; trim28) targeting regulation of stx11 and 31 tfs (ex; htt) targeting regulation of epb41l3, and are listed in Table 5.

Fig. 6
figure 6

Hub gene—TF regulatory network. The blue color triangle nodes represent the key TFs; upregulated genes are marked in dark green; downregulated genes are marked in dark red

Receiver operating characteristic curve (ROC) analysis

The ROC curve was used to evaluate the diagnostic value of hub genes. As shown in Fig. 7, the AUC values of vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1 in endometriosis were 0.904, 0.907, 0.903, 0.926, 0.901, 0.910, 0.923, 0.892, 0.895 and 0.898, respectively. Thus, the hub genes have good diagnostic efficiency in endometriosis and normal control samples.

Fig. 7
figure 7

ROC curve analyses of hub genes. A VCAM1 B SNCA C PRKCB D ADRB2 E FOXQ1 F MDFI G ACTBL2 H PRKD1 I DAPK1 J ACTC1

Discussion

Endometriosis is a key cause of serious reproductive disorder in the female population and leads to a public health burden. Lack of early screening and diagnosis of endometriosis result in progressive worsening including dysmenorrhea, dyspareunia, chronic pelvic pain, irregular uterine bleeding and infertility. The advance stage of endometriosis seriously affects the recovery from female reproductive diseases. Therefore, it is necessary to identify potential novel biomarkers for early diagnosis and targeted therapy of endometriosis. With the advancement of bioinformatics methods and NGS technology, it has started to be widely applied to identify potential novel biomarkers. This investigation used NGS data to conduct bioinformatics analysis for identifying novel target genes and pathways involved in the occurrence and development of endometriosis. Bioinformatics and NGS data analysis might become to identify effective drugs for treating endometriosis in future.

In this investigation, we analyzed the endometriosis GSE243039 screened from the GEO database. It includes 20 normal control samples and 20 endometriosis samples. Compared to normal controls, we found 958 DEGs (including 479 upregulated genes and 479 downregulated genes). Research has shown that pcsk9 [48], cntn4 [49], sema3a [50], sfrp4 [51], mfap5 [52], bmp6 [53], cdh6 [54], piezo2 [55] and pkp2 [56] play an important role in the pathogenesis of inflammation. Some studies have shown that altered expression of genes includes pcsk9 [57], sema3a [58] and sfrp4 [59] promotes the pain. Studies have revealed that genes including pcsk9 [60], cntn4 [61], sema3a [62], ptgis [63], sfrp4 [64], mfap5 [65], cdh6 [66], gpc6 [67] and pkp2 [68] play a key role in ovarian cancer. A study indicates that genes including pcsk9 [69], sfrp4 [70] and bmp6 [71] have been identified in polycystic ovarian syndrome. Genes including pcsk9 [72], cntn4 [49], sema3a [73], sfrp4 [74], mfap5 [75], bmp6 [76], pde1c [77] and pkp2 [78] are altered expressed in cardiovascular diseases. The genes including pcsk9 [79], apcdd1 [80], sfrp4 [81], mfap5 [82] and pkp2 [83] have been identified to be involved in the development of obesity. Studies show that genes including pcsk9 [84] and sfrp4 [85] have been known to be involved in gestational diabetes mellitus. Recent reports have revealed that genes including pcsk9 [86], sema3a [87], sfrp4 [81] and bmp6 [88] play an important role in the pathogenesis of diabetes mellitus. Recent reports have revealed that genes including pcsk9 [89], sema3a [90], ptgis [91] and piezo2 [92] have a significant prognostic potential in hypertension. Studies have found that genes including adamts19 [93] and bmp6 [94] play an indispensable role in infertility. Previous studies have reported that the genes including sema3a [95], sfrp4 [96] and bmp6 [94] are a key regulator of endometriosis. Recently, increasing evidence demonstrated that genes including ptgis [97] and sfrp4 [98] might be potential therapeutic targets for endometrial cancer treatment. Studies have found that genes including sfrp4 [99] and mfap5 [100] are used as prognostic markers for cervical cancer. This result suggests that these genes might play a key role in the progression of endometriosis.

In this investigation, we identified enriched genes in GO terms and signaling pathways that might be utilized as diagnostic, prognostic and therapeutic targets in endometriosis. Signaling pathways including extracellular matrix organization [101], nervous system development [102], signal transduction [103], hemostasis [104], muscle contraction [105], signaling by retinoic acid [106] and diseases of glycosylation [107] were responsible for advancement of endometriosis. Recently, mounting researches have revealed that genes including l1cam [108], hsd17b2 [109], vcam1 [110], sox6 [111], fgf10 [112], mmp12 [113], ccr1 [114], prok1 [115], prl [116], timp3 [117], adamts9 [118], ndnf [119], lhcgr [120], pdgfb [121], ldlr [122], cd4 [123], foxl2 [124], trpa1 [125], adrb2 [126], plau 127], epcam [128], ucn2 [129], cyp1a1 [130], ntn1 [131], il15 [132], bmp2 [133], apoe [134], casp1 [135], abcg2 [136], ace [137], pgr [138], alpp [139], lpar4 [140], atrnl1 [141], hla-c [142], mmp3 [143], pdlim3 [144], nfasc [145], il33 [146], ngf [147], comp [148], fst [149], efemp1 [150], gata6 [151], tcf21 [152], ptgs2 [153], hoxc8 [154], akr1c3 [155], bdnf [119], epha3 [156], inhba [157], rap1gap [158], tlr3 [159], nox4 [160], tgfbi [161], igf2bp1 [162], dlx5 [163], vdr [164], fzd7 [165], id2 [166], tlr2 [167], il6 [168], gas6 [169], dusp2 [170], fgf7 [171], ccn2 [172], igfbp3 [173], chl1 [174], bgn [175], ntrk2 [176], slit2 [177], notch2 [178], lif [179], cd200 [180], bst2 [181], dysf [182], dapk1 [183], kiss1 [184], fpr1 [185] and trh [186] were vital for the onset and developmental process of endometriosis. A great number of studies have indicated that genes including l1cam [187], ajap1 [188], hsd17b2 [189], vcam1 [190], grp [191], aqp8 [192], wnt6 [193], fabp4 [194], sox6 [195], ntrk1 [196], cntn1 [197], mmp12 [198], lag3 [199], sox18 [200], ccr1 [201], flt1 [202], prdm1 [203], trpc3 [204], dkk2 [205], rnf157 [206], dhcr24 [207], bmp4 [208], prl [209], foxq1 [210], wnt5a [211], meox1 [212], dock4 [213], timp3 [214], adamts9 [215], ndnf [216], neto1 [217], cd24 [218], lhcgr [219], scd [220], pdgfb [221], mmrn1 [222], ldlr [223], cd4 [224], foxl2 [225], trpa1 [226], epha5 [227], tox [228], cst4 [229], rspo3 [230], map2k6 [231], nes [232], tmem119 [233], padi2 [234], mmp8 [235], kdr [236], adrb2 [237], mgat3 [238], ptprc [239], pitx1 [240], kl [241], plau [242], znf365 [243], pik3r3 [244], sox8 [245], ccnd2 [246], crabp2 [247], pcdh9 [248], epcam [249], clec14a [250], cyp1a1 [251], ntn1 [252], pdgfd [253], cldn3 [254], lepr [255], il15 [256], bmp2 [257], lama5 [258], ntng1 [259], krt19 [260], ros1 [261], apoe [262], ptch1 [263], itpka [264], casp1 [265], nid1 [266], abcg2 [267], ace [268], pgr [269], wls [270], klk3 [271], lrp1b [272], ly6k [273], alpp [274], prame [275], slco4a1 [276], egfl6 [277], gpbar1 [278], elmo1 [279], wnk2 [280], il2rb [281], diras2 [282], galnt14 [283], rtkn2 [284], atrnl1 [285], s100a4 [286], macc1 [287], mmp3 [288], col11a1 [289], cables1 [290], fgfr2 [291], il33 [292], ngf [293], foxc2 [294], comp [295], fst [296], sorbs2 [297], efemp1 [298], gata6 [299], tcf21 [300], ptgs2 [301], mtss1 [302], dact1 [303], hoxc8 [304], pitx2 [305], tnfsf10 [306], bdnf [307] krt7 [308], ndrg2 [309], eya2 [310], inhba [311], sgk1 [312], slc2a12 [313], dio3 [314], epb41l3 [315], tlr3 [316], angptl4 [317], ephb2 [318], fli1 [319], thbs1 [320], id3 [321], nox4 [322], tgfbi [323], igf2bp1 [324], sall4 [325], dlx5 [326], vdr [327], lzts1 [328], fzd7 [329], en2 [330], enc1 [331], ifne [332], tnnt1 [333], ankrd1 [334], sox9 [335], mgp [336], sulf1 [337], cyp24a1 [338], dnah11 [339], tlr2 [340], il6 [341], nppb [342], spink1 [343], gpc3 [344], ntrk3 [345], amigo2 [346], foxd1 [347], adam12 [348], dusp2 [349], usp2 [350], klf2 [351], sik1 [352], six1 [310], fgf7 [353], myh10 [354], igfbp3 [355], lyve1 [356], actbl2 [357], slit2 [358], actc1 [359], nnmt [360], chi3l1 [361], runx1 [362], nfib [363], notch2 [364], pgf [365], thbs2 [366], nav1 [367], nrg1 [368], plk2 [369], itgbl1 [370], cd200 [371], bst2 [372], kcnn3 [373], hmcn1 [374], veph1 [375], tfpi2 [376], sytl2 [377], ccdc80 [378], dapk1 [379], kiss1 [380], il20ra [381], has3 [382], has1 [382], mgst1 [383], fpr1 [384] and sh3rf2 [385] are closely associated with the onset and progression of ovarian cancer. A previous study reported that the genes including l1cam [386], hsd17b2 [387], grp [388], fabp4 [389], sox6 [390]. mmp12 [391], apod [392], lag3 [393], cst1 [394], flt1 [395], dhcr24 [396], prl [397], wnt5a [398], timp3 [399], cd24 [400], lhcgr [401], mmrn1 [402], cd4 [403], adamts5 [404], adamts1 [405], padi2 [406], mark1 [407], kl [408], plau [409], sox8 [410], crabp2 [411], ptprd [412], epcam [413], irx2 [414], sema3b [415], cyp1a1 [416], pdgfd [417], lepr [418], apoe [419], casp1 [420], mgll [421], nid1 [422], abcg2 [423], ace [424], pgr [425], hpse2 [426], lmtk3 [427], alpp [428], egfl6 [429], cacna2d3 [430], mctp1 [431], hkdc1 [432], s100a4 [433], macc1 [434], mmp3 [435], fgfr2 [436], il33 [437], foxc2 [438], itga7 [439], efemp1 [440], gata6 [441], bhlhe41 [442], tcf21 [443], gdf10 [444], nkx3-1 [445], akr1c3 [446], sgk1 [447], rap1gap [448], fli1 [449], nox4 [450], serpine2 [451], igsf9 [452], igf2bp1 [453], sall4 [454], vdr [455], celsr2 [456], enc1 [457], sox9 [458], cyp24a1 [338], il6 [459], gas6 [460], klf2 [461], six1 [462], igfbp3 [463], lyve1 [464], chl1 [465], bgn [466], slit2 [467], nrp2 [468], nnmt [469], runx1 [470], thbs2 [471], hspb7 [472], nrg1 [473], tfpi2 [474], dapk1 [183], has3 [475], has1 [475], steap1 [476] and mgst1 [477] play an important role in the pathophysiology of endometrial cancer. Study demonstrated that genes including vcam1 [478], aqp8 [479], l1cam [480], fabp4 [481], psg1 [482], sox6 [483], mmp12 [484], apod [485], lag3 [486], sox18 [487], flt1 [488], fabp5 [489], bmp4 [490], prl [491], foxq1 [492], wnt5a [493], frzb [494], cpe [495], ereg [496], ndnf [497], cd24 [498], scd [499], ldlr [500], cd4 [501], foxl2 [502], krt17 [503], nes [504], mgat3 [505], mark1 [506], kl [507], plau [508], epha7 [509], pik3r3 [510], ccnd2 [511], hecw1 [512], epcam [513], batf2 [514], cyp1a1 [515], mstn [516], il15 [517], syt7 [518], pak3 [519], krt19 [520], ros1 [521], cubn [522], ptch1 [523], casp1 [524], abcg2 [525], pgr [526], hpse2 [527], lrp1b [528], alpp [529], cyp2s1 [530], doc2b [531], msmo1 [532], sorcs1 [533], hla-c [534], s100a4 [535], macc1 [536], mmp3 [537], fgfr2 [538], il33 [539], ngf [540], foxc2 [541], sorbs2 [542], itga7 [543], efemp1 [544], gata6 [545], tcf21 [546], ptgs2 [547], mtss1 [548], dact1 [549], spint2 [550], nkx3-1 [551], hoxc8 [552], bdnf [497], ndrg2 [553], epha3 [554], eya2 [555], inhba [556], alpl [557], sgk1 [558], rap1gap [559], epb41l3 [560], tlr3 [561], angptl4 [562], ephb2 [563], fli1 [564], thbs1 [565], nox4 [566], tgfbi [567], igf2bp1 [568], sall4 [569], vdr [570], rarb [571], epha4 [572], enc1 [573], sox9 [574], sulf1 [575], tlr2 [576], il6 [577], gpc3 [578], ntrk3 [579], ccna1 [580], amigo2 [581], foxd1 [582], ccno [583], adam12 [584], rassf2 [585], hoxb7 [586], klf2 [587], sik1 [588], six1 [589], fgf7 [590], igfbp3 [591], chl1 [592], eppk1 [593], slit2 [594], flg [595], nrp2 [596], nnmt [597], chi3l1 [598], runx1 [599], apln [600], sema3c [601], notch2 [602], thbs2 [603], pnpla1 [604], bst2 [605], hmcn1 [606], ulbp1 [607], tfpi2 [608], dapk1 [609], kiss1 [610], fpr1 [611] and pik3ap1 [612] can participate in the occurrence and development of cervical cancer. The abnormal expression of genes including cbln2 [613], sdk1 [614], vcam1 [615], six2 [616], avpr1a [617], epha6 [618], fabp4 [619], psg1 [620], ano1 [621], sox6 [622], fgf10 [623], pla2g7 [624], mmp12 [625], adra1d [626], lag3 [627], flt1 [628], fabp5 [629], prdm1 [630], trpc3 [631], igsf3 [632], bmp4 [633], il1rl1 [634], prl [635], nefl [636], wnt5a [637], timp3 [638], ndnf [639], snap25 [640], cd24 [641], pdgfb [642], ldlr [643], cd4 [644], trpa1 [645], adamts1 [646], pde4b [647], nes [648], th [649], psg9 [650], cacna1d [651], mmp8 [652], adrb2 [653], kl [654], plau [655], ptprd [656], sema3b [657], ucn2 [658], cyp2j2 [659], cyp1a1 [660], atp1a2 [661], cldn3 [662], mstn [663], lepr [664], il15 [665], cacna1h [666], bmp2 [667], lama5 [668], ros1 [669], apoe [670], casp1 [671], pde9a [672], efnb2 [673], abcg2 [674], ace [675], pgr [676], slc35f3 [677], ica1 [678], alpp [679], trpc6 [680], gpbar1 [681], pnpla3 [682], hla-c [683], s100a4 [684], macc1 [685], mmp3 [686], gdnf [687], fgfr2 [688], il33 [689], ngf [690], pappa2 [691], comp [692], gata6 [693], acan [694], tcf21 [695], ptgs2 [696], pitx2 [697], akr1c3 [698], bdnf [699], sgk1 [700], tlr3 [701], angptl4 [702], fli1 [703], thbs1 [704], id3 [705], nox4 [706], pcsk1 [707], itgb1bp2 [708], wnk4 [709], dlx5 [710], vdr [711], epha4 [712], mgp [713], cyp24a1 [714], id2 [715], tlr2 [716], il6 [717], nppb [718], gas6 [719], f11r [720], foxd1 [721], adam12 [722], ncam1 [723], usp2 [724], klf2 [725], sik1 [726], fgf7 [727], igfbp3 [728], bgn [729], ntrk2 [730], nnmt [731], chi3l1 [732], runx1 [733], apln [734], stox2 [735], kcnq4 [736], notch2 [737], pgf [738], thbs2 [739], pdlim5 [740], prdm6 [741], htr6 [742], nrg1 [7 43], cd200 [744], bst2 [745], kcnn3 [746], slc2a5 [747], tfpi2 [748], dysf [749], ccdc80 [750], dapk1 [751], kiss1 [752], slc4a4 [753], steap2 [754], sorbs1 [755], ackr2 [756], fpr1 [757], gpr143 [758] and trh [759] contributes to the progression of hypertension. Study showed that the genes including robo2 [760], vcam1 [761], grp [762], fabp4 [763], ano1 [764], sox6 [765], tfap2c [766], ramp3 [767], pla2g7 [768], mmp12 [769], faim2 [770], apod [771], lag3 [772], sox18 [773], f2rl2 [774], ccr1 [775], flt1 [776], fabp5 [629], trpc3 [777]. thsd7a [778], dkk2 [779], prkcb [780], dhcr24 [781], pde3b [782], bmp4 [783], il1rl1 [784], mypn [785], plcg2 [786], prl [787], wnt5a [788], meox1 [789], timp3 [790], frzb [791], cpe [792], adamts9 [793], ndnf [794], pdgfb [795], pik3cg [796], ldlr [797], cd4 [798], trpa1 [799], f2rl3 [800], c1ql1 [801], adamts5 [802], pde4b [803], nes [804], th [805], mmp8 [806], kdr [807], adrb2 [808], ackr3 [809], ptprc [810], kl [811, 812], plau [813], ccnd2 [814], ptgs1 [815], insig1 [816], irx2 [817], siglec1 [818], ucn2 [819], cyp2j2 [820], cyp1a1 [821], astn2 [822], ntn1 [823], pdgfd [824], mstn [663], lepr [664], il15 [825], cacna1h [826], bmp2 [827], syt7 [828], zbtb46 [829], ros1 [830], apoe [831], cubn [832], rbm20 [833], casp1 [834], pde9a [835], abcg2 [836], hmgcr [837], ace [838], grem2 [839], palmd [840], lrp1b [841], alpp [842], trpc6 [843], gpbar1 [844], myzap [845], prodh [846], il2rb [847], cdhr3 [848], pnpla3 [849], fads1 [850], hla-c [851], s100a4 [852], mmp3 [853], pdlim3 [854], gdnf [855], fgfr2 [856], il33 [857], ngf [858], hapln1 [859], foxc2 [860], comp [861], fst [862], sorbs2 [863], itga7 [864], pln [865], gata6 [866], bhlhe41 [867], acan [868], tcf21 [869], ptgs2 [870], dact1 [871], pitx2 [872], akr1c3 [873], bdnf [874], ndrg2 [875], eya2 [876], sgk1 [877], rap1gap [878], dio3 [879], tlr3 [880], angptl4 [881], ephb2 [882], thbs1 [883], tnnt2 [884], nox4 [885], s1pr5 [886], serpine2 [887], pcsk1 [888], tgfbi [889], sall4 [890], eya4 [891], itgb1bp2 [708], vdr [892], gpc4 [893], celsr2 [894], epha4 [895], tnnt1 [896], ankrd1 [897], zfpm2 [898], sox9 [899], mgp [900], cyp24a1 [901], dnah11 [902], tlr2 [903], il6 [904], gas6 [905], gpc3 [906], ntrk3 [907], amigo2 [908], f11r [909], adam12 [722], ncam1 [910], usp2 [911], klf2 [912], sik1 [913], six1 [914], fgf7 [915], ccn2 [916], jcad [917], igfbp3 [918], lyve1 [919], prkd1 [920], bgn [921], eda 922], slit2 [923], actc1 [924], nrp2 [925], chi3l1 [926], runx1 [927], apln [928], myom2 [929], myoz1 [930], ppp1r13l [931], thbs2 [932], des [933], pdlim5 [934], hspb7 [935], nrg1 [936], plk2 [937], itgbl1 [938], cd200 [939], kcnn3 [940], kcnj2 [941], eva1a [942], tfpi2 [943], dysf [944], adap1 [945], ccdc80 [946], dapk1 [947], scn4b [948], esyt3 [949], abca8 [950], heg1 [951], fpr1 [952], sspn [953], adh1c [954], sirpa [955] and trh [956] might be related to the pathophysiology of cardiovascular diseases. A study showed genes including hsd17b2 [109], efna5 [957], mmp12 [958], prok1 [959], prl [960], nlrp2 [961], ndnf [962], mei4 [963], cd24 [964], lhcgr [965], cd4 [966], foxl2 [967], kdr [968], adrb2 [969], cyp1a1 [970], ntn1 [971], mstn [972], bmp2 [973], apoe [974], ace [975], pgr [976], grem2 [977], alpp [978], mmp3 [979], gdnf [980], fgfr2 [981], il33 [982], ngf [983], comp [984], cecr2 [985], fst [986], gata6 [987], ptgs2 [153], bdnf [988], sgk1 [989], angptl4 [990], thbs1 [991], id3 [992], nox4 [993], igf2bp1 [994], sall4 [995], vdr [996], sulf1 [997], tlr2 [998], il6 [999], gpc3 [1000], ccno [1001], igfbp3 [1002], chl1 [1003], ntrk2 [1004], slit2 [1005], apln [1006], notch2 [1007], pgf [1008], lif [1009], cd200 [1010], tfpi2 [1011], kiss1 [752] and trh [1012] are highly prone to infertility. A study indicated that activation of genes including vcam1 [761], stra6 [1013], coch [1014], grp [1015], aqp8 [1016], fabp4 [1017], ano1 [1018], sox6 [1019], tfap2c [1020], ntrk1 [1021], cntn1 [1022], fgf10 [1023], pla2g7 [768], mmp12 [1024], lcp1 [1025], snca [1026], apod [1027], lag3 [1028], ccr1 [1029], cst1 [1030], retreg1 [1031], flt1 [1032], fabp5 [1033], prdm1 [1034], trpc3 [1035], prok1 [1036], wnt16 [1037], f13a1 [1038], dhcr24 [1039], pde3b [1040], bmp4 [783], il1rl1 [1041], plcg2 [1042], prl [1043], foxq1 [1044], nefl [1045], wnt5a [1046], timp3 [1047], serpinb2 [1048], frzb [1049], nlrp2 [1050], cpe [1051], adamts9 [1052], npw [1053], ereg [1054], ndnf [1055], snap25 [1056], syt1 [1057], scd [1058], pdgfb [1059], ldlr [1060], cd4 [1061], gpr183 [1062], trpa1 [125], ptger4 [1063], adamts5 [1064], rspo3 [1065], krt17 [1066], adamts1 [1067], pde4b [1068], nes [804], sh2d2a [1069], th [1070], tmem119 [1071], mmp8 [1072], adrb2 [1073], ackr3 [1074], mgat3 [1075], tnfrsf9 [1076], txk [1077], kl [811], plau [1078], epha7 [1079], znf365 [1080], pik3r3 [1081], sox8 [1082], ccnd2 [1083], ptgs1 [1084], batf2 [1085], ucn2 [1086], cyp2j2 [1087], clec14a [1088], cyp1a1 [1089], ntn1 [1090], mstn [1091], lepr [1092], cd248 [1093], il15 [825], bmp2 [1094], ros1 [1095], mme [1096], apoe [1097], ptch1 [1098], casp1 [1099], mgll [1100], efnb2 [1101], abcg2 [1102], hmgcr [1103], ace [1104], pgr [1105], grem2 [839], rgs7 [1106], chst1 [1107], alpp [1108], trpc6 [1109], slco4a1 [276], cyp4b1 [1110], gpbar1 [844], elmo1 [1111], doc2b [1112], cd163l1 [1113], slco2a1 [1114], il2rb [1115], b4galnt2 [1116], slc37a2 [1117], pnpla3 [1118], fads1 [1119], hla-c [1120], st3gal5 [1121], s100a4 [1122], macc1 [1123], cort [1124], mmp3 [1125], gdnf [1126], lmo3 [1127], nfasc [1128], fgfr2 [1129], il33 [1130], ngf [1131], hapln1 [1132], gdf6 [1133], foxc2 [1134], comp [1135], fst [1136], itga7 [1137], gata6 [1138], acan [1139], tcf21 [1140], ptgs2 [1141], mtss1 [1142], dhrs3 [1143], nkx3-1 [1144], tnfsf10 [1145], bdnf [1146], ndrg2 [1147], epha3 [1148], pla2g5 [1149], mecom [1150], sgk1 [1151], tlr3 [1152], angptl4 [1153], ephb2 [1154], fli1 [1155], thbs1 [1156], mbp [1157], id3 [1158], nox4 [1159], s1pr5 [1160], pi16 [1161], igf2bp1 [1162], sall4 [1163], vldlr [1164], vdr [1165], fam20a [1166], epha4 [1167], ankrd1 [1168], sgca [1169], sox9 [1170], mgp [1171], cyp24a1 [1172], tlr2 [1173], il6 [1174], gas6 [1175], ntrk3 [1176], adam12 [1177], ncam1 [1178], myoc [1179], usp2 [1180], klf2 [1181], sik1 [1182], six1 [1183], fgf7 [1184], ccn2 [1185], igfbp3 [1186], lyve1 [1187], prkd1 [1188], bgn [1189], slit2 [1190], irx3 [1191], actc1 [1192], flg [1193], nrp2 [1194], nnmt [1195], chi3l1 [1196], runx1 [1197], nfib [1198], apln [1199], plp1 [1200], nav2 [1201], notch2 [1202], pgf [1203], thbs2 [1204], nrg1 [1205], lif [1206], plk2 [1207], nalcn [1208], cd200 [1209], kcnn3 [1210], eva1a [1211], tfpi2 [1212], dysf [1213], sytl2 [1214], tlr1 [1215], ccdc80 [946], dapk1 [947], kiss1 [1216], gem [1217], il20ra [1218], has3 [1219], has1 [1220], slc4a4 [1221], sirpb1 [1222], steap1 [1223], ackr2 [1224], fpr1 [1225], gng7 [1226], igfbpl1 [1227], pik3ap1 [1228], adh1c [1229], lxn [1230] and trh [1231] has been observed in inflammation. Studies have suggested that genes including vcam1 [1232], aqp8 [1233], fabp4 [1234], fabp5 [1235], bmp4 [1236], prl [960], wnt5a [1237], adamts9 [1238], ndnf [1239], lhcgr [1240], ldlr [1241], cd4 [1242], adamts5 [1243], map2k6 [1244], adamts1 [1245], pde4b [1246], th [1247], mmp8 [1248], adrb2 [969], kl [1249], epha7 [1250], ucn2 [1251], cyp1a1 [970], lepr [1252], il15 [1253], bmp2 [1254], apoe [1255], casp1 [1256], ace [1257], pgr [1258], grem2 [1259], sorcs1 [1260], hkdc1 [1261], fads1 [1262], s100a4 [1263], il33 [1243], ngf [1264], comp [1265], fst [1266], gata6 [1267], acan [1268], akr1c3 [1269], bdnf [1270], angptl4 [1271], nox4 [1272], vdr [1273], gpc4 [1274], tlr2 [1275], il6 [1276], igfbp3 [1277], tnik [1278], apln [1279], pgf [1280], nrg1 [1281], lif [1282], angptl1 [1283], kiss1 [1284], sorbs1 [1285] and trh [1286] can be used as important therapeutic targets for polycystic ovarian syndrome. A recent study found that genes including vcam1 [1287], stra6 [1288], aqp8 [1289], fabp4 [1290], sox6 [1291], ramp3 [1292], mmp12 [1293], faim2 [770], ccr1 [1294], ism1 [1295], flt1 [1296], fabp5 [1297], thsd7a [1298], sctr [1299], wnt16 [1300], prkcb [1301], pde3b [1302], il1rl1 [1041], prl [1303], wnt5a [1304], htr1b [1305], timp3 [1306], cpe [1051], ereg [1307], ndnf [1308], snap25 [1309], cd24 [1310], scd [1058], pdgfb [1311], ldlr [1312], cd4 [1313], trpa1 [1314], map2k6 [1315], pde4b [1316], th [1317], mmp8 [1318], adrb2 [1319], kl [1320], plau [1321], ptgs1 [1084], insig1 [1322], bmp8a [1323], ucn2 [1324], ntn1 [1090], pdgfd [1325], mstn [1326], lepr [1092], il15 [1327], bmp2 [1328], apoe [1329], casp1 [1330], mgll [1331], nid1 [1332], abcg2 [1333], ace [1334], pgr [1335], grem2 [1336], lrp1b [1337], alpp [1338], trpc6 [1339], egfl6 [1340], gpbar1 [1341], aif1l [1342], gpat3 [1343], sorcs1 [1260], slc37a2 [1344], fads1 [1345], acsl5 [1346], ptprn2 [1347], s100a4 [1348], macc1 [1349], cort [1350], mmp3 [1351], gdnf [1352], lmo3 [1353], cables1 [1354], il33 [1355], ngf [1356], foxc2 [1357], fst [1136], pln [1358], acan [1359], ptgs2 [1360], gdf10 [1361], cpne5 [1362], dgat2 [1363], bdnf [1364], rgs4 [1365], epha3 [1366], pla2g5 [1367], sgk1 [700], tlr3 [1368], angptl4 [1369], ephb2 [1370], thbs1 [1371], id3 [1372], nox4 [1373], pcsk1 [1374], wnk4 [1375], vldlr [1376], vdr [1377], gpc4 [1378], ifne [1379], zfpm2 [1380], tlr2 [1381], il6 [1382], spink1 [1383], gas6 [1384], f11r [1385], siglec15 [1386], adam12 [1387], myoc [1388], usp2 [1389], sik1 [1390], ccn2 [1391], igfbp3 [1392], lyve1 [1393], bgn [1394], eda [1395], ntrk2 [1396], slit2 [1397], irx3 [1191], nnmt [1398], chi3l1 [1399], runx1 [1400], apln [1401], pgf [1402], htr6 [742], nrg1 [1403], npy4r [1404], ccdc80 [1405], kiss1 [1406], slc6a15 [1407], esyt3 [1408], sorbs1 [1409], slc38a3 [1410], lxn [1411] and trh [1412] are potential targets for obesity. Studies have shown that genes including vcam1 [1413], stra6 [1414], aqp8 [1415], fabp4 [1416], flt1 [1417], bmp4 [633], prl [1418], adamts9 [1419], ndnf [1420], dtx1 [1421], cd4 [1422], adamts5 [1423], mmp8 [1424], adrb2 [1425], ptprd [1426], insig1 [1427], lepr [1428], il15 [1429], apoe [1430], ace [1431], lrp1b [1432], alpp [1433], hkdc1 [1434], pnpla3 [1435], fads1 [1436], mmp3 [1437], fgfr2 [1438], il33 [1439], foxc2 [1440], fst [1441], hoxc8 [1442], bdnf [1443], ndrg2 [1444], angptl4 [1445], tgfbi [1446], vdr [1447], gpc4 [1448], cyp24a1 [1449], tlr2 [1450], il6 [1451], klf2 [1452], igfbp3 [1453], slit2 [1454], apln [1455], notch2 [1456], pgf [1457], nrg1 [1458], tlr1 [1459], ccdc80 [1460] and kiss1 [1461] are the contributing factors to gestational diabetes mellitus pathogenesis. A previous study identified genes including vcam1 [1462], stra6 [1013], wnt6 [1463], fabp4 [1464], sox6 [1465], pla2g7 [1466], mmp12 [1467], faim2 [770], snca [1468], apod [1469], lag3 [1470], prex1 [1471], flt1 [1472], fabp5 [1473], trpc3 [1474], thsd7a [1475], prkcb [1476], pde3b [1477], bmp4 [1478], prl [1479], nefl [1480], wnt5a [1481], timp3 [1306], cpe [1482], adamts9 [1483], ndnf [1484], snap25 [1485], scd [1058], ldlr [1486], cd4 [1487], trpa1 [1488], rspo3 [1489], pde4b [1490], th [1491], cacna1d [1492], mmp8 [1318], kdr [1493], adrb2 [653], kl [1494], plau [1321], ccnd2 [1495], ptprd [1496], siglec1 [1497], ucn2 [1324], cyp2j2 [1498], cyp1a1 [1499], ntn1 [1090], mstn [1326], lepr [1500], il15 [1501], bmp2 [1502], apoe [1503], cubn [1504], casp1 [1505], mgll [1506], efnb2 [1507], nid1 [1508], abcg2 [1102], ace [1509], stmn2 [1510], ica1 [1511], trpc6 [1512], gpbar1 [1513], elmo1 [1514], doc2b [1515], ank1 [1516], sorcs1 [1517], hkdc1 [1518], pnpla3 [1519], fads1 [1520], acsl5 [1521], hla-c [1522], s100a4 [1523], cort [1524], mmp3 [1525], gdnf [1526], cables1 [1354], il33 [1527], ngf [1528], foxc2 [1529], comp [1530], fst [1531], sorbs2 [1532], gata6 [1533], ptgs2 [1141], dact1 [1534], dgat2 [1535], bdnf [1484], ndrg2 [1536], sgk1 [1537], tlr3 [1152], angptl4 [1538], ephb2 [1539], thbs1 [1540], mbp [1541], nox4 [1542], pi16 [1543], pcsk1 [888], tgfbi [1544], igf2bp1 [1545], wnk4 [1546], vldlr [1547], vdr [1548], gpc4 [1274], ptprn [1549], epha4 [712], sox9 [1550], mgp [1551], cyp24a1 [1552], tlr2 [1553], il6 [1554], nppb [1555], spink1 [1556], gas6 [1557], f11r [1558], foxd1 [1559], adam12 [1560], klf2 [1561], sik1 [1562], fgf7 [1563], igfbp3 [918], lyve1 [1393], eda [1395], slit2 [1564], irx3 [1565], nnmt [1398], chi3l1 [1566], runx1 [1567], apln [1568], col4a3 [1569], notch2 [1570], pdlim5 [740], nrg1 [1571], dmrt2 [1572], npy4r [1573], cd200 [1574], bst2 [1575], tfpi2 [1576], kiss1 [1406], mpp7 [1577], sorbs1 [1409], slc38a3 [1578], chn2 [1579] and trh [1580] have been implicated in diabetes mellitus pathology. A previous bioinformatics study suggested that genes including grp [1581], avpr1a [1582], ano1 [1583], ntrk1 [1584], fgf10 [1585], mmp12 [1586], snca [1587], ccr1 [1588], flt1 [1589], fabp5 [1590], trpc3 [1591], bmp4 [1592], prl [1593], wnt5a [1594], timp3 [1595], serpinb2 [1596], nlrp2 [1050], npw [1053], ereg [1597], ndnf [1598], snap25 [1056], syt1 [1599], cd4 [1600], gpr183 [1601], trpa1 [1602], pde4b [1603], th [1604], mmp8 [1605], adrb2 [1606], mgat3 [1607], plau [1608], astn2 [1609], il15 [1610], bmp2 [1611], apoe [1612], pde9a [1613], mgll [1100], efnb2 [1101], hmgcr [1614], ace [1615], syt9 [1616], trpc6 [1617], xcr1 [1618], s100a4 [1619], mmp3 [1620], gdnf [1621], il33 [1622], ngf [1623], gdf6 [1133], comp [1624], acan [1625], ptgs2 [1626], gdf10 [1627], bdnf [1628], ndrg2 [1629], sgk1 [1630], tlr3 [1631], ephb2 [1632], mbp [1633], nox4 [1619], shank2 [1634], pi16 [1635], dlx5 [1636], vdr [1637], zfhx2 [1638], epha4 [1639], cyp24a1 [1640], id2 [1641], tlr2 [1642], il6 [1643], spink1 [1644], gas6 [1645], klf2 [1646], six1 [1647], chl1 [1648], slit2 [1649], runx1 [1650], notch2 [1651], pgf [1652], nrg1 [1653], nalcn [1654], lxn [1655] and trh [1656] might play a role in the development of pain. Therefore, studying the enriched genes involved in the regulation of endometriosis might be helpful to clarify the incidence or molecular pathogenic mechanisms of various complications including ovarian cancer, endometrial cancer, cervical cancer, hypertension, cardiovascular diseases, infertility, inflammation, polycystic ovarian syndrome, obesity, gestational diabetes mellitus, diabetes mellitus and pain.

Establishing PPI network and module analysis is friendly for researchers to investigate the underlying molecular mechanism of endometriosis for the reason that the DEGs would be grouped and ordered in the network judging by their interactions. PPI network and module analyses could help to find hub genes involved in the regulation of endometriosis. A recent study suggested that the hub genes including vcam1 [110], adrb2 [126] and dapk1 [183] might take part in the progression of endometriosis. Recent evidence indicates that the hub genes including vcam1 [190], adrb2 [237], foxq1 [210], actbl2 [357], dapk1 [379], actc1 [359], cst4 [229], nfib [363], nfix [1657] and erg [1658] are potential therapeutic targets in ovarian cancer. Previous studies have reported that hub genes including vcam1 [478], foxq1 [492], dapk1 [609] and erg [1659] participate in the progression of cervical cancer. Studies have shown that hub genes including vcam1 [615], adrb2 [653] and dapk1 [751] are involved in the regulation of hypertension. Several studies have found hub genes including vcam1 [761], prkcb [780], adrb2 [808], prkd1 [920], dapk1 [947], actc1 [924] and nfix [1660] expression levels were significantly altered in cardiovascular diseases. Studies show that hub genes including vcam1 [761], snca [1026], adrb2 [1073], foxq1 [1044], prkd1 [1188], dapk1 [947], actc1 [1192], cst1 [1030], nfib [1198] and erg [1661] are mainly involved in progression of inflammation. Previous studies have shown that hub genes including vcam1 [1232] and adrb2 [969] were identified to be closely associated with polycystic ovarian syndrome. Many studies have confirmed that hub genes including vcam1 [1287], prkcb [1301] and adrb2 [1319] were an important participant in obesity. Previous studies have found that hub genes including vcam1 [1413] and adrb2 [1425] were shown to be primarily involved in gestational diabetes mellitus. A growing number of studies have demonstrated that hub genes including vcam1 [1462], snca [1468], prkcb [1476] and adrb2 [653] play an important role in progression of diabetes mellitus. Accumulating evidence shows that hub gene adrb2 [969] is an important risk factor for infertility. Recent study reported that hub gene adrb2 [1606] plays a crucial role in pain progression. A recent study showed that hub genes including dapk1 [183], cst1 [394] and nfix [1662] plays an important role in the pathogenesis of endometrial cancer. Our findings suggested mdfi, tnfrsf19 and foxl1 as potential novel diagnostic biomarkers for endometriosis. This investigation identified the possible hub genes that were highly correlated with the PPI network to find the novel biomarkers associated in the pathogenesis of endometriosis. Our ROC curve analysis showed that hub genes have diagnostic value for endometriosis.

In this investigation, the miRNA-hub gene regulatory network and TF-hub gene regulatory network of the hub genes in endometriosis were analyzed by using miRNet and NetworkAnalyst database. These analyses could help to find some miRNAs, TFs and hub genes involved in the regulation of endometriosis. Studies have shown that biomarkers including ccnd2 [246], vcam1 [190], pdgfb [221], ptch1 [263], foxq1 [210], igf2bp1 [324], actc1 [359], epb41l3 [315], dapk1 [379], hsa-mir-17-5p [1663], tcf3 [1664], rnf2 [1665], clock [1666], smarca4 [1667] and trim28 [1668] can lead to ovarian cancer. Studies reported that biomarkers including ccnd2 [511], vcam1 [478], ptch1 [523], foxq1 [492], igf2bp1 [568], epb41l3 [560], dapk1 [609], hsa-mir-17-5p [1669], tcf3 [1670] and trim28 [1671] were proposed to contribute to the development of cervical cancer. A previous study reported that biomarkers including ccnd2 [814], vcam1 [615], pdgfb [795], prkcb [780], actc1 [924], dapk1 [947], hsa-mir-17-5p [1672], hsa-mir-2110 [1673], tcf3 [1674] and smarca4 [1675] play a key role in cardiovascular diseases. Accumulated evidence has demonstrated that biomarkers including ccnd2 [1083], vcam1 [761], pdgfb [1059], ptch1 [1098], foxq1 [1044], igf2bp1 [1162], actc1 [1192], dapk1 [947], hsa-mir-2110 [1676], hsa-mir-10b-5p [1677], tcf3 [1678], nr1i2 [1679] and trim28 [1680] are associated with inflammation. Studies have shown that biomarkers including ccnd2 [1495], vcam1 [1462], ptprd [1496], prkcb [1476], igf2bp1 [1545], hsa-mir-200a-3p [1681] and hsa-mir-10b-5p [1682] were identified to be associated with diabetes mellitus. A previous study found that biomarkers including vcam1 [110], pdgfb [121], igf2bp1 [162], dapk1 [183] and hsa-mir-17-5p [1683] have been found in endometriosis. Recent studies have identified biomarkers including vcam1 [1232], hsa-mir-17-5p [1684] and hsa-mir-2110 [1685] are involved in the pathogenesis and progression of polycystic ovarian syndrome. A previous study reported that biomarkers including vcam1 [1287], pdgfb [1311], prkcb [1301], hsa-mir-17-5p [1686], hsa-mir-10b-5p [1687] and trim28 [1688] are associated with the pathogenesis and development of obesity. Many studies have shown that biomarkers including vcam1 [1413], ptprd [1426] and hsa-mir-17-5p [1689] are likely to be important in the development of gestational diabetes mellitus. Recent studies have demonstrated that biomarkers including igf2bp1 [453], dapk1 [183], ptprd [412], tcf3 [1690], smarca4 [1691] and trim28 [1692] are important in the development of endometrial cancer. Research has shown that biomarkers including ptprd [656], pdgfb [642], dapk1 [751], hsa-mir-4432 [1693], smarca4 [1694] and trim28 [1695] might be potential therapeutic targets for hypertension. Recent studies have proposed that the biomarkers including igf2bp1 [994], hsa-mir-17-5p [1696] and smarca4 [1697] serve a vital role in infertility. Study has suggested that TRIM28 [1698] might be involved in the development of pain. New biomarkers associated with diagnosis were identified in this study: st8sia4, mdfi, krt18, stx11, hsa-mir-3143, hsa-mir-6888-5p, hsa-mir-3122, hsa-mir-556-3p, hsa-mir-1229-5p, phc1, hoxc9, prdm14 and htt (huntingtin). We suggest that exercise can regulate the expression of these miRNAs, TFs and hub genes, thereby inhibiting the occurrence and development of endometriosis.

There are few limitations in our investigation. While our investigation presents promising results, several limitations should be accepted. In vivo and in vitro validation experiments for hub genes and clinical trials are required to assess the correlation linking clinical parameters and the hub genes in endometriosis pathogenesis. In this investigation, we did not account for the potential confounding effects of demographic variables. We will conduct more in-depth research in the future.

Conclusions

The current investigation identified biomarkers and pathways which might be involved in endometriosis progression through the integrated analysis of NGS dataset. These results might contribute to a better understanding of the molecular mechanisms which underlie endometriosis and provide a series of potential biomarkers. However, further experiments are required to verify the findings of the current investigations. Therefore, further experiments with additional patient cohorts are also required to confirm the results of these investigations. In vivo and in vitro investigation of gene and pathway interaction is essential to delineate the specific roles of the identified biomarkers, which might help to confirm biomarker functions and reveal the molecular mechanisms underlying endometriosis.

Availability of data and materials

The datasets supporting the conclusions of this article are available in the GEO (Gene Expression Omnibus) (https://www.ncbi.nlm.nih.gov/geo/) repository. [(GSE243039) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243039].

Abbreviations

DEGs:

Differentially expressed genes

NGS:

Next-generation sequencing

GEO:

Gene expression omnibus

GO:

Gene ontology

PPI:

Protein–protein interaction

miRNA:

Micro-ribonuclic acid

TF:

Transcription factor

ROC:

Receiver operating characteristic curve

VCAM1:

Vascular cell adhesion molecule 1

SNCA:

Synuclein alpha

PRKCB:

Protein kinase C beta

ADRB2:

Adrenoceptor beta 2

FOXQ1:

Forkhead box Q1

MDFI:

MyoD family inhibitor

ACTBL2:

Actin beta-like 2

PRKD1:

Protein kinase D1

DAPK1:

Death-associated protein kinase 1

ACTC1:

Actin alpha cardiac muscle 1

References

  1. Czyzyk A, Podfigurna A, Szeliga A, Meczekalski B (2017) Update on endometriosis pathogenesis. Minerva Ginecol 69(5):447–461. https://doi.org/10.23736/S0026-4784.17.04048-5

    Article  PubMed  Google Scholar 

  2. Vercellini P, Viganò P, Somigliana E, Fedele L (2014) Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol 10(5):261–275. https://doi.org/10.1038/nrendo.2013.255

    Article  PubMed  CAS  Google Scholar 

  3. Burney RO, Giudice LC (2012) Pathogenesis and pathophysiology of endometriosis. Fertil Steril 98(3):511–519. https://doi.org/10.1016/j.fertnstert.2012.06.029

    Article  PubMed  CAS  Google Scholar 

  4. Taylor HS, Kotlyar AM, Flores VA (2021) Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet 397(10276):839–852. https://doi.org/10.1016/S0140-6736(21)00389-5

    Article  PubMed  CAS  Google Scholar 

  5. Li J, Liu R, Tang S, Feng F, Liu C, Wang L, Zhao W, Zhang T, Yao Y, Wang X et al (2019) Impact of endometriosis on risk of ovarian, endometrial and cervical cancers: a meta-analysis. Arch Gynecol Obstet 299(1):35–46. https://doi.org/10.1007/s00404-018-4968-1

    Article  PubMed  CAS  Google Scholar 

  6. Schüler-Toprak S, Ortmann O, Buechler C, Treeck O (2022) The complex roles of adipokines in polycystic ovary syndrome and endometriosis. Biomedicines 10(10):2503. https://doi.org/10.3390/biomedicines10102503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Marchandot B, Curtiaud A, Matsushita K, Trimaille A, Host A, Faller E, Garbin O, Akladios C, Jesel L, Morel O (2022) Endometriosis and cardiovascular disease. Eur Heart J Open 2(1):oeac001. https://doi.org/10.1093/ehjopen/oeac001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pantelis A, Machairiotis N, Lapatsanis DP (2021) The formidable yet unresolved interplay between endometriosis and obesity. Sci World J 2021:6653677. https://doi.org/10.1155/2021/6653677

    Article  CAS  Google Scholar 

  9. Salmeri N, Li Piani L, Cavoretto PI, Somigliana E, Viganò P, Candiani M (2023) Endometriosis increases the risk of gestational diabetes: a meta-analysis stratified by mode of conception, disease localization and severity. Sci Rep 13(1):8099. https://doi.org/10.1038/s41598-023-35236-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Alhallak I, Quick CM, Graham GL, Simmen RCM (2023) A pilot study on the co-existence of diabetes and endometriosis in reproductive-age women: potential for endometriosis progression. Reprod Sci 30(8):2429–2438. https://doi.org/10.1007/s43032-023-01190-3

    Article  PubMed  CAS  Google Scholar 

  11. Mu F, Rich-Edwards J, Rimm EB, Spiegelman D, Forman JP, Missmer SA (2017) Association between endometriosis and hypercholesterolemia or hypertension. Hypertension 70(1):59–65. https://doi.org/10.1161/HYPERTENSIONAHA.117.09056

    Article  PubMed  CAS  Google Scholar 

  12. Fung JN, Montgomery GW (2018) Genetics of endometriosis: State of the art on genetic risk factors for endometriosis. Best Pract Res Clin Obstet Gynaecol 50:61–71. https://doi.org/10.1016/j.bpobgyn.2018.01.012

    Article  PubMed  Google Scholar 

  13. Coiplet E, Courbiere B, Agostini A, Boubli L, Bretelle F, Netter A (2022) Endometriosis and environmental factors: a critical review. J Gynecol Obstet Hum Reprod 51(7):102418. https://doi.org/10.1016/j.jogoh.2022.102418

    Article  PubMed  Google Scholar 

  14. Zanelotti A, Decherney AH (2017) Surgery and endometriosis. Clin Obstet Gynecol 60(3):477–484. https://doi.org/10.1097/GRF.0000000000000291

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brown J, Crawford TJ, Datta S, Prentice A (2018) Oral contraceptives for pain associated with endometriosis. Cochrane Database Syst Rev 5(5):CD001019. https://doi.org/10.1002/14651858.CD001019.pub3

    Article  PubMed  Google Scholar 

  16. Vercellini P, Buggio L, Berlanda N, Barbara G, Somigliana E, Bosari S (2016) Estrogen-progestins and progestins for the management of endometriosis. Fertil Steril 106(7):1552-1571.e2. https://doi.org/10.1016/j.fertnstert.2016.10.022

    Article  PubMed  CAS  Google Scholar 

  17. Brown J, Crawford TJ, Allen C, Hopewell S, Prentice A (2017) Nonsteroidal anti-inflammatory drugs for pain in women with endometriosis. Cochrane Database Syst Rev 1(1):CD004753. https://doi.org/10.1002/14651858.CD004753.pub4

    Article  PubMed  Google Scholar 

  18. Jeng CJ, Chuang L, Shen J (2014) A comparison of progestogens or oral contraceptives and gonadotropin-releasing hormone agonists for the treatment of endometriosis: a systematic review. Expert Opin Pharmacother 15(6):767–773. https://doi.org/10.1517/14656566.2014.888414

    Article  PubMed  CAS  Google Scholar 

  19. Ahn SH, Singh V, Tayade C (2017) Biomarkers in endometriosis: challenges and opportunities. Fertil Steril 107(3):523–532. https://doi.org/10.1016/j.fertnstert.2017.01.009

    Article  PubMed  CAS  Google Scholar 

  20. Absenger Y, Hess-Stumpp H, Kreft B, Krätzschmar J, Haendler B, Schütze N, Regidor PA, Winterhager E (2004) Cyr61, a deregulated gene in endometriosis. Mol Hum Reprod 10(6):399–407. https://doi.org/10.1093/molehr/gah053

    Article  PubMed  CAS  Google Scholar 

  21. Smolarz B, Szyłło K, Romanowicz H (2020) The genetic background of endometriosis: can ESR2 and CYP19A1 genes be a potential risk factor for its development? Int J Mol Sci 21(21):8235. https://doi.org/10.3390/ijms21218235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zanatta A, Rocha AM, Carvalho FM, Pereira RM, Taylor HS, Motta EL, Baracat EC, Serafini PC (2010) The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: a review. J Assist Reprod Genet 27(12):701–710. https://doi.org/10.1007/s10815-010-9471-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mathew D, Drury JA, Valentijn AJ, Vasieva O, Hapangama DK (2016) In silico, in vitro and in vivo analysis identifies a potential role for steroid hormone regulation of FOXD3 in endometriosis-associated genes. Hum Reprod 31(2):345–354. https://doi.org/10.1093/humrep/dev307

    Article  PubMed  CAS  Google Scholar 

  24. Dentillo DB, Meola J (2010) Deregulation of LOXL1 and HTRA1 gene expression in endometriosis. Reprod Sci 17(11):1016–1023. https://doi.org/10.1177/1933719110377662

    Article  PubMed  CAS  Google Scholar 

  25. Matsuzaki S, Darcha C (2015) Co-operation between the AKT and ERK signaling pathways may support growth of deep endometriosis in a fibrotic microenvironment in vitro. Hum Reprod 30(7):1606–1616. https://doi.org/10.1093/humrep/dev108

    Article  PubMed  CAS  Google Scholar 

  26. Matsuzaki S, Darcha C (2013) Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS ONE 8(10):e76808. https://doi.org/10.1371/journal.pone.0076808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Makker A, Goel MM, Das V, Agarwal A (2012) PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian syndrome, uterine leiomyomas and endometriosis: an update. Gynecol Endocrinol 28(3):175–181. https://doi.org/10.3109/09513590.2011.583955

    Article  PubMed  CAS  Google Scholar 

  28. Su RW, Strug MR, Joshi NR, Jeong JW, Miele L, Lessey BA, Young SL, Fazleabas AT (2015) Decreased Notch pathway signaling in the endometrium of women with endometriosis impairs decidualization. J Clin Endocrinol Metab 100(3):E433–E442. https://doi.org/10.1210/jc.2014-3720

    Article  PubMed  CAS  Google Scholar 

  29. Huang F, Cao J, Liu Q, Zou Y, Li H, Yin T (2013) MAPK/ERK signal pathway involved expression of COX-2 and VEGF by IL-1β induced in human endometriosis stromal cells in vitro. Int J Clin Exp Pathol 6(10):2129–2136

    PubMed  PubMed Central  Google Scholar 

  30. Clough E, Barrett T (2016) The gene expression omnibus database. Methods Mol Biol 1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S (2023) Bioinformatics and next-generation data analysis for identification of genes and molecular pathways involved in subjects with diabetes and obesity. Medicina (Kaunas) 59(2):309. https://doi.org/10.3390/medicina59020309

    Article  PubMed  Google Scholar 

  32. Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S (2023) Bioinformatics analysis of next generation sequencing data identifies molecular biomarkers associated with type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes 16:11795514231155636. https://doi.org/10.1177/11795514231155635

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Solari A, Goeman JJ (2017) Minimally adaptive BH: a tiny but uniform improvement of the procedure of Benjamini and Hochberg. Biom J 59(4):776–780. https://doi.org/10.1002/bimj.201500253

    Article  PubMed  Google Scholar 

  35. Thomas PD (2017) The gene ontology and the meaning of biological function. Methods Mol Biol 1446:15–24. https://doi.org/10.1007/978-1-4939-3743-1_2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655. https://doi.org/10.1093/nar/gkx1132

    Article  PubMed  CAS  Google Scholar 

  37. Reimand J, Kull M, Peterson H, Hansen J, Vilo J (2007) g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucl Acids Res 35:W193–W200. https://doi.org/10.1093/nar/gkm226

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH (2017) HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucl Acids Res 45:408–414. https://doi.org/10.1093/nar/gkw985

    Article  CAS  Google Scholar 

  39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B (2003) Ideker T Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Luo X, Guo L, Dai XJ, Wang Q, Zhu W, Miao X, Gong H (2017) Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis. Neuropsychiatr Dis Treat 13:2011–2020. https://doi.org/10.2147/NDT.S142742

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Li W, Tan Y, Liu F, Cao Y, Lee KY (2017) Hierarchical decomposition for betweenness centrality measure of complex networks. Sci Rep 7:46491. https://doi.org/10.1038/srep46491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gilbert M, Li Z, Wu XN, Rohr L, Gombos S, Harter K, Schulze WX (2021) Comparison of path-based centrality measures in protein-protein interaction networks revealed proteins with phenotypic relevance during adaptation to changing nitrogen environments. J Proteomics 235:104114. https://doi.org/10.1016/j.jprot.2021.104114

    Article  PubMed  CAS  Google Scholar 

  43. Li G, Li M, Wang J, Li Y, Pan Y (2020) United neighborhood closeness centrality and orthology for predicting essential proteins. IEEE/ACM Trans Comput Biol Bioinform 17(4):1451–1458. https://doi.org/10.1109/TCBB.2018.2889978

    Article  PubMed  CAS  Google Scholar 

  44. Zaki N, Efimov D, Berengueres J (2013) Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinform 14:163. https://doi.org/10.1186/1471-2105-14

    Article  CAS  Google Scholar 

  45. Fan Y, Xia J (2018) miRNet-Functional analysis and visual exploration of miRNA-target interactions in a network context. Methods Mol Biol 1819:215–233. https://doi.org/10.1007/978-1-4939-8618-7_10

    Article  PubMed  CAS  Google Scholar 

  46. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucl Acids Res 47:W234–W241. https://doi.org/10.1093/nar/gkz240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  Google Scholar 

  48. Frostegård J (2022) The role of PCSK9 in inflammation, immunity, and autoimmune diseases. Expert Rev Clin Immunol 18(1):67–74. https://doi.org/10.1080/1744666X.2022.2017281

    Article  PubMed  Google Scholar 

  49. Wang K, Huang XT, Miao YP, Bai XL, Jin F (2022) MiR-148a-3p attenuates apoptosis and inflammation by targeting CNTN4 in atherosclerosis. Ann Transl Med 10(22):1201. https://doi.org/10.21037/atm-22-3768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang H, Lu Y, Wu B, Xia F (2021) Semaphorin 3A mitigates lipopolysaccharide-induced chondrocyte inflammation, apoptosis and extracellular matrix degradation by binding to Neuropilin-1. Bioengineered 12(2):9641–9654. https://doi.org/10.1080/21655979.2021.1974806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang J, Yang Z, Liang Z, Wang M, Hu C, Chang C, Shi L, Ji Q, Liu L (2022) Secreted frizzled-related protein 4 exerts anti-atherosclerotic effects by reducing inflammation and oxidative stress. Eur J Pharmacol 923:174901. https://doi.org/10.1016/j.ejphar.2022.174901

    Article  PubMed  CAS  Google Scholar 

  52. Dong XY, Yin JX, Zhang H, Liao Y (2022) High glucose stimulating ECM remodeling and an inflammatory phenotype in the IPFP via upregulation of MFAP5 expression. Biochem Biophys Res Commun 601:93–100. https://doi.org/10.1016/j.bbrc.2022.02.077

    Article  PubMed  CAS  Google Scholar 

  53. Varga E, Pap R, Jánosa G, Sipos K, Pandur E (2021) IL-6 regulates hepcidin expression via the BMP/SMAD pathway by altering BMP6, TMPRSS6 and TfR2 expressions at normal and inflammatory conditions in BV2 microglia. Neurochem Res 46(5):1224–1238. https://doi.org/10.1007/s11064-021-03322-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Schöffski P, Concin N, Suarez C, Subbiah V, Ando Y, Ruan S, Wagner JP, Mansfield K, Zhu X, Origuchi S et al (2021) A phase 1 study of a CDH6-targeting antibody-drug conjugate in patients with advanced solid tumors with evaluation of inflammatory and neurological adverse events. Oncol Res Treat 44(10):547–556. https://doi.org/10.1159/000518549

    Article  PubMed  CAS  Google Scholar 

  55. Dubin AE, Schmidt M, Mathur J, Petrus MJ, Xiao B, Coste B, Patapoutian A (2012) Inflammatory signals enhance piezo2-mediated mechanosensitive currents. Cell Rep 2(3):511–517. https://doi.org/10.1016/j.celrep.2012.07.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Pérez-Hernández M, Marrón-Liñares GM, Schlamp F, Heguy A, van Opbergen CJM, Mezzano V, Zhang M, Liang FX, Cerrone M, Delmar M (2021) Transcriptomic coupling of PKP2 with inflammatory and immune pathways endogenous to adult cardiac myocytes. Front Physiol 11:623190. https://doi.org/10.3389/fphys.2020.623190

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peng J, Liu MM, Jin JL, Cao YX, Guo YL, Wu NQ, Zhu CG, Dong Q, Sun J, Xu RX et al (2022) NAFLD fibrosis score is correlated with PCSK9 and improves outcome prediction of PCSK9 in patients with chest pain: a cohort study. Lipids Health Dis 21(1):3. https://doi.org/10.1186/s12944-021-01610-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Maeda T, Yamada D, Kawahara K (2016) Cancer pain relief achieved by disrupting tumor-driven semaphorin 3A signaling in mice. Neurosci Lett 632:147–151. https://doi.org/10.1016/j.neulet.2016.08.060

    Article  PubMed  CAS  Google Scholar 

  59. Chen Y, Zhu J, Chen L, Shen Y, Zhang J, Wang Q (2022) SFRP4+IGFBP5hi NKT cells induced neural-like cell differentiation to contribute to adenomyosis pain. Front Immunol 13:945504. https://doi.org/10.3389/fimmu.2022.945504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jacome Sanz D, Raivola J, Karvonen H, Arjama M, Barker H, Murumägi A, Ungureanu D (2021) Evaluating targeted therapies in ovarian cancer metabolism: novel role for PCSK9 and second generation mTOR inhibitors. Cancers (Basel) 13(15):3727. https://doi.org/10.3390/cancers13153727

    Article  PubMed  CAS  Google Scholar 

  61. Manderson EN, Birch AH, Shen Z, Mes-Masson AM, Provencher D, Tonin PN (2009) Molecular genetic analysis of a cell adhesion molecule with homology to L1CAM, contactin 6, and contactin 4 candidate chromosome 3p26pter tumor suppressor genes in ovarian cancer. Int J Gynecol Cancer 19(4):513–525. https://doi.org/10.1111/IGC.0b013e3181a3cd38

    Article  PubMed  Google Scholar 

  62. Jiang H, Qi L, Wang F, Sun Z, Huang Z, Xi Q (2015) Decreased semaphorin 3A expression is associated with a poor prognosis in patients with epithelial ovarian carcinoma. Int J Mol Med 35(5):1374–1380. https://doi.org/10.3892/ijmm.2015.2142

    Article  PubMed  CAS  Google Scholar 

  63. Wu X, Lu W, Xu C, Jiang C, Zhang W, Zhang D, Cui S, Zhuo Z, Cui Y, Mei H et al (2023) PTGIS may be a predictive marker for ovarian cancer by regulating fatty acid metabolism. Comput Math Methods Med 2023:2397728. https://doi.org/10.1155/2023/2397728

    Article  PubMed  PubMed Central  Google Scholar 

  64. Varier L, Sundaram SM, Gamit N, Warrier S (2023) An overview of ovarian cancer: the role of cancer stem cells in chemoresistance and a precision medicine approach targeting the wnt pathway with the antagonist sFRP4. Cancers (Basel) 15(4):1275. https://doi.org/10.3390/cancers15041275

    Article  PubMed  CAS  Google Scholar 

  65. Kujawa KA, Zembala-Nożynska E, Syrkis JP, Cortez AJ, Kupryjańczyk J, Lisowska KM (2022) Microfibril associated protein 5 (MFAP5) is related to survival of ovarian cancer patients but not useful as a prognostic biomarker. Int J Mol Sci 23(24):15994. https://doi.org/10.3390/ijms232415994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bartolomé RA, Robles J, Martin-Regalado Á, Pintado-Berninches L, Burdiel M, Jaén M, Aizpurúa C, Imbaud JI, Casal JI (2021) CDH6-activated αIIbβ3 crosstalks with α2β1 to trigger cellular adhesion and invasion in metastatic ovarian and renal cancers. Mol Oncol 15(7):1849–1865. https://doi.org/10.1002/1878-0261.12947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Karapetsas A, Giannakakis A, Dangaj D, Lanitis E, Kynigopoulos S, Lambropoulou M, Tanyi JL, Galanis A, Kakolyris S, Trypsianis G et al (2015) Overexpression of GPC6 and TMEM132D in early stage ovarian cancer correlates with CD8+ T-lymphocyte infiltration and increased patient survival. Biomed Res Int 2015:712438. https://doi.org/10.1155/2015/712438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gao L, Li X, Guo Q, Nie X, Hao Y, Liu Q, Liu J, Zhu L, Yan L, Lin B (2020) Identification of PKP 2/3 as potential biomarkers of ovarian cancer based on bioinformatics and experiments. Cancer Cell Int 20:509. https://doi.org/10.1186/s12935-020-01602-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Olaniyi KS, Areloegbe SE, Areola ED, Sabinari IW, Fafure AA, Agbana RD, Atuma CL, Shah MZUH, Ajadi IO, Olatunji LA (2023) Low-dose spironolactone combats dyslipidemia and hepatic inflammation by modulating PCSK9 in rat model of polycystic ovarian syndrome. Toxicol Appl Pharmacol 473:116604. https://doi.org/10.1016/j.taap.2023.116604

    Article  PubMed  CAS  Google Scholar 

  70. Bicer M, Alarslan P, Guler A, Demir I, Aslanipour B, Calan M (2020) Elevated circulating levels of secreted frizzled-related protein 4 in relation to insulin resistance and androgens in women with polycystic ovary syndrome. J Endocrinol Invest 43(3):305–313. https://doi.org/10.1007/s40618-019-01108-4

    Article  PubMed  CAS  Google Scholar 

  71. Xin X, Chang HM, Leung PCK, Dong L, Li J, Lian F, Wu H (2024) Bone morphogenetic protein 6 induces downregulation of pentraxin 3 expression in human granulosa lutein cells in women with polycystic ovary syndrome. J Assist Reprod Genet 41(1):31–48. https://doi.org/10.1007/s10815-023-02972-z

    Article  PubMed  Google Scholar 

  72. Guo Y, Yan B, Tai S, Zhou S, Zheng XL (2021) PCSK9: Associated with cardiac diseases and their risk factors? Arch Biochem Biophys 704:108717. https://doi.org/10.1016/j.abb.2020.108717

    Article  PubMed  CAS  Google Scholar 

  73. Li C, Zhao Y, Li F, Wang Z, Qiu Z, Yang Y, Xiong W, Wang R, Chen H, Xu F et al (2023) Semaphorin3A exacerbates cardiac microvascular rarefaction in pressure overload-induced heart disease. Adv Sci (Weinh) 10(21):e2206801. https://doi.org/10.1002/advs.202206801

    Article  PubMed  CAS  Google Scholar 

  74. Zeng W, Cao Y, Jiang W, Kang G, Huang J, Xie S (2019) Knockdown of Sfrp4 attenuates apoptosis to protect against myocardial ischemia/reperfusion injury. J Pharmacol Sci 140(1):14–19. https://doi.org/10.1016/j.jphs.2019.04.003

    Article  PubMed  CAS  Google Scholar 

  75. Cheng B, Zhong JP, Fu WJ, Chen HJ, Fang L, Li GL, Li JW, Wen MH, Lv YB, Wang HB (2022) l. Microfiber-associated protein 5 (MFAP5): A promising approach to discover new biomarkers for heart failure and cardiac remodeling. Int J Cardiol 366:68–69. https://doi.org/10.1016/j.ijcard.2022.07.008

    Article  PubMed  Google Scholar 

  76. Lu G, Ge Z, Chen X, Ma Y, Yuan A, Xie Y, Pu J (2023) BMP6 knockdown enhances cardiac fibrosis in a mouse myocardial infarction model by upregulating AP-1/CEMIP expression. Clin Transl Med 13(6):e1296. https://doi.org/10.1002/ctm2.1296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Knight WE, Chen S, Zhang Y, Oikawa M, Wu M, Zhou Q, Miller CL, Cai Y, Mickelsen DM, Moravec C et al (2016) PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. Proc Natl Acad Sci USA 113(45):E7116–E7125. https://doi.org/10.1073/pnas.1607728113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Cerrone M, Marrón-Liñares GM, van Opbergen CJM, Costa S, Bourfiss M, Pérez-Hernández M, Schlamp F, Sanchis-Gomar F, Malkani K, Drenkova K et al (2022) Role of plakophilin-2 expression on exercise-related progression of arrhythmogenic right ventricular cardiomyopathy: a translational study. Eur Heart J 43(12):1251–1264. https://doi.org/10.1093/eurheartj/ehab772

    Article  PubMed  CAS  Google Scholar 

  79. Macchi C, Greco MF, Favero C, Dioni L, Cantone L, Hoxha M, Vigna L, Solazzo G, Corsini A, Banach M et al (2022) Associations among PCSK9 levels, atherosclerosis-derived extracellular vesicles, and their mirna content in adults with obesity. Front Cardiovasc Med 8:785250. https://doi.org/10.3389/fcvm.2021.785250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Yiew NKH, Chatterjee TK, Tang YL, Pellenberg R, Stansfield BK, Bagi Z, Fulton DJ, Stepp DW, Chen W, Patel V et al (2017) A novel role for the Wnt inhibitor APCDD1 in adipocyte differentiation: Implications for diet-induced obesity. J Biol Chem 292(15):6312–6324. https://doi.org/10.1074/jbc.M116.758078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bukhari SA, Yasmin A, Zahoor MA, Mustafa G, Sarfraz I, Rasul A (2019) Secreted frizzled-related protein 4 and its implication in obesity and type-2 diabetes. IUBMB Life 71(11):1701–1710. https://doi.org/10.1002/iub.2123

    Article  PubMed  CAS  Google Scholar 

  82. Vaittinen M, Kolehmainen M, Rydén M, Eskelinen M, Wabitsch M, Pihlajamäki J, Uusitupa M, Pulkkinen L (2015) MFAP5 is related to obesity-associated adipose tissue and extracellular matrix remodeling and inflammation. Obesity (Silver Spring) 23(7):1371–1378. https://doi.org/10.1002/oby.21103

    Article  PubMed  CAS  Google Scholar 

  83. Lluch A, Latorre J, Serena-Maione A, Espadas I, Caballano-Infantes E, Moreno-Navarrete JM, Oliveras-Cañellas N, Ricart W, Malagón MM, Martin-Montalvo A et al (2023) Impaired Plakophilin-2 in obesity breaks cell cycle dynamics to breed adipocyte senescence. Nat Commun 14(1):5106. https://doi.org/10.1038/s41467-023-40596-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wu Y, Shi J, Su Q, Yang Z, Qin L (2022) Correlation between circulating PCSK9 levels and gestational diabetes mellitus in a chinese population. Front Endocrinol (Lausanne) 13:826757. https://doi.org/10.3389/fendo.2022.826757

    Article  PubMed  Google Scholar 

  85. Schuitemaker JHN, Beernink RHJ, Franx A, Cremers TIFH, Koster MPH (2020) First trimester secreted Frizzled-Related Protein 4 and other adipokine serum concentrations in women developing gestational diabetes mellitus. PLoS ONE 15(11):e0242423. https://doi.org/10.1371/journal.pone.0242423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hsu LA, Teng MS, Wu S, Chou HH, Ko YL (2022) Common and rare PCSK9 variants associated with low-density lipoprotein cholesterol levels and the risk of diabetes mellitus: a mendelian randomization study. Int J Mol Sci 23(18):10418. https://doi.org/10.3390/ijms231810418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Qiao Q, Xu X, Song Y, Song S, Zhu W, Li F (2018) Semaphorin 3A promotes osteogenic differentiation of BMSC from type 2 diabetes mellitus rats. J Mol Histol 49(4):369–376. https://doi.org/10.1007/s10735-018-9776-1

    Article  PubMed  CAS  Google Scholar 

  88. Guo Q, Wang W, Abboud R, Guo Z (2020) Impairment of maturation of BMP-6 (35 kDa) correlates with delayed fracture healing in experimental diabetes. J Orthop Surg Res 15(1):186. https://doi.org/10.1186/s13018-020-01705-7

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ye P, Jiang XM, Qian WC, Zhang J (2023) Inhibition of PCSK9 improves the development of pulmonary arterial hypertension via down-regulating Notch3 expression. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-023-07458-9

    Article  PubMed  Google Scholar 

  90. Viazzi F, Ramesh G, Jayakumar C, Leoncini G, Garneri D, Pontremoli R (2015) Increased urine semaphorin-3A is associated with renal damage in hypertensive patients with chronic kidney disease: a nested case-control study. J Nephrol 28(3):315–320. https://doi.org/10.1007/s40620-014-0097-5

    Article  PubMed  CAS  Google Scholar 

  91. Wang XJ, Xu XQ, Sun K, Liu KQ, Li SQ, Jiang X, Zhao QH, Wang L, Peng FH, Ye J et al (2020) Association of rare PTGIS variants with susceptibility and pulmonary vascular response in patients with idiopathic pulmonary arterial hypertension. JAMA Cardiol 5(6):677–684. https://doi.org/10.1001/jamacardio.2020.0479

    Article  PubMed  Google Scholar 

  92. Huo L, Gao Y, Zhang D, Wang S, Han Y, Men H, Yang Z, Qin X, Wang R, Kong D et al (2021) Piezo2 channel in nodose ganglia neurons is essential in controlling hypertension in a pathway regulated directly by Nedd4-2. Pharmacol Res 164:105391. https://doi.org/10.1016/j.phrs.2020.105391

    Article  PubMed  CAS  Google Scholar 

  93. Pyun JA, Kim S, Cha DH, Kwack K (2013) Epistasis between IGF2R and ADAMTS19 polymorphisms associates with premature ovarian failure. Hum Reprod 28(11):3146–3154. https://doi.org/10.1093/humrep/det365

    Article  PubMed  CAS  Google Scholar 

  94. De Conto E, Matte U, Cunha-Filho JS (2021) BMP-6 and SMAD4 gene expression is altered in cumulus cells from women with endometriosis-associated infertility. Acta Obstet Gynecol Scand 100(5):868–875. https://doi.org/10.1111/aogs.13931

    Article  PubMed  CAS  Google Scholar 

  95. Liang Y, Wang W, Huang J, Tan H, Liu T, Shang C, Liu D, Guo L, Yao S (2015) Potential role of semaphorin 3A and its receptors in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. PLoS ONE 10(12):e0146027. https://doi.org/10.1371/journal.pone.0146027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lin J, Zong L, Kennedy SH, Zondervan KT (2011) Coding regions of INHBA, SFRP4 and HOXA10 are not implicated in familial endometriosis linked to chromosome 7p13-15. Mol Hum Reprod 17(10):605–611. https://doi.org/10.1093/molehr/gar035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wang B, Ge S, Wang Z, Wang W, Wang Y, Leng H, Ma X (2023) Analysis and experimental validation of fatty acid metabolism-related genes prostacyclin synthase (PTGIS) in endometrial cancer. Aging (Albany NY) 15(19):10322–10346. https://doi.org/10.18632/aging.205080

    Article  PubMed  Google Scholar 

  98. Guo L, Chen H, Chen J, Gao C, Fu X, Zhou S, Wu W, Li T, Lin J, Yang T et al (2023) PBX1-promoted SFRP4 transcription inhibits cell proliferation and epithelial-mesenchymal transition in endometrial carcinoma. Tissue Cell 82:102083. https://doi.org/10.1016/j.tice.2023.102083

    Article  PubMed  CAS  Google Scholar 

  99. Zhang H, Chen R, Shao J (2020) MicroRNA-96-5p facilitates the viability, migration, and invasion and suppresses the apoptosis of cervical cancer cells by negatively modulating SFRP4. Technol Cancer Res Treat 19:1533033820934132. https://doi.org/10.1177/1533033820934132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Li Q, Zhang Y, Jiang Q (2018) MFAP5 suppression inhibits migration/invasion, regulates cell cycle and induces apoptosis via promoting ROS production in cervical cancer. Biochem Biophys Res Commun 507(1–4):51–58. https://doi.org/10.1016/j.bbrc.2018.10.146

    Article  PubMed  CAS  Google Scholar 

  101. Cook CJ, Wiggin N, Fogg KC (2024) Characterizing the extracellular matrix transcriptome of endometriosis. Reprod Sci 31(2):413–429. https://doi.org/10.1007/s43032-023-01359-w

    Article  PubMed  CAS  Google Scholar 

  102. Fan P, Li T (2022) Unveil the pain of endometriosis: from the perspective of the nervous system. Expert Rev Mol Med 24:e36. https://doi.org/10.1017/erm.2022.26

    Article  PubMed  CAS  Google Scholar 

  103. Park S, Lim W, Bazer FW, Song G (2017) Naringenin induces mitochondria-mediated apoptosis and endoplasmic reticulum stress by regulating MAPK and AKT signal transduction pathways in endometriosis cells. Mol Hum Reprod 23(12):842–854. https://doi.org/10.1093/molehr/gax057

    Article  PubMed  CAS  Google Scholar 

  104. Seki S, Ito K, Takemura N, Oikawa R, Koutake H, Mihara F, Yagi J, Nakanishi M, Tomio K, Oishi H et al (2022) Laparoscopic hemostasis for abdominal brunt massive hemorrhage due to endometriosis. Asian J Endosc Surg 15(2):376–379. https://doi.org/10.1111/ases.13008

    Article  PubMed  Google Scholar 

  105. Arena A, Degli Esposti E, Cocchi L, Orsini B, Lenzi J, Del Forno S, Raimondo D, Youssef A, Seracchioli R (2022) Three-dimensional ultrasound evaluation of pelvic floor muscle contraction in women affected by deep infiltrating endometriosis: application of a quick contraction scale. J Ultrasound Med 41(12):2973–2979. https://doi.org/10.1002/jum.15996

    Article  PubMed  Google Scholar 

  106. Yamagata Y, Takaki E, Shinagawa M, Okada M, Jozaki K, Lee L, Sato S, Maekawa R, Taketani T, Asada H et al (2015) Retinoic acid has the potential to suppress endometriosis development. J Ovarian Res 8:49. https://doi.org/10.1186/s13048-015-0179-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Sołkiewicz K, Kacperczyk M, Krotkiewski H, Jędryka M, Kratz EM (2022) O-glycosylation changes in Serum immunoglobulin G are associated with inflammation development in advanced endometriosis. Int J Mol Sci 23(15):8087. https://doi.org/10.3390/ijms23158087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Silveira CG, Finas D, Hunold P, Köster F, Stroschein K, Canny GO, Moldenhauer G, Altevogt P, Rody A, Hornung D (2013) L1 cell adhesion molecule as a potential therapeutic target in murine models of endometriosis using a monoclonal antibody approach. PLoS ONE 8(12):e82512. https://doi.org/10.1371/journal.pone.0082512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Osiński M, Wirstlein P, Wender-Ożegowska E, Mikołajczyk M, Jagodziński PP, Szczepańska M (2018) HSD3B2, HSD17B1, HSD17B2, ESR1, ESR2 and AR expression in infertile women with endometriosis. Ginekol Pol 89(3):125–134. https://doi.org/10.5603/GP.a2018.0022

    Article  PubMed  Google Scholar 

  110. Kuessel L, Wenzl R, Proestling K, Balendran S, Pateisky P (2017) Soluble VCAM-1/soluble ICAM-1 ratio is a promising biomarker for diagnosing endometriosis. Hum Reprod 32(4):770–779. https://doi.org/10.1093/humrep/dex02

    Article  PubMed  CAS  Google Scholar 

  111. Zhang D, Li Y, Tian J, Zhang H, Wang S (2015) MiR-202 promotes endometriosis by regulating SOX6 expression. Int J Clin Exp Med 8(10):17757–17764

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Signorile PG, Baldi A, Viceconte R, Vincenzi B, Montella M (2023) Adenogenesis factors FGF7, FGF10, FGF23, IFN-τ and HGF in endometriosis tissue respect to eutopic endometrium: an immunohistochemical study. Crit Rev Eukaryot Gene Expr 33(4):85–94. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023047178

    Article  PubMed  Google Scholar 

  113. Borghese B, Chiche JD, Vernerey D, Chenot C, Mir O, Bijaoui G, Bonaiti-Pellié C, Chapron C (2008) Genetic polymorphisms of matrix metalloproteinase 12 and 13 genes are implicated in endometriosis progression. Hum Reprod 23(5):1207–1213. https://doi.org/10.1093/humrep/den007

    Article  PubMed  CAS  Google Scholar 

  114. Li T, Wang J, Guo X, Yu Q, Ding S, Xu X, Peng Y, Zhu L, Zou G, Zhang X (2020) Possible involvement of crosstalk between endometrial cells and mast cells in the development of endometriosis via CCL8/CCR1. Biomed Pharmacother 129:110476. https://doi.org/10.1016/j.biopha.2020.110476

    Article  PubMed  CAS  Google Scholar 

  115. Tiberi F, Tropea A, Apa R, Romani F, Lanzone A, Marana R (2010) Prokineticin 1 mRNA expression in the endometrium of healthy women and in the eutopic endometrium of women with endometriosis. Fertil Steril 93(7):2145–2149. https://doi.org/10.1016/j.fertnstert.2009.01.105

    Article  PubMed  CAS  Google Scholar 

  116. Lee GJ, Porreca F, Navratilova E (2023) Prolactin and pain of endometriosis. Pharmacol Ther 247:108435. https://doi.org/10.1016/j.pharmthera.2023.108435

    Article  PubMed  CAS  Google Scholar 

  117. Kotronis K, Zafrakas M, Papasozomenou P, Timologou A, Miliaras D, Tarlatzis BC, Grimbizis G (2019) Protein expression pattern of tissue inhibitor of metalloproteinase-3 (TIMP3) in endometriosis and normal endometrium. Gynecol Endocrinol 35(12):1103–1106. https://doi.org/10.1080/09513590.2019.1625880

    Article  PubMed  CAS  Google Scholar 

  118. Wan Y, Gu C, Kong J, Sui J, Zuo L, Song Y, Chen J (2022) Long noncoding RNA ADAMTS9-AS1 represses ferroptosis of endometrial stromal cells by regulating the miR-6516-5p/GPX4 axis in endometriosis. Sci Rep 12(1):2618. https://doi.org/10.1038/s41598-022-04963-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Jafarabady K, Shafiee A, Bahri RA, Mohammadi I, Amini MJ, Rajai S, Akbarzadeh D, Abhari FS, Movahed E, Parvari S et al (2024) Brain-derived neurotrophic factor (BDNF) as a potential marker of endometriosis: a systematic review and meta-analysis. BMC Womens Health 24(1):39. https://doi.org/10.1186/s12905-023-02877-0

    Article  PubMed  PubMed Central  Google Scholar 

  120. Geng T, Sun Y, Cheng L, Cao Y, Zhang M, Hong Z, Ma L, Zhang Y (2022) Downregulation of LHCGR attenuates COX-2 expression and induces luteinized unruptured follicle syndrome in endometriosis. Front Endocrinol (Lausanne) 13:853563. https://doi.org/10.3389/fendo.2022.853563

    Article  PubMed  Google Scholar 

  121. Mohagheghian Yaghoubi H, Samadi M, Tajik N, Babaheidarian P, Movahedinia S, Rashidi N, Delbandi AA (2020) Immunomodulatory effects of vitamin D3 on gene expression of MDGF, EGF and PDGFB in endometriosis. Reprod Biomed Online 41(5):782–789. https://doi.org/10.1016/j.rbmo.2020.05.013

    Article  PubMed  CAS  Google Scholar 

  122. Gibran L, Maranhão RC, Tavares ER, Carvalho PO, Abrão MS, Podgaec S (2017) mRNA levels of low-density lipoprotein receptors are overexpressed in the foci of deep bowel endometriosis. Hum Reprod 32(2):332–339. https://doi.org/10.1093/humrep/dew303

    Article  PubMed  CAS  Google Scholar 

  123. Pashizeh F, Mansouri R, Davari-Tanha F et al (2020) Alterations of CD4+T cell subsets in blood and peritoneal fluid in different stages of endometriosis. Int J Fertil Steril 14(3):201–208. https://doi.org/10.22074/ijfs.2020.6127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Governini L, Carrarelli P, Rocha AL, Leo VD, Luddi A, Arcuri F, Piomboni P, Chapron C, Bilezikjian LM, Petraglia F (2014) FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci 21(10):1249–1255. https://doi.org/10.1177/1933719114522549

    Article  PubMed  CAS  Google Scholar 

  125. Zhu H, Wang Y, He Y, Yu W (2022) Inflammation-mediated macrophage polarization induces TRPV1/TRPA1 heteromers in endometriosis. Am J Transl Res 14(5):3066–3078

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Long Q, Liu X, Qi Q, Guo SW (2016) Chronic stress accelerates the development of endometriosis in mouse through adrenergic receptor β2. Hum Reprod 31(11):2506–2519. https://doi.org/10.1093/humrep/dew237

    Article  PubMed  CAS  Google Scholar 

  127. Sillem M, Prifti S, Monga B, Buvari P, Shamia U, Runnebaum B (1997) Soluble urokinase-type plasminogen activator receptor is over-expressed in uterine endometrium from women with endometriosis. Mol Hum Reprod 3(12):1101–1105. https://doi.org/10.1093/molehr/3.12.1101

    Article  PubMed  CAS  Google Scholar 

  128. Liu D, Yang N, Liang Y, Chen M, Yang F, Liu L, Yao S (2020) Increased expression of epithelial cell adhesion molecule and its possible role in epithelial-mesenchymal transition in endometriosis. J Obstet Gynaecol Res 46(10):2066–2075. https://doi.org/10.1111/jog.14401

    Article  PubMed  CAS  Google Scholar 

  129. Novembri R, Carrarelli P, Toti P, Rocha AL, Borges LE, Reis FM, Piomboni P, Florio P, Petraglia F (2011) Urocortin 2 and urocortin 3 in endometriosis: evidence for a possible role in inflammatory response. Mol Hum Reprod 17(9):587–593. https://doi.org/10.1093/molehr/gar020

    Article  PubMed  CAS  Google Scholar 

  130. Fan W, Huang Z, Xiao Z, Li S, Ma Q (2016) The cytochrome P4501A1 gene polymorphisms and endometriosis: a meta-analysis. J Assist Reprod Genet 33(10):1373–1383. https://doi.org/10.1007/s10815-016-0783-4

    Article  PubMed  PubMed Central  Google Scholar 

  131. Guo X, Ding S, Li T, Wang J, Yu Q, Zhu L, Xu X, Zou G, Peng Y, Zhang X (2020) Macrophage-derived netrin-1 is critical for neuroangiogenesis in endometriosis. Int J Biol Macromol 148:226–237. https://doi.org/10.1016/j.ijbiomac.2020.01.130

    Article  PubMed  CAS  Google Scholar 

  132. Bellelis P, Frediani Barbeiro D, Gueuvoghlanian-Silva BY, Kalil J, Abrão MS, Podgaec S (2019) Interleukin-15 and interleukin-7 are the major cytokines to maintain endometriosis. Gynecol Obstet Invest 84(5):435–444. https://doi.org/10.1159/000496607

    Article  PubMed  CAS  Google Scholar 

  133. Janusz J, Janusz A, Kondera-Anasz Z, Sikora J, Smycz-Kubańska M, Englisz A, Wendlocha D, Mielczarek-Palacz A (2021) Participation of selected soluble BMP-2 and BMP-7 bone morphogenetic proteins and their soluble type I ALK-1 and type II BMPR2 receptors in formation and development of endometriosis. Biomedicines 9(10):1292. https://doi.org/10.3390/biomedicines9101292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Liu YJ, Xing F, Zong K, Wang MY, Ji DM, Zhao YH, Xia YH, Wang A, Shi LG, Ding SM et al (2021) Increased ApoE expression in follicular fluid and the ApoE genotype are associated with endometriosis in chinese women. Front Endocrinol (Lausanne) 12:779183. https://doi.org/10.3389/fendo.2021.779183

    Article  PubMed  Google Scholar 

  135. Hang Y, Tan L, Chen Q, Liu Q, Jin Y (2021) E3 ubiquitin ligase TRIM24 deficiency promotes NLRP3/caspase-1/IL-1β-mediated pyroptosis in endometriosis. Cell Biol Int 45(7):1561–1570. https://doi.org/10.1002/cbin.11592

    Article  PubMed  CAS  Google Scholar 

  136. Liu S, Zhou J, Wen J (2015) Expression and significance of CD133 and ABCG2 in endometriosis. Clin Exp Obstet Gynecol 42(6):771–775

    Article  PubMed  CAS  Google Scholar 

  137. Kowalczyńska LJ, Ferenc T, Wojciechowski M, Mordalska A, Pogoda K, Malinowski A (2014) Endometriosis and RAS system gene polymorphisms: the association of ACE A2350G polymorphism with endometriosis in Polish individuals. DNA Cell Biol 33(5):328–335. https://doi.org/10.1089/dna.2013.2255

    Article  PubMed  CAS  Google Scholar 

  138. Reis FM, Coutinho LM, Vannuccini S, Batteux F, Chapron C, Petraglia F (2020) Progesterone receptor ligands for the treatment of endometriosis: the mechanisms behind therapeutic success and failure. Hum Reprod Update 26(4):565–585. https://doi.org/10.1093/humupd/dmaa009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Kang JO, Hudak WA, Crowley WJ, Criswell BS (1990) Placental-type alkaline phosphatase in peritoneal fluid of women with endometriosis. Clin Chim Acta 186(2):285–294. https://doi.org/10.1016/0009-8981(90)90046-u

    Article  PubMed  CAS  Google Scholar 

  140. Kowalczyk-Zieba I, Woclawek-Potocka I, Wasniewski T, Boruszewska D, Grycmacher K, Sinderewicz E, Staszkiewicz J, Wolczynski S (2019) LPAR2 and LPAR4 are the main receptors responsible for LPA actions in ovarian endometriotic cysts. Reprod Sci 26(1):139–150. https://doi.org/10.1177/1933719118766263

    Article  PubMed  CAS  Google Scholar 

  141. Chen X, Liu M (2022) CircATRNL1 increases acid-sensing ion channel 1 to advance epithelial-mesenchymal transition in endometriosis by binding to microRNA-103a-3p. Reprod Biol 22(2):100643. https://doi.org/10.1016/j.repbio.2022.100643

    Article  PubMed  Google Scholar 

  142. Chou YC, Chen CH, Chen MJ, Chang CW, Chen PH, Yu MH, Chen YJ, Tsai EM, Yang PS, Lin SY et al (2020) Killer cell immunoglobulin-like receptors (KIR) and human leukocyte antigen-C (HLA-C) allorecognition patterns in women with endometriosis. Sci Rep 10(1):4897. https://doi.org/10.1038/s41598-020-61702-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Muharam R, Rahmala Febri R, Mutia K, Iffanolida PA, Maidarti M, Wiweko B, Hestiantoro A (2023) Down-regulation of miR-93 negatively correlates with overexpression of VEGFA and MMP3 in endometriosis: a cross-sectional study. Int J Fertil Steril 17(1):28–33. https://doi.org/10.22074/ijfs.2022.543884.1233

    Article  PubMed  CAS  Google Scholar 

  144. Gan L, Sun J, Sun J (2022) Bioinformatical analysis identifies PDLIM3 as a potential biomarker associated with immune infiltration in patients with endometriosis. PeerJ 10:e13218. https://doi.org/10.7717/peerj.13218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Chen P, Yao M, Fang T, Ye C, Du Y, Jin Y, Wu R (2022) Identification of NFASC and CHL1 as two novel hub genes in endometriosis using integrated bioinformatic analysis and experimental verification. Pharmgenom Pers Med 15:377–392. https://doi.org/10.2147/PGPM.S354957

    Article  Google Scholar 

  146. He B, Teng XM, Hao F, Zhao M, Chen ZQ, Li KM, Yan Q (2022) Decreased intracellular IL-33 impairs endometrial receptivity in women with adenomyosis. Front Endocrinol (Lausanne) 13:928024. https://doi.org/10.3389/fendo.2022.928024

    Article  PubMed  Google Scholar 

  147. Liu D, Liu M, Yu P, Li H (2023) Brain-derived neurotrophic factor and nerve growth factor expression in endometriosis: a systematic review and meta-analysis. Taiwan J Obstet Gynecol 62(5):634–639. https://doi.org/10.1016/j.tjog.2023.07.003

    Article  PubMed  Google Scholar 

  148. Janša V, Klančič T, Pušić M, Klein M, Vrtačnik Bokal E, Ban Frangež H, Rižner TL (2021) Proteomic analysis of peritoneal fluid identified COMP and TGFBI as new candidate biomarkers for endometriosis. Sci Rep 11(1):20870. https://doi.org/10.1038/s41598-021-00299-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Florio P, Reis FM, Torres PB, Calonaci F, Abrao MS, Nascimento LL, Franchini M, Cianferoni L, Petraglia F (2009) High serum follistatin levels in women with ovarian endometriosis. Hum Reprod 24(10):2600–2606. https://doi.org/10.1093/humrep/dep195

    Article  PubMed  CAS  Google Scholar 

  150. Wan Y, Song Y, Chen J, Kong J, Gu C, Huang J, Zuo L (2022) Upregulated fibulin-1 increased endometrial stromal cell viability and migration by repressing EFEMP1-dependent ferroptosis in endometriosis. Biomed Res Int 2022:4809415. https://doi.org/10.1155/2022/4809415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Cheng W, Shan J, Ding J, Liu Y, Sun S, Xu L, Yu C (2023) herapeutic effects of Huayu Jiedu formula on endometriosis via downregulating GATA 6 expression. Heliyon 10(1):e23149. https://doi.org/10.1016/j.heliyon.2023.e23149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Zhu J, Xu Z, Wu P, Zeng C, Peng C, Zhou Y, Xue Q (2023) MicroRNA-92a-3p inhibits cell proliferation and invasion by regulating the transcription factor 21/steroidogenic factor 1 axis in endometriosis. Reprod Sci 30(7):2188–2197. https://doi.org/10.1007/s43032-021-00734-9

    Article  PubMed  CAS  Google Scholar 

  153. da Luz CM, da Broi MG, Donabela FC, Paro de Paz CC, Meola J, Navarro PA (2017) PTGS2 down-regulation in cumulus cells of infertile women with endometriosis. Reprod Biomed Online 35(4):379–386. https://doi.org/10.1016/j.rbmo.2017.06.021

    Article  PubMed  CAS  Google Scholar 

  154. Mihara Y, Maekawa R, Sato S, Shimizu N, Doi-Tanaka Y, Takagi H, Shirafuta Y, Shinagawa M, Tamura I, Taketani T et al (2020) An integrated genomic approach identifies HOXC8 as an upstream regulator in ovarian endometrioma. J Clin Endocrinol Metab 105(12):dgaa618. https://doi.org/10.1210/clinem/dgaa618

    Article  PubMed  Google Scholar 

  155. Rižner TL, Penning TM (2020) Aldo-keto reductase 1C3-assessment as a new target for the treatment of endometriosis. Pharmacol Res 152:104446. https://doi.org/10.1016/j.phrs.2019.104446

    Article  PubMed  CAS  Google Scholar 

  156. Xu H, Gao Y, Shu Y, Wang Y, Shi Q (2019) EPHA3 enhances macrophage autophagy and apoptosis by disrupting the mTOR signaling pathway in mice with endometriosis. Biosci Rep 39(7):BSR20182274. https://doi.org/10.1042/BSR20182274

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lin J, Zong L, Kennedy SH, Zondervan KT (2011) Coding regions of INHBA, SFRP4 and HOXA10 are not implicated in familial endometriosis linked to chromosome 7p13-15. Mol Hum Reprod 17(10):605–611. https://doi.org/10.1093/molehr/gar035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Dehghanian M, Yarahmadi G, Sandoghsaz RS, Khodadadian A, Shamsi F, Vahidi Mehrjardi MY (2023) Evaluation of Rap1GAP and EPAC1 gene expression in endometriosis disease. Adv Biomed Res 12:101. https://doi.org/10.4103/abr.abr_86_22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Almasi MZ, Hosseini E, Jafari R, Aflatoonian K, Aghajanpour S, Ramazanali F, Moini A, Shahhoseini M, Afsharian P, Aflatoonian R (2021) Evaluation of Toll-like receptor 3 (TLR3) signaling pathway genes and its genetic polymorphisms in ectopic and eutopic endometrium of women with endometriosis. J Gynecol Obstet Hum Reprod 50(9):102153. https://doi.org/10.1016/j.jogoh.2021.102153

    Article  PubMed  Google Scholar 

  160. Wang X, Jiang X, Lv X, Wang X, Lin A, Li Y (2024) NADPH oxidase 4-mediating oxidative stress contributes to endometriosis. J Appl Genet 65(1):113–120. https://doi.org/10.1007/s13353-023-00810-7

    Article  PubMed  CAS  Google Scholar 

  161. Janša V, Pušić Novak M, Ban Frangež H, Rižner TL (2023) TGFBI as a candidate biomarker for non-invasive diagnosis of early-stage endometriosis. Hum Reprod 38(7):1284–1296. https://doi.org/10.1093/humrep/dead091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Huang Z, Shen F, Chen J, Xie B, Chen X, Zhao Y, Chen S (2024) LncRNA linc01194 promotes the progress of endometrial carcinoma by up-regulating SOX2 through binding to IGF2BP1. J Gynecol Oncol 35(2):e21. https://doi.org/10.3802/jgo.2024.35.e21

    Article  PubMed  CAS  Google Scholar 

  163. Bellessort B, Le Cardinal M, Bachelot A, Narboux-Nême N, Garagnani P, Pirazzini C, Barbieri O, Mastracci L, Jonchere V, Duvernois-Berthet E et al (2016) Dlx5 and Dlx6 control uterine adenogenesis during post-natal maturation: possible consequences for endometriosis. Hum Mol Genet 25(1):97–108. https://doi.org/10.1093/hmg/ddv452

    Article  PubMed  CAS  Google Scholar 

  164. Jafari M, Khodaverdi S, Sadri M, Moradi Z, Mohammadi T, Heidari S, Akhavan Sales Z, Delbandi AA (2021) Association between vitamin D receptor (VDR) and vitamin D binding protein (VDBP) genes polymorphisms to endometriosis susceptibility in iranian women. Reprod Sci 28(12):3491–3497. https://doi.org/10.1007/s43032-021-00598-z

    Article  PubMed  CAS  Google Scholar 

  165. Lan S, Zhang Z, Li Q (2023) FZD7: a potential biomarker for endometriosis. Medicine (Baltimore) 102(40):e35406. https://doi.org/10.1097/MD.0000000000035406

    Article  PubMed  CAS  Google Scholar 

  166. Araujo FM, Meola J, Rosa-E-Silva JC, Paz CCP, Ferriani RA, Nogueira AA (2017) Increased expression of ID2, PRELP and SMOC2 genes in patients with endometriosis. Braz J Med Biol Res 50(7):e5782. https://doi.org/10.1590/1414-431X20175782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Sobstyl M, Niedźwiedzka-Rystwej P, Grywalska E, Korona-Głowniak I, Sobstyl A, Bednarek W, Roliński J (2020) Toll-like receptor 2 expression as a new hallmark of advanced endometriosis. Cells 9(8):1813. https://doi.org/10.3390/cells9081813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Burns KA, Thomas SY, Hamilton KJ, Young SL, Cook DN, Korach KS (2018) Early endometriosis in females is directed by immune-mediated estrogen receptor α and IL-6 cross-talk. Endocrinology 159(1):103–118. https://doi.org/10.1210/en.2017-00562

    Article  PubMed  CAS  Google Scholar 

  169. Sun WS, Misao R, Iwagaki S, Fujimoto J, Tamaya T (2002) Coexpression of growth arrest-specific gene 6 and receptor tyrosine kinases, Axl and Sky, in human uterine endometrium and ovarian endometriosis. Mol Hum Reprod 8(6):552–558. https://doi.org/10.1093/molehr/8.6.552

    Article  PubMed  CAS  Google Scholar 

  170. Hsiao KY, Chang N, Tsai JL, Lin SC, Tsai SJ, Wu MH (2017) Hypoxia-inhibited DUSP2 expression promotes IL-6/STAT3 signaling in endometriosis. Am J Reprod Immunol 78(4):e12690. https://doi.org/10.1111/aji.12690.10.1111/aji.12690

    Article  Google Scholar 

  171. Signorile PG, Baldi A, Viceconte R, Vincenzi B, Montella M (2023) Adenogenesis factors FGF7, FGF10, FGF23, IFN-τ and HGF in endometriosis tissue respect to eutopic endometrium: an immunohistochemical study. Crit Rev Eukaryot Gene Expr 33(4):85–94. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023047178

    Article  PubMed  Google Scholar 

  172. Zhang Y, Chang X, Wu D, Deng M, Miao J, Jin Z (2021) Down-regulation of exosomal miR-214-3p targeting CCN2 contributes to endometriosis fibrosis and the role of exosomes in the horizontal transfer of miR-214-3p. Reprod Sci 28(3):715–727. https://doi.org/10.1007/s43032-020-00350-z

    Article  PubMed  CAS  Google Scholar 

  173. Kai K, Joshi NR, Burns GW, Hrbek SM, Vegter EL, Ochoa-Bernal MA, Song Y, Moldovan GE, Sempere LF, Miyadahira EH et al (2023) MicroRNA-210-3p regulates endometriotic lesion development by targeting IGFBP3 in baboons and women with endometriosis. Reprod Sci 30(10):2932–2944. https://doi.org/10.1007/s43032-023-01253-5

    Article  PubMed  CAS  Google Scholar 

  174. Chen P, Yao M, Fang T, Ye C, Du Y, Jin Y, Wu R (2022) Identification of NFASC and CHL1 as two novel hub genes in endometriosis using integrated bioinformatic analysis and experimental verification. Pharmgenomics Pers Med 15:377–392. https://doi.org/10.2147/PGPM.S354957

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kocbek V, Hevir-Kene N, Bersinger NA, Mueller MD, Rižner TL (2014) Increased levels of biglycan in endometriomas and peritoneal fluid samples from ovarian endometriosis patients. Gynecol Endocrinol 30(7):520–524. https://doi.org/10.3109/09513590.2014.898055

    Article  PubMed  CAS  Google Scholar 

  176. Lee HC, Lin SC, Wu MH, Tsai SJ (2021) Inhibiting NTRK2 signaling causes endometriotic lesion regression. Reproduction 161(1):11–19. https://doi.org/10.1530/REP-20-0163

    Article  PubMed  CAS  Google Scholar 

  177. Guo SW, Zheng Y, Lu Y, Liu X, Geng JG (2013) Slit2 overexpression results in increased microvessel density and lesion size in mice with induced endometriosis. Reprod Sci 20(3):285–298. https://doi.org/10.1177/1933719112452940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Xu A, Jiang M, Li S, Fei Q (2020) Down-regulation of circ_0061140 attenuates ectopic endometrial cell proliferation, migration and invasion in endometriosis via inactivating Notch2. Gene 757:144926. https://doi.org/10.1016/j.gene.2020.144926

    Article  PubMed  CAS  Google Scholar 

  179. Moberg C, Bourlev V, Ilyasova N, Olovsson M (2015) Endometrial expression of LIF and its receptor and peritoneal fluid levels of IL-1α and IL-6 in women with endometriosis are associated with the probability of pregnancy. Arch Gynecol Obstet 292(2):429–437. https://doi.org/10.1007/s00404-015-3626-0

    Article  PubMed  CAS  Google Scholar 

  180. Hamilton M, Turpin V, Ayoub A, Reihani A, Arredondo J, Ask K, Clark DA, Foster WG (2023) Circulating CD200 is increased in the secretory phase of women with endometriosis as is endometrial mRNA, and endometrial stromal cell CD200R1 is increased in spite of reduced mRNA. Am J Reprod Immunol 89(1):e13655. https://doi.org/10.1111/aji.13655

    Article  PubMed  CAS  Google Scholar 

  181. Jiang L, Wang S, Xia X, Zhang T, Wang X, Zeng F, Ma J, Fang X (2024) Novel diagnostic biomarker BST2 identified by integrated transcriptomics promotes the development of endometriosis via the TNF-α/NF-κB signaling pathway. Biochem Genet. https://doi.org/10.1007/s10528-024-10666-z

    Article  PubMed  Google Scholar 

  182. Peng LS, Li ZM, Chen G, Liu FY, Luo Y, Guo JB, Gao GD, Deng YH, Xu LX, Zhou JY et al (2021) Frequent DYSF rare variants/mutations in 152 Han Chinese samples with ovarian endometriosis. Arch Gynecol Obstet 304(3):671–677. https://doi.org/10.1007/s00404-021-06094-8

    Article  PubMed  CAS  Google Scholar 

  183. Tian X, Xu L, Wang P (2015) MiR-191 inhibits TNF-α induced apoptosis of ovarian endometriosis and endometrioid carcinoma cells by targeting DAPK1. Int J Clin Exp Pathol 8(5):4933–4942

    PubMed  PubMed Central  Google Scholar 

  184. Timologou A, Zafrakas M, Grimbizis G, Miliaras D, Kotronis K, Stamatopoulos P, Tarlatzis BC (2016) Immunohistochemical expression pattern of metastasis suppressors KAI1 and KISS1 in endometriosis and normal endometrium. Eur J Obstet Gynecol Reprod Biol 199:110–115. https://doi.org/10.1016/j.ejogrb.2016.02.004

    Article  PubMed  CAS  Google Scholar 

  185. Fusco R, D’amico R, Cordaro M, Gugliandolo E, Siracusa R, Peritore AF, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R et al (2018) Absence of formyl peptide receptor 1 causes endometriotic lesion regression in a mouse model of surgically-induced endometriosis. Oncotarget 9(59):31355–31366. https://doi.org/10.18632/oncotarget.258

    Article  PubMed  PubMed Central  Google Scholar 

  186. Cunha-Filho JS, Gross JL, Lemos NA, Dias EC, Vettori D, Souza CA, Passos EP (2002) Prolactin and growth hormone secretion after thyrotrophin-releasing hormone infusion and dopaminergic (DA2) blockade in infertile patients with minimal/mild endometriosis. Hum Reprod 17(4):960–965. https://doi.org/10.1093/humrep/17.4.960

    Article  PubMed  CAS  Google Scholar 

  187. Doberstein K, Spivak R, Reavis HD, Hooda J, Feng Y, Kroeger PT Jr, Stuckelberger S, Mills GB, Devins KM, Schwartz LE et al (2022) L1CAM is required for early dissemination of fallopian tube carcinoma precursors to the ovary. Commun Biol 5(1):1362. https://doi.org/10.1038/s42003-022-04314-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Xie W, Wang W, Meng S, Wu X, Liu X, Liu Y, Kang X, Su Y, Lv X, Guo L et al (2023) A novel hypoxia-stimulated lncRNA HIF1A-AS3 binds with YBX1 to promote ovarian cancer tumorigenesis by suppressing p21 and AJAP1 transcription. Mol Carcinog 62(12):1860–1876. https://doi.org/10.1002/mc.23620

    Article  PubMed  CAS  Google Scholar 

  189. Plourde M, Manhes C, Leblanc G, Durocher F, Dumont M, Sinilnikova O (2008) Mutation analysis and characterization of HSD17B2 sequence variants in breast cancer cases from French Canadian families with high risk of breast and ovarian cancer. J Mol Endocrinol 40(4):161–172. https://doi.org/10.1677/JME-07-0101

    Article  PubMed  CAS  Google Scholar 

  190. Song J, Sokoll LJ, Zhang Z, Chan DW (2023) VCAM-1 complements CA-125 in detecting recurrent ovarian cancer. Clin Proteom 20(1):25. https://doi.org/10.1186/s12014-023-09414-z

    Article  CAS  Google Scholar 

  191. Jia Y, Shi H, Fan D (2015) Significance of gastrin-releasing peptide in ovarian cancer ES2 cells. Oncol Lett 10(1):359–363. https://doi.org/10.3892/ol.2015.3240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Ma J, Zhou C, Yang J, Ding X, Zhu Y, Chen X (2016) Expression of AQP6 and AQP8 in epithelial ovarian tumor. J Mol Histol 47(2):129–134. https://doi.org/10.1007/s10735-016-9657-4

    Article  PubMed  CAS  Google Scholar 

  193. Bao H, Wu W, Li Y, Zong Z, Chen S (2022) WNT6 participates in the occurrence and development of ovarian cancer by upregulating/activating the typical Wnt pathway and Notch1 signaling pathway. Gene 846:146871. https://doi.org/10.1016/j.gene.2022.146871

    Article  PubMed  CAS  Google Scholar 

  194. Mukherjee A, Chiang CY, Daifotis HA, Nieman KM, Fahrmann JF, Lastra RR, Romero IL, Fiehn O, Lengyel E (2020) Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Res 80(8):1748–1761. https://doi.org/10.1158/0008-5472.CAN-19-1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Chapel DB, Hirsch MS (2022) SOX6 expression is sensitive for peritoneal epithelioid malignant mesothelioma, but not specific in the differential diagnosis with tubo-ovarian serous neoplasia. Am J Surg Pathol 46(2):213–219. https://doi.org/10.1097/PAS.0000000000001792

    Article  PubMed  Google Scholar 

  196. Endo Y, Watanabe T, Saito M, Saito K, Suzuki R, Sano H, Natori Y, Sasaki E, Ueda M, Kamo N et al (2022) A rare case of recurrent ovarian cancer with TPM3-NTRK1 gene rearrangement: a case report. Mol Clin Oncol 16(4):90. https://doi.org/10.3892/mco.2022.2523

    Article  PubMed  PubMed Central  Google Scholar 

  197. Han Y, You J, Han Y, Liu Y, Huang M, Lu X, Chen J, Zheng Y (2021) LINC00184 promotes ovarian cancer cells proliferation and cisplatin resistance by elevating CNTN1 expression via sponging miR-1305. Onco Targets Ther 14:2711–2726. https://doi.org/10.2147/OTT.S280490

    Article  PubMed  PubMed Central  Google Scholar 

  198. Li Y, Jia JH, Kang S, Zhang XJ, Zhao J, Wang N, Zhou RM, Sun DL, Duan YN, Wang DJ (2009) The functional polymorphisms on promoter region of matrix metalloproteinase-12, -13 genes may alter the risk of epithelial ovarian carcinoma in Chinese. Int J Gynecol Cancer 19(1):129–133. https://doi.org/10.1111/IGC.0b013e31819a1d8e

    Article  PubMed  Google Scholar 

  199. Eurich K, De La Cruz P, Laguna A, Woodman M, McAdams J, Lips E, Ebott J, DiSilvestro J, Ribeiro J, James N (2023) Multiplex serum immune profiling reveals circulating LAG-3 is associated with improved patient survival in high grade serous ovarian cancer. Gynecol Oncol 174:200–207. https://doi.org/10.1016/j.ygyno.2023.05.015

    Article  PubMed  CAS  Google Scholar 

  200. Lawrenson K, Fonseca MAS, Liu AY, Segato Dezem F, Lee JM, Lin X, Corona RI, Abbasi F, Vavra KC, Dinh HQ et al (2019) A study of high-grade serous ovarian cancer origins implicates the SOX18 transcription factor in tumor development. Cell Rep 29(11):3726-3735.e4. https://doi.org/10.1016/j.celrep.2019.10.122

    Article  PubMed  CAS  Google Scholar 

  201. Krishnan V, Tallapragada S, Schaar B, Kamat K, Chanana AM, Zhang Y, Patel S, Parkash V, Rinker-Schaeffer C, Folkins AK et al (2020) Omental macrophages secrete chemokine ligands that promote ovarian cancer colonization of the omentum via CCR1. Commun Biol 3(1):524. https://doi.org/10.1038/s42003-020-01246-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Takei Y, Mizukami H, Saga Y, Yoshimura I, Hasumi Y, Takayama T, Kohno T, Matsushita T, Okada T, Kume A et al (2007) Suppression of ovarian cancer by muscle-mediated expression of soluble VEGFR-1/Flt-1 using adeno-associated virus serotype 1-derived vector. Int J Cancer 120(2):278–284. https://doi.org/10.1002/ijc.22307

    Article  PubMed  CAS  Google Scholar 

  203. Mitamura T, Zhai T, Hatanaka KC, Hatanaka Y, Amano T, Wang L, Tanaka S, Watari H (2022) Germline PRDM1 Variant rs2185379 in long-term recurrence-free survivors of advanced ovarian cancer. Pharmgenom Pers Med 15:977–984. https://doi.org/10.2147/PGPM.S387120

    Article  Google Scholar 

  204. Shen Z, Gu L, Liu Y, Wang L, Zhu J, Tang S, Wei X, Wang J, Zhang S, Wang X et al (2022) PLAA suppresses ovarian cancer metastasis via METTL3-mediated m6A modification of TRPC3 mRNA. Oncogene 41(35):4145–4158. https://doi.org/10.1038/s41388-022-02411-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Fraungruber P, Kaltofen T, Heublein S, Kuhn C, Mayr D, Burges A, Mahner S, Rathert P, Jeschke U, Trillsch F (2021) G protein-coupled estrogen receptor correlates with Dkk2 expression and has prognostic impact in ovarian cancer patients. Front Endocrinol (Lausanne) 12:564002. https://doi.org/10.3389/fendo.2021.564002

    Article  PubMed  PubMed Central  Google Scholar 

  206. Xu P, Xu S, Pan H, Dai C, Xu Y, Wang L, Cong Y, Zhang H, Cao J, Ge L et al (2023) Differential effects of the LncRNA RNF157-AS1 on epithelial ovarian cancer cells through suppression of DIRAS3- and ULK1-mediated autophagy. Cell Death Dis 14(2):140. https://doi.org/10.1038/s41419-023-05668-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Fuller PJ, Alexiadis M, Jobling T, McNeilage J (2005) Seladin-1/DHCR24 expression in normal ovary, ovarian epithelial and granulosa tumours. Clin Endocrinol (Oxf) 63(1):111–115. https://doi.org/10.1111/j.1365-2265.2005.02308.x

    Article  PubMed  CAS  Google Scholar 

  208. Coffman LG, Choi YJ, McLean K, Allen BL, di Magliano MP, Buckanovich RJ (2016) Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget 7(6):6916–6932. https://doi.org/10.18632/oncotarget.6870

    Article  PubMed  PubMed Central  Google Scholar 

  209. Alkharusi A, AlMuslahi A, AlBalushi N, AlAjmi R, AlRawahi S, AlFarqani A, Norstedt G, Zadjali F (2021) Connections between prolactin and ovarian cancer. PLoS ONE 16(8):e0255701. https://doi.org/10.1371/journal.pone.0255701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Wu J, Wu Y, Chen S, Guo Q, Shao Y, Liu C, Lin K, Wang S, Zhu J, Chen X et al (2024) PARP1-stabilised FOXQ1 promotes ovarian cancer progression by activating the LAMB3/WNT/β-catenin signalling pathway. Oncogene 43(12):866–883. https://doi.org/10.1038/s41388-024-02943-3

    Article  PubMed  CAS  Google Scholar 

  211. Zhou W, Mei J, Gu D, Xu J, Wang R, Wang H, Liu C (2021) Wnt5a: A promising therapeutic target in ovarian cancer. Pathol Res Pract 219:153348. https://doi.org/10.1016/j.prp.2021.153348

    Article  PubMed  CAS  Google Scholar 

  212. Li J, Sun Y, Zhi X, Sun Y, Abudousalamu Z, Lin Q, Li B, Yao L, Chen M (2024) Unraveling the molecular mechanisms of lymph node metastasis in ovarian cancer: focus on MEOX1. J Ovarian Res 17(1):61. https://doi.org/10.1186/s13048-024-01384-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Zhao Q, Zhong J, Lu P, Feng X, Han Y, Ling C, Guo W, Zhou W, Yu F (2021) DOCK4 Is a platinum-chemosensitive and prognostic-related biomarker in ovarian cancer. PPAR Res 2021:6629842. https://doi.org/10.1155/2021/6629842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Hakamy S, Assidi M, Jafri MA, Nedjadi T, Alkhatabi H, Al-Qahtani A, Al-Maghrabi J, Sait K, Al-Qahtani M, Buhmeida A et al (2021) Assessment of prognostic value of tissue inhibitors of metalloproteinase 3 (TIMP3) protein in ovarian cancer. Libyan J Med 16(1):1937866. https://doi.org/10.1080/19932820.2021.1937866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Cai L, Hu X, Ye L, Bai P, Jie Y, Shu K (2022) Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer. Bioengineered 13(4):8226–8239. https://doi.org/10.1080/21655979.2022.2049470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Xu Y, Jiang WG, Wang HC, Martin T, Zeng YX, Zhang J, Qi YS (2019) BDNF activates TrkB/PLCγ1 signaling pathway to promote proliferation and invasion of ovarian cancer cells through inhibition of apoptosis. Eur Rev Med Pharmacol Sci 23(12):5093–5100. https://doi.org/10.26355/eurrev_201906_1817

    Article  PubMed  CAS  Google Scholar 

  217. Xu Y, Wang W, Chen J, Mao H, Liu Y, Gu S, Liu Q, Xi Q, Shi W (2020) High neuropilin and tolloid-like 1 expression associated with metastasis and poor survival in epithelial ovarian cancer via regulation of actin cytoskeleton. J Cell Mol Med 24(16):9114–9124. https://doi.org/10.1111/jcmm.15547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Gu Y, Zhou G, Tang X, Shen F, Ding J, Hua K (2023) The biological roles of CD24 in ovarian cancer: old story, but new tales. Front Immunol 14:1183285. https://doi.org/10.3389/fimmu.2023.1183285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Zhong Y, Wang Y, Huang J, Xu X, Pan W, Gao S, Zhang Y, Su M (2019) Association of hCG and LHCGR expression patterns with clinicopathological parameters in ovarian cancer. Pathol Res Pract 215(4):748–754. https://doi.org/10.1016/j.prp.2019.01.001

    Article  PubMed  CAS  Google Scholar 

  220. Carbone M, Melino G (2019) Stearoyl CoA desaturase regulates ferroptosis in ovarian cancer offering new therapeutic perspectives. Cancer Res 79(20):5149–5150. https://doi.org/10.1158/0008-5472.CAN-19-2453

    Article  PubMed  CAS  Google Scholar 

  221. Szubert S, Moszynski R, Szpurek D, Romaniuk B, Sajdak S, Nowicki M, Michalak S (2019) The expression of platelet-derived growth factor receptors (PDGFRs) and their correlation with overall survival of patients with ovarian cancer. Ginekol Pol 90(5):242–249. https://doi.org/10.5603/GP.a2019.0045

    Article  PubMed  Google Scholar 

  222. Saini A, Chandra KB, Kumar V, Mathur SR, Sharma JB, Kumar S, Yadav S (2020) Analysis of multimerin 1 (MMRN1) expression in ovarian cancer. Mol Biol Rep 47(12):9459–9468. https://doi.org/10.1007/s11033-020-06027-9

    Article  PubMed  CAS  Google Scholar 

  223. Liu L, Sun YH, An R, Cheng RJ, Li N, Zheng JH (2023) LDLR promotes autophagy-mediated cisplatin resistance in ovarian cancer associated with the PI3K/AKT/mTOR signaling pathway. Kaohsiung J Med Sci 39(8):779–788. https://doi.org/10.1002/kjm2.12696

    Article  PubMed  CAS  Google Scholar 

  224. Arman Karakaya Y, Atıgan A, Güler ÖT, Demiray AG, Bir F (2021) The relation of CD3, CD4, CD8 and PD-1 expression with tumor type and prognosis in epithelial ovarian cancers. Ginekol Pol 92(5):344–351. https://doi.org/10.5603/GP.a2021.0080

    Article  PubMed  Google Scholar 

  225. Kommoss S, Anglesio MS, Mackenzie R, Yang W, Senz J, Ho J, Bell L, Lee S, Lorette J, Huntsman DG, Blake GC (2013) FOXL2 molecular testing in ovarian neoplasms: diagnostic approach and procedural guidelines. Mod Pathol 26(6):860–867. https://doi.org/10.1038/modpathol.2012.226

    Article  PubMed  CAS  Google Scholar 

  226. Cao KY, Yan TM, Zhang JZ, Chan TF, Li J, Li C, Lai-Han Leung E, Gao J, Zhang BX, Jiang ZH (2022) A tRNA-derived fragment from Chinese yew suppresses ovarian cancer growth via targeting TRPA1. Mol Ther Nucleic Acids 27:718–732. https://doi.org/10.1016/j.omtn.2021.12.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Chen X, Wang X, Wei X, Wang J (2016) EphA5 protein, a potential marker for distinguishing histological grade and prognosis in ovarian serous carcinoma. J Ovarian Res 9(1):83. https://doi.org/10.1186/s13048-016-0292-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Li S, Yang S, Hong Y (2022) Higher thymocyte selection-associated high mobility group box (TOX) expression predicts poor prognosis in patients with ovarian cancer. BMC Cancer 22(1):1216. https://doi.org/10.1186/s12885-022-10336-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Wang S, Wang C, Liu O, Hu Y, Li X, Lin B (2021) Prognostic value of immune-related cells and genes in the tumor microenvironment of ovarian cancer, especially CST4. Life Sci 277:119461. https://doi.org/10.1016/j.lfs.2021.119461

    Article  PubMed  CAS  Google Scholar 

  230. Gu H, Tu H, Liu L, Liu T, Liu Z, Zhang W, Liu J (2020) RSPO3 is a marker candidate for predicting tumor aggressiveness in ovarian cancer. Ann Transl Med 8(21):1351. https://doi.org/10.21037/atm-20-3731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Guo Y, Yuan J, Yin S, Wang X, Shuai R, Kang J (2017) MAP2K6-FP enhances the sensitiveness of paclitaxel for ovarian cancer via inducing autophagy. Int J Gynecol Cancer 27(6):1082–1087. https://doi.org/10.1097/IGC.0000000000001003

    Article  PubMed  Google Scholar 

  232. Czekierdowski A, Stachowicz N, Czekierdowska S, Łoziński T, Gurynowicz G, Kluz T (2018) Prognostic significance of TEM7 and nestin expression in women with advanced high grade serous ovarian cancer. Ginekol Pol 89(3):135–141. https://doi.org/10.5603/GP.a2018.0023

    Article  PubMed  Google Scholar 

  233. Sun T, Bi F, Liu Z, Yang Q (2021) TMEM119 facilitates ovarian cancer cell proliferation, invasion, and migration via the PDGFRB/PI3K/AKT signaling pathway. J Transl Med 19(1):111. https://doi.org/10.1186/s12967-021-02781-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Liu L, Zhang Z, Zhang G, Wang T, Ma Y, Guo W (2020) Down-regulation of PADI2 prevents proliferation and epithelial-mesenchymal transition in ovarian cancer through inhibiting JAK2/STAT3 pathway in vitro and in vivo, alone or in combination with Olaparib. J Transl Med 18(1):357. https://doi.org/10.1186/s12967-020-02528-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Arechavaleta-Velasco F, Cuevas-Antonio R, Dominguez-Lopez P, Estrada-Moscoso I, Imani-Razavi FS, Zeferino-Toquero M, Diaz-Cueto L (2014) Matrix metalloproteinase-8 promoter gene polymorphisms in Mexican women with ovarian cancer. Med Oncol 31(8):132. https://doi.org/10.1007/s12032-014-0132-3

    Article  PubMed  CAS  Google Scholar 

  236. Cybulski M, Jeleniewicz W, Nowakowski A, Stenzel-Bembenek A, Tarkowski R, Kotarski J, Stepulak A (2015) Cyclin I mRNA expression correlates with kinase insert domain receptor expression in human epithelial ovarian cancer. Anticancer Res 35(2):1115–1119

    PubMed  CAS  Google Scholar 

  237. Huang T, Tworoger SS, Hecht JL, Rice MS, Sood AK, Kubzansky LD, Poole EM (2016) Association of ovarian tumor β2-adrenergic receptor status with ovarian cancer risk factors and survival. Cancer Epidemiol Biomarkers Prev 25(12):1587–1594. https://doi.org/10.1158/1055-9965.EPI-16-0534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Li J, Xu J, Li L, Ianni A, Kumari P, Liu S, Sun P, Braun T, Tan X, Xiang R et al (2020) MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Theranostics 10(14):6467–6482. https://doi.org/10.7150/thno.43865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Landskron J, Kraggerud SM, Wik E, Dørum A, Bjørnslett M, Melum E, Helland Ø, Bjørge L, Lothe RA, Salvesen HB et al (2017) C77G in PTPRC (CD45) is no risk allele for ovarian cancer, but associated with less aggressive disease. PLoS ONE 12(7):e0182030. https://doi.org/10.1371/journal.pone.0182030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Li Y, Jaiswal SK, Kaur R, Alsaadi D, Liang X, Drews F, DeLoia JA, Krivak T, Petrykowska HM, Gotea V et al (2021) Differential gene expression identifies a transcriptional regulatory network involving ER-alpha and PITX1 in invasive epithelial ovarian cancer. BMC Cancer 21(1):768. https://doi.org/10.1186/s12885-021-08276-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Al-Zahrani MH, Yahya FM, Assidi M, Dallol A, Buhmeida A (2021) Klotho promoter methylation status and its prognostic value in ovarian cancer. Mol Clin Oncol 15(3):181. https://doi.org/10.3892/mco.2021.2343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. van Dam PA, Coelho A, Rolfo C (2017) Is there a role for urokinase-type plasminogen activator inhibitors as maintenance therapy in patients with ovarian cancer? Eur J Surg Oncol 43(2):252–257. https://doi.org/10.1016/j.ejso.2016.06.002

    Article  PubMed  Google Scholar 

  243. Couch FJ, Gaudet MM, Antoniou AC, Ramus SJ, Kuchenbaecker KB, Soucy P, Beesley J, Chen X, Wang X, Kirchhoff T et al (2012) Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 21(4):645–657. https://doi.org/10.1158/1055-9965.EPI-11-0888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Sohn EJ (2022) PIK3R3, a regulatory subunit of PI3K, modulates ovarian cancer stem cells and ovarian cancer development and progression by integrative analysis. BMC Cancer 22(1):708. https://doi.org/10.1186/s12885-022-09807-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Sun H, Wang H, Wang X, Aoki Y, Wang X, Yang Y, Cheng X, Wang Z, Wang X (2020) Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Theranostics 10(15):6928–6945. https://doi.org/10.7150/thno.43811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Zhang H, Yuan N, Che H, Cheng X (2023) MiR-188-5p inhibits cell proliferation and migration in ovarian cancer via competing for CCND2 with ELAVL1. Cell Mol Biol (Noisy-le-grand) 69(3):69–74. https://doi.org/10.14715/cmb/2023.69.3.9

    Article  PubMed  Google Scholar 

  247. Fu X, Zhang Q, Wang Z, Xu Y, Dong Q (2024) CRABP2 affects chemotherapy resistance of ovarian cancer by regulating the expression of HIF1α. Cell Death Dis 15(1):21. https://doi.org/10.1038/s41419-023-06398-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Shi C, Yang Y, Zhang L, Yu J, Qin S, Xu H, Gao Y (2019) MiR-200a-3p promoted the malignant behaviors of ovarian cancer cells through regulating PCDH9. Onco Targets Ther 12:8329–8338. https://doi.org/10.2147/OTT.S220339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Nunna S, Reinhardt R, Ragozin S, Jeltsch A (2014) Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS ONE 9(1):e87703. https://doi.org/10.1371/journal.pone.0087703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Krishna Priya S, Kumar K, Hiran KR, Bindhu MR, Nagare RP, Vijaykumar DK, Ganesan TS (2017) Expression of a novel endothelial marker, C-type lectin 14A, in epithelial ovarian cancer and its prognostic significance. Int J Clin Oncol 22(1):107–117. https://doi.org/10.1007/s10147-016-1033-6

    Article  PubMed  CAS  Google Scholar 

  251. Piotrowska-Kempisty H, Klupczyńska A, Trzybulska D, Kulcenty K, Sulej-Suchomska AM, Kucińska M, Mikstacka R, Wierzchowski M, Murias M, Baer-Dubowska W, Kokot Z et al (2017) Role of CYP1A1 in the biological activity of methylated resveratrol analogue, 3,4,5,4′-tetramethoxystilbene (DMU-212) in ovarian cancer A-2780 and non-cancerous HOSE cells. Toxicol Lett 267:59–66. https://doi.org/10.1016/j.toxlet.2016.12.018

    Article  PubMed  CAS  Google Scholar 

  252. Papanastasiou AD, Pampalakis G, Katsaros D, Sotiropoulou G (2011) Netrin-1 overexpression is predictive of ovarian malignancies. Oncotarget 2(5):363–367. https://doi.org/10.18632/oncotarget.258

    Article  PubMed  PubMed Central  Google Scholar 

  253. Wang Y, Hu C, Dong R, Huang X, Qiu H (2011) Platelet-derived growth factor-D promotes ovarian cancer invasion by regulating matrix metalloproteinases 2 and 9. Asian Pac J Cancer Prev 12(12):3367–3370

    PubMed  Google Scholar 

  254. Uthayanan L, El-Bahrawy M (2022) Potential roles of claudin-3 and claudin-4 in ovarian cancer management. J Egypt Natl Canc Inst 34(1):24. https://doi.org/10.1186/s43046-022-00125-4

    Article  PubMed  Google Scholar 

  255. Kumar J, Fang H, McCulloch DR, Crowley T, Ward AC (2017) Leptin receptor signaling via Janus kinase 2/Signal transducer and activator of transcription 3 impacts on ovarian cancer cell phenotypes. Oncotarget 8(55):93530–93540. https://doi.org/10.18632/oncotarget.19873

    Article  PubMed  PubMed Central  Google Scholar 

  256. Felices M, Wesley E, Bendzick LE, Kodal B, Hopps R, Grzywacz B, Hinderlie P, Miller JS, Geller MA (2023) Reverse translation identifies the synergistic role of immune checkpoint blockade and IL15 to enhance immunotherapy of ovarian cancer. Cancer Immunol Res 11(5):674–686. https://doi.org/10.1158/2326-6066.CIR-22-0600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Le Page C, Puiffe ML, Meunier L, Zietarska M, de Ladurantaye M, Tonin PN, Provencher D, Mes-Masson AM (2009) BMP-2 signaling in ovarian cancer and its association with poor prognosis. J Ovarian Res 2:4. https://doi.org/10.1186/1757-2215-2-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Diao B, Sun C, Yu P, Zhao Z, Yang P (2023) LAMA5 promotes cell proliferation and migration in ovarian cancer by activating Notch signaling pathway. FASEB J 37(9):e23109. https://doi.org/10.1096/fj.202300306R

    Article  PubMed  CAS  Google Scholar 

  259. Fang S, Luo Y, Zhang Y, Wang H, Liu Q, Li X, Yu T (2021) NTNG1 modulates cisplatin resistance in epithelial ovarian cancer cells via the GAS6/AXL/Akt pathway. Front Cell Dev Biol 9:652325. https://doi.org/10.3389/fcell.2021.652325

    Article  PubMed  PubMed Central  Google Scholar 

  260. Sun Z, Zhou R, Dai J, Chen J, Liu Y, Wang M, Zhou R, Liu F, Zhang Q, Xu Y et al (2023) KRT19 is a promising prognostic biomarker and associates with immune infiltrates in serous ovarian cystadenocarcinoma. Int J Gen Med 16:4849–4862. https://doi.org/10.2147/IJGM.S419235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Fang DD, Tao R, Wang G, Li Y, Zhang K, Xu C, Zhai G, Wang Q, Wang J, Tang C et al (2022) Discovery of a novel ALK/ROS1/FAK inhibitor, APG-2449, in preclinical non-small cell lung cancer and ovarian cancer models. BMC Cancer 22(1):752. https://doi.org/10.1186/s12885-022-09799-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Lai H, Zhao X, Qin Y, Ding Y, Chen R, Li G, Labrie M, Ding Z, Zhou J, Hu J et al (2018) FAK-ERK activation in cell/matrix adhesion induced by the loss of apolipoprotein E stimulates the malignant progression of ovarian cancer. J Exp Clin Cancer Res 37(1):32. https://doi.org/10.1186/s13046-018-0696-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Karin-Kujundzic V, Covarrubias-Pinto A, Skrtic A, Vranic S, Serman L (2022) New insight into the role of PTCH1 protein in serous ovarian carcinomas. Int J Oncol 61(6):145. https://doi.org/10.3892/ijo.2022.5435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Shaosheng W, Shaochuang W, Lichun F, Na X, Xiaohong Z (2021) ITPKA induces cell senescence, inhibits ovarian cancer tumorigenesis and can be downregulated by miR-203. Aging (Albany NY) 13(8):11822–11832. https://doi.org/10.18632/aging.202880

    Article  PubMed  Google Scholar 

  265. Calbay O, Padia R, Akter M, Sun L, Li B, Qian N, Guo J, Fu Z, Jin L, Huang S (2023) ASC/inflammasome-independent pyroptosis in ovarian cancer cells through translational augmentation of caspase-1. iScience 26(12):108408. https://doi.org/10.1016/j.isci.2023.108408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Zhou Y, Zhu Y, Fan X, Zhang C, Wang Y, Zhang L, Zhang H, Wen T, Zhang K, Huo X et al (2017) NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells. Oncotarget 8(20):33110–33121. https://doi.org/10.18632/oncotarget.16145

    Article  PubMed  PubMed Central  Google Scholar 

  267. Li X, Zou Z, Tang J, Zheng Y, Liu Y, Luo Y, Liu Q, Wang Y (2019) NOS1 upregulates ABCG2 expression contributing to DDP chemoresistance in ovarian cancer cells. Oncol Lett 17(2):1595–1602. https://doi.org/10.3892/ol.2018.9787

    Article  PubMed  CAS  Google Scholar 

  268. Beyazit F, Ayhan S, Celik HT, Gungor T (2015) Assessment of serum angiotensin-converting enzyme in patients with epithelial ovarian cancer. Arch Gynecol Obstet 292(2):415–420. https://doi.org/10.1007/s00404-015-3661-x

    Article  PubMed  CAS  Google Scholar 

  269. Kanabekova P, Al-Awadi AM, Bauyrzhanova Z, Tahtouh T, Sarray S, Almawi WY (2022) Genetic variation in progesterone receptor gene and ovarian cancer risk: a case control study. Gene 820:146288. https://doi.org/10.1016/j.gene.2022.146288

    Article  PubMed  CAS  Google Scholar 

  270. Stewart J, James J, McCluggage GW, McQuaid S, Arthur K, Boyle D, Mullan P, McArt D, Yan B, Irwin G et al (2015) Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression. Mod Pathol 28(3):428–436. https://doi.org/10.1038/modpathol.2014.114

    Article  PubMed  CAS  Google Scholar 

  271. O’Mara TA, Nagle CM, Batra J, Kedda MA, Clements JA, Spurdle AB (2011) Kallikrein-related peptidase 3 (KLK3/PSA) single nucleotide polymorphisms and ovarian cancer survival. Twin Res Hum Genet 14(4):323–327. https://doi.org/10.1375/twin.14.4.323

    Article  PubMed  Google Scholar 

  272. Kolb S, Hoffmann I, Monjé N, Dragomir MP, Jank P, Bischoff P, Keunecke C, Pohl J, Kunze CA, Marchenko S et al (2023) LRP1B-a prognostic marker in tubo-ovarian high-grade serous carcinoma. Hum Pathol 141:158–168. https://doi.org/10.1016/j.humpath.2023.09.001

    Article  PubMed  CAS  Google Scholar 

  273. Geng L, Wang Z, Tian Y (2022) Down-regulation of ZNF252P-AS1 alleviates ovarian cancer progression by binding miR-324-3p to downregulate LY6K. J Ovarian Res 15(1):1. https://doi.org/10.1186/s13048-021-00933-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Ravenni N, Weber M, Neri D (2014) A human monoclonal antibody specific to placental alkaline phosphatase, a marker of ovarian cancer. MAbs 6(1):86–94. https://doi.org/10.4161/mabs.27230

    Article  PubMed  Google Scholar 

  275. van Amerongen RA, Tuit S, Wouters AK, van de Meent M, Siekman SL, Meeuwsen MH, Wachsmann TLA, Remst DFG, Hagedoorn RS, van der Steen DM et al (2023) PRAME and CTCFL-reactive TCRs for the treatment of ovarian cancer. Front Immunol 14:1121973. https://doi.org/10.3389/fimmu.2023.1121973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Koller S, Kendler J, Karacs J, Wolf A, Kreuzinger C, Von Der Decken I, Mungenast F, Mechtcheriakova D, Schreiner W, Gleiss A et al (2022) SLCO4A1 expression is associated with activated inflammatory pathways in high-grade serous ovarian cancer. Front Pharmacol 13:946348. https://doi.org/10.3389/fphar.2022.946348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Tang H, Fayomi AP, Bai S, Gupta N, Cascio S, Yang D, Buckanovich RJ (2023) Generation and characterization of humanized affinity-matured EGFL6 antibodies for ovarian cancer therapy. Gynecol Oncol 171:49–58. https://doi.org/10.1016/j.ygyno.2023.02.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Li H, Zhao J, Shi X (2021) GPBAR1 promotes proliferation of serous ovarian cancer by inducing Smad4 ubiquitination. Appl Immunohistochem Mol Morphol 29(7):519–526. https://doi.org/10.1097/PAI.0000000000000917

    Article  PubMed  CAS  Google Scholar 

  279. Wang J, Dai JM, Che YL, Gao YM, Peng HJ, Liu B, Wang H, Linghu H (2014) Elmo1 helps dock180 to regulate Rac1 activity and cell migration of ovarian cancer. Int J Gynecol Cancer 24(5):844–850. https://doi.org/10.1097/IGC.0000000000000137

    Article  PubMed  Google Scholar 

  280. Li F, Liang Z, Jia Y, Zhang P, Ling K, Wang Y, Liang Z (2022) microRNA-324-3p suppresses the aggressive ovarian cancer by targeting WNK2/RAS pathway. Bioengineered 13(5):12030–12044. https://doi.org/10.1080/21655979.2022.2056314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Meng X, Liang X, Yang S, Wu D, Wang X (2024) A miRNA-7704/IL2RB/AKT feedback loop regulates tumorigenesis and chemoresistance in ovarian cancer. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2024.114012

    Article  PubMed  Google Scholar 

  282. Sutton MN, Yang H, Huang GY, Fu C, Pontikos M, Wang Y, Mao W, Pang L, Yang M, Liu J et al (2018) RAS-related GTPases DIRAS1 and DIRAS2 induce autophagic cancer cell death and are required for autophagy in murine ovarian cancer cells. Autophagy 14(4):637–653. https://doi.org/10.1080/15548627.2018.1427022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Li HW, Liu MB, Jiang X, Song T, Feng SX, Wu JY, Deng PF, Wang XY (2022) GALNT14 regulates ferroptosis and apoptosis of ovarian cancer through the EGFR/mTOR pathway. Future Oncol 18(2):149–161. https://doi.org/10.2217/fon-2021-0883

    Article  PubMed  CAS  Google Scholar 

  284. Lin Z, Li D, Cheng W, Wu J, Wang K, Hu Y (2019) MicroRNA-181 functions as an antioncogene and mediates NF-κB pathway by targeting RTKN2 in ovarian cancers. Reprod Sci 26(8):1071–1081. https://doi.org/10.1177/1933719118805865

    Article  PubMed  Google Scholar 

  285. Lyu M, Li X, Shen Y, Lu J, Zhang L, Zhong S, Wang J (2022) CircATRNL1 and circZNF608 inhibit ovarian cancer by sequestering miR-152-5p and encoding protein. Front Genet 13:784089. https://doi.org/10.3389/fgene.2022.784089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Deo AN, Thorat R, Dhadve AC, De A, Rekhi B, Ray P (2022) IGF1R-α6 integrin-S100A4 network governs the organ-specific metastasis of chemoresistant epithelial ovarian cancer cells. Biochim Biophys Acta Mol Basis Dis 1868(1):166282. https://doi.org/10.1016/j.bbadis.2021.166282

    Article  PubMed  CAS  Google Scholar 

  287. Link T, Kuhlmann JD, Kobelt D, Herrmann P, Vassileva YD, Kramer M, Frank K, Göckenjan M, Wimberger P, Stein U (2019) Clinical relevance of circulating MACC1 and S100A4 transcripts for ovarian cancer. Mol Oncol 13(5):1268–1279. https://doi.org/10.1002/1878-0261.12484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Cymbaluk-Płoska A, Chudecka-Głaz A, Pius-Sadowska E, Machaliński B, Menkiszak J, Sompolska-Rzechuła A (2018) Suitability assessment of baseline concentration of MMP3, TIMP3, HE4 and CA125 in the serum of patients with ovarian cancer. J Ovarian Res 11(1):1. https://doi.org/10.1186/s13048-017-0373-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Wu YH, Huang YF, Chang TH, Chen CC, Wu PY, Huang SC, Chou CY (2021) COL11A1 activates cancer-associated fibroblasts by modulating TGF-β3 through the NF-κB/IGFBP2 axis in ovarian cancer cells. Oncogene 40(26):4503–4519. https://doi.org/10.1038/s41388-021-01865-8

    Article  PubMed  CAS  Google Scholar 

  290. Sakamoto H, Friel AM, Wood AW, Guo L, Ilic A, Seiden MV, Chung DC, Lynch MP, Serikawa T, Munro E et al (2008) Mechanisms of Cables 1 gene inactivation in human ovarian cancer development. Cancer Biol Ther 7(2):180–188. https://doi.org/10.4161/cbt.7.2.5253

    Article  PubMed  CAS  Google Scholar 

  291. Li M, Qian Z, Ma X, Lin X, You Y, Li Y, Chen T, Jiang H (2018) MiR-628-5p decreases the tumorigenicity of epithelial ovarian cancer cells by targeting at FGFR2. Biochem Biophys Res Commun 495(2):2085–2091. https://doi.org/10.1016/j.bbrc.2017.12.049

    Article  PubMed  CAS  Google Scholar 

  292. Reivan Ortiz GG, Ciongradi CI, Chaitanya MVNL, Narayanan J, Mohany M, Al-Rejaie SS, Arias-Gonzáles JL, Sârbu I, Assefi M, Akram SV et al (2023) Identification of novel candidate targets for suppressing ovarian cancer progression through IL-33/ST2 axis components using the system biology approach. Front Mol Biosci 10:1189527. https://doi.org/10.3389/fmolb.2023.1189527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Garrido MP, Vera C, Vega M, Quest AFG, Romero C (2018) Metformin prevents nerve growth factor-dependent proliferative and proangiogenic effects in epithelial ovarian cancer cells and endothelial cells. Ther Adv Med Oncol 10:1758835918770984. https://doi.org/10.1177/1758835918770984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Recouvreux MS, Miao J, Gozo MC, Wu J, Walts AE, Karlan BY, Orsulic S (2022) FOXC2 promotes vasculogenic mimicry in ovarian cancer. Cancers (Basel) 14(19):4851. https://doi.org/10.3390/cancers14194851

    Article  PubMed  CAS  Google Scholar 

  295. Gorji-Bahri G, Krishna BM, Hagerling C, Orimo A, Jirström K, Papadakos KS, Blom AM (2024) Stromal cartilage oligomeric matrix protein as a tumorigenic driver in ovarian cancer via Notch3 signaling and epithelial-to-mesenchymal transition. J Transl Med 22(1):351. https://doi.org/10.1186/s12967-024-05083-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Cole AJ, Panesso-Gómez S, Shah JS, Ebai T, Jiang Q, Gumusoglu-Acar E, Bello MG, Vlad A, Modugno F, Edwards RP et al (2023) Quiescent ovarian cancer cells secrete follistatin to induce chemotherapy resistance in surrounding cells in response to chemotherapy. Clin Cancer Res 29(10):1969–1983. https://doi.org/10.1158/1078-0432.CCR-22-2254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Deng Y, Dong Y, Wu L, Zhang Q, Yang L (2023) ARID5B promoted the histone demethylation of SORBS2 and hampered the metastasis of ovarian cancer. Pathol Res Pract 252:154911. https://doi.org/10.1016/j.prp.2023.154911

    Article  PubMed  CAS  Google Scholar 

  298. Yin X, Fang S, Wang M, Wang Q, Fang R, Chen J (2016) EFEMP1 promotes ovarian cancer cell growth, invasion and metastasis via activated the AKT pathway. Oncotarget 7(30):47938–47953. https://doi.org/10.18632/oncotarget.10296

    Article  PubMed  PubMed Central  Google Scholar 

  299. Gao F, Wu Q, Lu D (2024) MicroRNA-10a-5p-mediated downregulation of GATA6 inhibits tumor progression in ovarian cancer. Hum Cell 37(1):271–284. https://doi.org/10.1007/s13577-023-00987-3

    Article  PubMed  CAS  Google Scholar 

  300. Hussain A, Voisin V, Poon S, Karamboulas C, Bui NHB, Meens J, Dmytryshyn J, Ho VW, Tang KH, Paterson J et al (2020) Distinct fibroblast functional states drive clinical outcomes in ovarian cancer and are regulated by TCF21. J Exp Med 217(8):e20191094. https://doi.org/10.1084/jem.20191094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Lurie G, Terry KL, Wilkens LR, Thompson PJ, McDuffie KE, Carney ME, Palmieri RT, Cramer DW, Goodman MT (2010) Pooled analysis of the association of PTGS2 rs5275 polymorphism and NSAID use with invasive ovarian carcinoma risk. Cancer Causes Control 21(10):1731–1741. https://doi.org/10.1007/s10552-010-9602-x

    Article  PubMed  PubMed Central  Google Scholar 

  302. Wu M, Qiu Q, Zhou Q, Li J, Yang J, Zheng C, Luo A, Li X, Zhang H, Cheng X et al (2022) circFBXO7/miR-96-5p/MTSS1 axis is an important regulator in the Wnt signaling pathway in ovarian cancer. Mol Cancer 21(1):137. https://doi.org/10.1186/s12943-022-01611-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  303. Homayoun M, Sajedi N, Soleimani M (2022) In vitro evaluation of the pogostone effects on the expression of PTEN and DACT1 tumor suppressor genes, cell cycle, and apoptosis in ovarian cancer cell line. Res Pharm Sci 17(2):164–175. https://doi.org/10.4103/1735-5362.335175

    Article  PubMed  PubMed Central  Google Scholar 

  304. Li M, Cai J, Han X, Ren Y (2020) Downregulation of circNRIP1 suppresses the paclitaxel resistance of ovarian cancer via regulating the miR-211-5p/HOXC8 axis. Cancer Manag Res 12:9159–9171. https://doi.org/10.2147/CMAR.S268872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Basu M, Roy SS (2013) Wnt/β-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem 288(6):4355–4367. https://doi.org/10.1074/jbc.M112.409102

    Article  PubMed  CAS  Google Scholar 

  306. Charbonneau B, Block MS, Bamlet WR, Vierkant RA, Kalli KR, Fogarty Z, Rider DN, Sellers TA, Tworoger SS, Poole E et al (2014) Risk of ovarian cancer and the NF-κB pathway: genetic association with IL1A and TNFSF10. Cancer Res 74(3):852–861. https://doi.org/10.1158/0008-5472.CAN-13-1051

    Article  PubMed  CAS  Google Scholar 

  307. Cartmel B, Hughes M, Ercolano EA, Gottlieb L, Li F, Zhou Y, Harrigan M, Ligibel JA, von Gruenigen VE, Gogoi R et al (2021) Randomized trial of exercise on depressive symptomatology and brain derived neurotrophic factor (BDNF) in ovarian cancer survivors: the women’s activity and lifestyle study in connecticut (WALC). Gynecol Oncol 161(2):587–594. https://doi.org/10.1016/j.ygyno.2021.02.036

    Article  PubMed  PubMed Central  Google Scholar 

  308. Lin M, Wang J, Wang S, Huang Y (2022) Expression level of keratin 7 in epithelial ovarian cancer and malignant metastasis of benign epithelial ovarian tumors. Cell Mol Biol (Noisy-le-grand) 68(2):153–161. https://doi.org/10.14715/cmb/2022.68.2.22

    Article  PubMed  Google Scholar 

  309. Cui Y, Shen G, Ma L, Lv Q (2021) Overexpression of NDRG2 promotes the therapeutic effect of pazopanib on ovarian cancer. J Recept Signal Transduct Res 41(6):546–552. https://doi.org/10.1080/10799893.2020.1831536

    Article  PubMed  CAS  Google Scholar 

  310. Dawoud MM, Aiad HAES, Tawfiq EAE, Al-Qalashy FSA, Eissa N, El-Rebey HS (2021) Role of SIX1, EYA2, and E-cadherin in ovarian carcinoma. Evidence on epithelial-mesenchymal transition from an immunohistochemical study. Ann Diagn Pathol 55:151815. https://doi.org/10.1016/j.anndiagpath.2021.151815

    Article  PubMed  Google Scholar 

  311. Li X, Yang Z, Xu S, Wang Z, Jin P, Yang X, Zhang Z, Wang Y, Wei X, Fang T et al (2019) Targeting INHBA in ovarian cancer cells suppresses cancer xenograft growth by attenuating stromal fibroblast activation. Dis Markers 2019:7275289. https://doi.org/10.1155/2019/7275289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  312. D’Antona L, Dattilo V, Catalogna G, Scumaci D, Fiumara CV, Musumeci F, Perrotti G, Schenone S, Tallerico R, Spoleti CB et al (2019) n Preclinical model of ovarian cancer, the SGK1 inhibitor SI113 counteracts the development of paclitaxel resistance and restores drug sensitivity. Transl Oncol 12(8):1045–1055. https://doi.org/10.1016/j.tranon.2019.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  313. Li M, Li L, Cheng X, Li L, Tu K (2023) Hypoxia promotes the growth and metastasis of ovarian cancer cells by suppressing ferroptosis via upregulating SLC2A12. Exp Cell Res 433(2):113851. https://doi.org/10.1016/j.yexcr.2023.113851

    Article  PubMed  CAS  Google Scholar 

  314. Moskovich D, Finkelshtein Y, Alfandari A, Rosemarin A, Lifschytz T, Weisz A, Mondal S, Ungati H, Katzav A, Kidron D et al (2021) Targeting the DIO3 enzyme using first-in-class inhibitors effectively suppresses tumor growth: a new paradigm in ovarian cancer treatment. Oncogene 40(44):6248–6257. https://doi.org/10.1038/s41388-021-02020-z

    Article  PubMed  CAS  Google Scholar 

  315. Dafou D, Grun B, Sinclair J, Lawrenson K, Benjamin EC, Hogdall E, Kruger-Kjaer S, Christensen L, Sowter HM, Al-Attar A et al (2010) Microcell-mediated chromosome transfer identifies EPB41L3 as a functional suppressor of epithelial ovarian cancers. Neoplasia 12(7):579–589. https://doi.org/10.1593/neo.10340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. An Y, Wang X, Wu X, Chen L, Yang Y, Lin X, Wang N, Duan J, Long S, Zhao X (2021) Oncolytic reovirus induces ovarian cancer cell apoptosis in a TLR3-dependent manner. Virus Res 301:198440. https://doi.org/10.1016/j.virusres.2021.198440

    Article  PubMed  CAS  Google Scholar 

  317. Xu J, Wu F, Zhu Y, Wu T, Cao T, Gao W, Liu M, Qian W, Feng G, Xi X et al (2024) ANGPTL4 regulates ovarian cancer progression by activating the ERK1/2 pathway. Cancer Cell Int 24(1):54. https://doi.org/10.1186/s12935-024-03246-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  318. Wu Q, Suo Z, Kristensen GB, Baekelandt M, Nesland JM (2006) The prognostic impact of EphB2/B4 expression on patients with advanced ovarian carcinoma. Gynecol Oncol 102(1):15–21. https://doi.org/10.1016/j.ygyno.2005.11.034

    Article  PubMed  CAS  Google Scholar 

  319. Song W, Hu L, Li W, Wang G, Li Y, Yan L, Li A, Cui J (2014) Oncogenic Fli-1 is a potential prognostic marker for the progression of epithelial ovarian cancer. BMC Cancer 14:424. https://doi.org/10.1186/1471-2407-14-424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Zeng Z, Lin C, Zhang MC, Kossinna P, Wang P, Cao D, Wang J, Xu M, Wang X, Li Q et al (2023) Enterolactone and trabectedin suppress epithelial ovarian cancer synergistically via upregulating THBS1. Phytother Res 37(10):4722–4739. https://doi.org/10.1002/ptr.7942

    Article  PubMed  CAS  Google Scholar 

  321. Shepherd TG, Thériault BL, Nachtigal MW (2008) Autocrine BMP4 signalling regulates ID3 proto-oncogene expression in human ovarian cancer cells. Gene 414(1–2):95–105. https://doi.org/10.1016/j.gene.2008.02.015

    Article  PubMed  CAS  Google Scholar 

  322. Liu WJ, Huang YX, Wang W, Zhang Y, Liu BJ, Qiu JG, Jiang BH, Liu LZ (2021) NOX4 signaling mediates cancer development and therapeutic resistance through HER3 in ovarian cancer cells. Cells 10(7):1647. https://doi.org/10.3390/cells10071647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  323. Lecker LSM, Berlato C, Maniati E, Delaine-Smith R, Pearce OMT, Heath O, Nichols SJ, Trevisan C, Novak M, McDermott J et al (2021) TGFBI production by macrophages contributes to an immunosuppressive microenvironment in ovarian cancer. Cancer Res 81(22):5706–5719. https://doi.org/10.1158/0008-5472.CAN-21-0536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  324. Zhu Y, Yang L, Wang J, Li Y, Chen Y (2022) SP1-induced lncRNA MCF2L-AS1 promotes cisplatin resistance in ovarian cancer by regulating IGF2BP1/IGF2/MEK/ERK axis. J Gynecol Oncol 33(6):e75. https://doi.org/10.3802/jgo.2022.33.e75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Yang M, Xie X, Ding Y (2016) SALL4 is a marker of poor prognosis in serous ovarian carcinoma promoting invasion and metastasis. Oncol Rep 35(3):1796–1806. https://doi.org/10.3892/or.2016.4545

    Article  PubMed  CAS  Google Scholar 

  326. Tan Y, Cheung M, Pei J, Menges CW, Godwin AK, Testa JR (2010) Upregulation of DLX5 promotes ovarian cancer cell proliferation by enhancing IRS-2-AKT signaling. Cancer Res 70(22):9197–9206. https://doi.org/10.1158/0008-5472.CAN-10-1568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Huang YF, Wu YH, Cheng WF, Peng SL, Shen WL, Chou CY (2018) Vitamin D-binding protein enhances epithelial ovarian cancer progression by regulating the insulin-like growth factor-1/Akt pathway and vitamin D receptor transcription. Clin Cancer Res 24(13):3217–3228. https://doi.org/10.1158/1078-0432.CCR-17-2943

    Article  PubMed  CAS  Google Scholar 

  328. Califano D, Pignata S, Pisano C, Greggi S, Laurelli G, Losito NS, Ottaiano A, Gallipoli A, Pasquinelli R, De Simone V et al (2010) FEZ1/LZTS1 protein expression in ovarian cancer. J Cell Physiol 222(2):382–386. https://doi.org/10.1002/jcp.21962

    Article  PubMed  CAS  Google Scholar 

  329. Asad M, Wong MK, Tan TZ, Choolani M, Low J, Mori S, Virshup D, Thiery JP, Huang RY (2014) FZD7 drives in vitro aggressiveness in Stem-A subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death Dis 5(7):e1346. https://doi.org/10.1038/cddis.2014.302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. McGrath SE, Annels N, Madhuri TK, Tailor A, Butler-Manuel SA, Morgan R, Pandha H, Michael A (2018) Engrailed-2 (EN2) - a novel biomarker in epithelial ovarian cancer. BMC Cancer 18(1):943. https://doi.org/10.1186/s12885-018-4816-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Fan S, Wang Y, Sheng N, Xie Y, Lu J, Zhang Z, Shan Q, Wu D, Sun C, Li M et al (2019) Low expression of ENC1 predicts a favorable prognosis in patients with ovarian cancer. J Cell Biochem 120(1):861–871. https://doi.org/10.1002/jcb.27447

    Article  PubMed  CAS  Google Scholar 

  332. Marks ZRC, Campbell NK, Mangan NE, Vandenberg CJ, Gearing LJ, Matthews AY, Gould JA, Tate MD, Wray-McCann G, Ying L et al (2023) Interferon-ε is a tumour suppressor and restricts ovarian cancer. Nature 620(7976):1063–1070. https://doi.org/10.1038/s41586-023-06421-w

    Article  PubMed  CAS  Google Scholar 

  333. Li Y, Qu J, Sun Y, Chang C (2023) Troponin T1 promotes the proliferation of ovarian cancer by regulating cell cycle and apoptosis. Iran J Biotechnol 21(1):e3405. https://doi.org/10.30498/ijb.2022.344921.3405

    Article  PubMed  PubMed Central  Google Scholar 

  334. Lei Y, Henderson BR, Emmanuel C, Harnett PR, deFazio A (2015) Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncogene 34(4):485–495. https://doi.org/10.1038/onc.2013.566

    Article  PubMed  CAS  Google Scholar 

  335. Lu R, Tang P, Zhang D, Lin S, Li H, Feng X, Sun M, Zhang H (2023) SOX9/NFIA promotes human ovarian cancer metastasis through the Wnt/β-catenin signaling pathway. Pathol Res Pract 248:154602. https://doi.org/10.1016/j.prp.2023.154602

    Article  PubMed  CAS  Google Scholar 

  336. Nieddu V, Melocchi V, Battistini C, Franciosa G, Lupia M, Stellato C, Bertalot G, Olsen JV, Colombo N, Bianchi F et al (2023) Matrix Gla Protein drives stemness and tumor initiation in ovarian cancer. Cell Death Dis 14(3):220. https://doi.org/10.1038/s41419-023-05760-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Yi X, Liu Y, Zhou B, Xiang W, Deng A, Fu Y, Zhao Y, Ouyang Q, Liu Y, Sun Z et al (2021) Incorporating SULF1 polymorphisms in a pretreatment CT-based radiomic model for predicting platinum resistance in ovarian cancer treatment. Biomed Pharmacother 133:111013. https://doi.org/10.1016/j.biopha.2020.111013

    Article  PubMed  CAS  Google Scholar 

  338. Paucarmayta A, Taitz H, Casablanca Y, Rodriguez GC, Maxwell GL, Darcy KM, Syed V (2019) TGF-β signaling proteins and CYP24A1 may serve as surrogate markers for progesterone calcitriol treatment in ovarian and endometrial cancers of different histological types. Transl Cancer Res 8(4):1423–1437. https://doi.org/10.21037/tcr.2019.07.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  339. Verma S, Bakshi D, Sharma V, Sharma I, Shah R, Bhat A, Bhat GR, Sharma B, Wakhloo A, Kaul S et al (2020) Genetic variants of DNAH11 and LRFN2 genes and their association with ovarian and breast cancer. Int J Gynaecol Obstet 148(1):118–122. https://doi.org/10.1002/ijgo.12997

    Article  PubMed  CAS  Google Scholar 

  340. Sobstyl M, Niedźwiedzka-Rystwej P, Hrynkiewicz R, Bębnowska D, Korona-Głowniak I, Pasiarski M, Sosnowska-Pasiarska B, Smok-Kalwat J, Góźdź S, Sobstyl A et al (2021) Toll-like receptor 2 as a marker molecule of advanced ovarian cancer. Biomolecules 11(8):1205. https://doi.org/10.3390/biom11081205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  341. Yousefi H, Momeny M, Ghaffari SH, Parsanejad N, Poursheikhani A, Javadikooshesh S, Zarrinrad G, Esmaeili F, Alishahi Z, Sabourinejad Z et al (2019) IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. Tumori 105(1):84–91. https://doi.org/10.1177/0300891618784790

    Article  PubMed  CAS  Google Scholar 

  342. Lawrenson K, Grun B, Lee N, Mhawech-Fauceglia P, Kan J, Swenson S, Lin YG, Pejovic T, Millstein J, Gayther SA (2015) NPPB is a novel candidate biomarker expressed by cancer-associated fibroblasts in epithelial ovarian cancer. Int J Cancer 136(6):1390–1401. https://doi.org/10.1002/ijc.2909

    Article  PubMed  CAS  Google Scholar 

  343. Mehner C, Oberg AL, Kalli KR, Nassar A, Hockla A, Pendlebury D, Cichon MA, Goergen KM, Maurer MJ, Goode EL et al (2015) Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers. Oncotarget 6(34):35737–35754. https://doi.org/10.18632/oncotarget.5927

    Article  PubMed  PubMed Central  Google Scholar 

  344. Wiedemeyer K, Köbel M, Koelkebeck H, Xiao Z, Vashisht K (2020) High glypican-3 expression characterizes a distinct subset of ovarian clear cell carcinomas in Canadian patients: an opportunity for targeted therapy. Hum Pathol 98:56–63. https://doi.org/10.1016/j.humpath.2020.01.002

    Article  PubMed  CAS  Google Scholar 

  345. Beck OG, Hardesty MM (2023) Entrectinib use in a platinum-refractory mucinous ovarian cancer harboring a NTRK3 gene fusion. Gynecol Oncol Rep 47:101187. https://doi.org/10.1016/j.gore.2023.101187

    Article  PubMed  PubMed Central  Google Scholar 

  346. Liu Y, Yang J, Shi Z, Tan X, Jin N, O’Brien C, Ott C, Grisoli A, Lee E, Volk K et al (2021) In vivo selection of highly metastatic human ovarian cancer sublines reveals role for AMIGO2 in intra-peritoneal metastatic regulation. Cancer Lett 503:163–173. https://doi.org/10.1016/j.canlet.2021.01.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  347. Wang Y, Qiu C, Lu N, Liu Z, Jin C, Sun C, Bu H, Yu H, Dongol S, Kong B (2018) FOXD1 is targeted by miR-30a-5p and miR-200a-5p and suppresses the proliferation of human ovarian carcinoma cells by promoting p21 expression in a p53-independent manner. Int J Oncol 52(6):2130–2142. https://doi.org/10.3892/ijo.2018.4359

    Article  PubMed  CAS  Google Scholar 

  348. Vlad C, Kubelac P, Onisim A, Fetica B, Fulop A, Irimie A, Achimas-Cadariu P (2016) Expression of CDCP1 and ADAM12 in the ovarian cancer microenvironment. J BUON 21(4):973–978

    PubMed  Google Scholar 

  349. Liu W, Tian X, Ding X, Zhang L (2019) Expression of dual-specificity phosphatase 2 (DUSP2) in patients with serous ovarian carcinoma and in SKOV3 and OVCAR3 cells in vitro. Med Sci Monit 25:10180–10189. https://doi.org/10.12659/MSM.919089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  350. Guo B, Yu L, Sun Y, Yao N, Ma L (2020) Long non-coding RNA USP2-AS1 accelerates cell proliferation and migration in ovarian cancer by sponging miR-520d-3p and Up-regulating KIAA1522. Cancer Manag Res 12:10541–10550. https://doi.org/10.2147/CMAR.S268863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Wang L, Ye TY, Wu H, Chen SY, Weng JR, Xi XW (2019) LINC00702 accelerates the progression of ovarian cancer through interacting with EZH2 to inhibit the transcription of KLF2. Eur Rev Med Pharmacol Sci 23(3 Suppl):201–208. https://doi.org/10.26355/eurrev_201908_18648

    Article  PubMed  CAS  Google Scholar 

  352. Jin Y, Wang H (2022) Circ_0078607 inhibits the progression of ovarian cancer via regulating the miR-32-5p/SIK1 network. J Ovarian Res 15(1):3. https://doi.org/10.1186/s13048-021-00931-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. Feng S, Ding B, Dai Z, Yin H, Ding Y, Liu S, Zhang K, Lin H, Xiao Z, Shen Y (2024) Cancer-associated fibroblast-secreted FGF7 as an ovarian cancer progression promoter. J Transl Med 22(1):280. https://doi.org/10.1186/s12967-024-05085-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  354. Liu L, Chen C, Liu P, Li J, Pang Z, Zhu J, Lin Z, Zhou H, Xie Y, Lan T et al (2023) MYH10 combines with MYH9 to recruit USP45 by deubiquitinating snail and promotes serous ovarian cancer carcinogenesis, progression, and cisplatin resistance. Adv Sci (Weinh) 10(14):e2203423. https://doi.org/10.1002/advs.202203423

    Article  PubMed  CAS  Google Scholar 

  355. Wang Q, Bian CE, Peng H, He L, Zhao X (2015) Association of circulating insulin-like growth factor 1 and insulin-like growth factor binding protein 3 with the risk of ovarian cancer: a systematic review and meta-analysis. Mol Clin Oncol 3(3):623–628. https://doi.org/10.3892/mco.2015.516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  356. Zhang N, Kim SH, Gainullina A, Erlich EC, Onufer EJ, Kim J, Czepielewski RS, Helmink BA, Dominguez JR, Saunders BT et al (2021) LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. J Exp Med 218(12):e20210924. https://doi.org/10.1084/jem.20210924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Topalov NE, Mayr D, Kuhn C, Leutbecher A, Scherer C, Kraus FBT, Tauber CV, Beyer S, Meister S, Hester A et al (2023) Characterization and prognostic impact of ACTBL2-positive tumor-infiltrating leukocytes in epithelial ovarian cancer. Sci Rep 13(1):22620. https://doi.org/10.1038/s41598-023-49286-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. Lin CJ, Huang WR, Wu CZ, Tseng RC (2021) Changes in SLIT2 expression are associated with the migration of human ovarian clear cell carcinoma cells. Oncol Lett 22(1):551. https://doi.org/10.3892/ol.2021.12812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Liu L, Lv J, Lin Z, Ning Y, Li J, Liu P, Chen C (2022) Co-overexpression of GRK5/ACTC1 correlates with the clinical parameters and poor prognosis of epithelial ovarian cancer. Front Mol Biosci 8:785922. https://doi.org/10.3389/fmolb.2021.785922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  360. Harmankaya İ, Akar S, Uğraş S, Güler AH, Ezveci H, Aydoğdu M, Çelik Ç (2021) Nicotinamide N-methyltransferase overexpression may be associated with poor prognosis in ovarian cancer. J Obstet Gynaecol 41(2):248–253. https://doi.org/10.1080/01443615.2020.1732891

    Article  PubMed  CAS  Google Scholar 

  361. Lin HW, Chiang YC, Sun NY, Chen YL, Chang CF, Tai YJ, Chen CA, Cheng WF (2019) CHI3L1 results in poor outcome of ovarian cancer by promoting properties of stem-like cells. Endocr Relat Cancer 26(1):73–88. https://doi.org/10.1530/ERC-18-0300

    Article  PubMed  CAS  Google Scholar 

  362. Chen Y, He Y, Liu S (2023) RUNX1-regulated signaling pathways in ovarian cancer. Biomedicines 11(9):2357. https://doi.org/10.3390/biomedicines11092357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  363. Gao Y, Huang Y (2023) Circ_0007841 knockdown confers cisplatin sensitivity to ovarian cancer cells by down-regulation of NFIB expression in a miR-532-5p-dependent manner. J Chemother 35(2):117–130. https://doi.org/10.1080/1120009X.2022.2056995

    Article  PubMed  CAS  Google Scholar 

  364. Xu X, Wang Q, Shen L, Shen Y, Liu H, Liu Y, Yang Z, Hoffman RM, Feng W (2024) Anlotinib inhibits ovarian cancer and enhances cisplatinum sensitivity via suppressing NOTCH2 expression and stemness. Anticancer Res 44(4):1399–1407. https://doi.org/10.21873/anticanres.16936

    Article  PubMed  Google Scholar 

  365. Meng Q, Duan P, Li L, Miao Y (2018) Expression of placenta growth factor is associated with unfavorable prognosis of advanced-stage serous ovarian cancer. Tohoku J Exp Med 244(4):291–296. https://doi.org/10.1620/tjem.244.291

    Article  PubMed  CAS  Google Scholar 

  366. Parra-Herran C, Dundr P, McCluggage WG (2024) Editorial: infiltrative pattern of invasion is independently associated with shorter survival and desmoplastic stroma markers FAP and THBS2 in mucinous ovarian carcinoma. Histopathology 84(7):1092–1094. https://doi.org/10.1111/his.15181

    Article  PubMed  Google Scholar 

  367. Dansonka-Mieszkowska A, Szafron LA, Kulesza M, Stachurska A, Leszczynski P, Tomczyk-Szatkowska A, Sobiczewski P, Parada J, Kulinczak M, Moes-Sosnowska J, Pienkowska-Grela B et al (2022) PROM1, CXCL8, RUNX1, NAV1 and TP73 genes as independent markers predictive of prognosis or response to treatment in two cohorts of high-grade serous ovarian cancer patients. PLoS ONE 17(7):e0271539. https://doi.org/10.1371/journal.pone.0271539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  368. Sheng Q, Liu X, Fleming E, Yuan K, Piao H, Chen J, Moustafa Z, Thomas RK, Greulich H, Schinzel A et al (2010) An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell 17(3):298–310. https://doi.org/10.1016/j.ccr.2009.12.047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  369. Syed N, Coley HM, Sehouli J, Koensgen D, Mustea A, Szlosarek P, McNeish I, Blagden SP, Schmid P, Lovell DP et al (2011) Polo-like kinase Plk2 is an epigenetic determinant of chemosensitivity and clinical outcomes in ovarian cancer. Cancer Res 71(9):3317–3327. https://doi.org/10.1158/0008-5472.CAN-10-2048

    Article  PubMed  CAS  Google Scholar 

  370. Cortez AJ, Kujawa KA, Wilk AM, Sojka DR, Syrkis JP, Olbryt M, Lisowska KM (2020) Evaluation of the role of ITGBL1 in ovarian cancer. Cancers (Basel) 12(9):2676. https://doi.org/10.3390/cancers12092676

    Article  PubMed  CAS  Google Scholar 

  371. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 57(7):987–996. https://doi.org/10.1007/s00262-007-0429-6

    Article  PubMed  CAS  Google Scholar 

  372. Yang LQ, Hu HY, Han Y, Tang ZY, Gao J, Zhou QY, Liu YX, Chen HS, Xu TN, Ao L et al (2022) CpG-binding protein CFP1 promotes ovarian cancer cell proliferation by regulating BST2 transcription. Cancer Gene Ther 29(12):1895–1907. https://doi.org/10.1038/s41417-022-00503-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  373. Liu X, Wei L, Zhao B, Cai X, Dong C, Yin F (2018) Low expression of KCNN3 may affect drug resistance in ovarian cancer. Mol Med Rep 18(2):1377–1386. https://doi.org/10.3892/mmr.2018.9107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  374. Liu CL, Pan HW, Torng PL, Fan MH, Mao TL (2019) SRPX and HMCN1 regulate cancer-associated fibroblasts to promote the invasiveness of ovarian carcinoma. Oncol Rep 42(6):2706–2715. https://doi.org/10.3892/or.2019.7379

    Article  PubMed  CAS  Google Scholar 

  375. Kollara A, Burt BD, Ringuette MJ, Brown TJ (2023) The adaptor protein VEPH1 interacts with the kinase domain of ERBB2 and impacts EGF signaling in ovarian cancer cells. Cell Signal 106:110634. https://doi.org/10.1016/j.cellsig.2023.110634

    Article  PubMed  CAS  Google Scholar 

  376. Arakawa N, Kobayashi H, Yonemoto N, Masuishi Y, Ino Y, Shigetomi H, Furukawa N, Ohtake N, Miyagi Y, Hirahara F et al (2016) Clinical significance of tissue factor pathway inhibitor 2, a serum biomarker candidate for ovarian clear cell carcinoma. PLoS ONE 11(10):e0165609. https://doi.org/10.1371/journal.pone.0165609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  377. Sung HY, Han J, Ju W, Ahn JH (2016) Synaptotagmin-like protein 2 gene promotes the metastatic potential in ovarian cancer. Oncol Rep 36(1):535–541. https://doi.org/10.3892/or.2016.4835

    Article  PubMed  CAS  Google Scholar 

  378. Liang ZQ, Gao L, Chen JH, Dai WB, Su YS, Chen G (2021) Downregulation of the coiled-coil domain containing 80 and its perspective mechanisms in ovarian carcinoma: a comprehensive study. Int J Genom 2021:3752871. https://doi.org/10.1155/2021/3752871

    Article  CAS  Google Scholar 

  379. Zuberi M, Dholariya S, Khan I, Mir R, Guru S, Bhat M, Sumi M, Saxena A (2021) Epigenetic silencing of DAPK1and p16INK4a genes by CpG island hypermethylation in epithelial ovarian cancer patients. Indian J Clin Biochem 36(2):200–207. https://doi.org/10.1007/s12291-020-00888-4

    Article  PubMed  CAS  Google Scholar 

  380. Singh N, Hutson R, Milton NGN, Javid FA (2022) Ovarian cancer and KiSS-1 gene expression: a consideration of the use of Kisspeptin plus Kisspeptin aptamers in diagnostics and therapy. Eur J Pharmacol 917:174752. https://doi.org/10.1016/j.ejphar.2022.174752

    Article  PubMed  CAS  Google Scholar 

  381. Li J, Qin X, Shi J, Wang X, Li T, Xu M, Chen X, Zhao Y, Han J, Piao Y et al (2021) A systematic CRISPR screen reveals an IL-20/IL20RA-mediated immune crosstalk to prevent the ovarian cancer metastasis. Elife 10:e66222. https://doi.org/10.7554/eLife.66222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  382. Nykopp TK, Rilla K, Sironen R, Tammi MI, Tammi RH, Hämäläinen K, Heikkinen AM, Komulainen M, Kosma VM, Anttila M (2009) Expression of hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in serous ovarian carcinomas: inverse correlation between HYAL1 and hyaluronan content. BMC Cancer 9:143. https://doi.org/10.1186/1471-2407-9-143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  383. Hetland TE, Nymoen DA, Emilsen E, Kærn J, Tropé CG, Flørenes VA, Davidson B (2012) MGST1 expression in serous ovarian carcinoma differs at various anatomic sites, but is unrelated to chemoresistance or survival. Gynecol Oncol 126(3):460–465. https://doi.org/10.1016/j.ygyno.2012.05.029

    Article  PubMed  CAS  Google Scholar 

  384. Minopoli M, Botti G, Gigantino V, Ragone C, Sarno S, Motti ML, Scognamiglio G, Greggi S, Scaffa C, Roca MS et al (2019) Targeting the formyl peptide receptor type 1 to prevent the adhesion of ovarian cancer cells onto mesothelium and subsequent invasion. J Exp Clin Cancer Res 38(1):459. https://doi.org/10.1186/s13046-019-1465-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  385. Gong TT, Liu FH, Xiao Q, Li YZ, Wei YF, Xu HL, Cao F, Sun ML, Jiang FL, Tao T et al (2024) SH3RF2 contributes to cisplatin resistance in ovarian cancer cells by promoting RBPMS degradation. Commun Biol 7(1):67. https://doi.org/10.1038/s42003-023-05721-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  386. Giannini A, D’Oria O, Corrado G, Bruno V, Sperduti I, Bogani G, Laganà AS, Chiantera V, Caserta D, Vizza E (2024) The role of L1CAM as predictor of poor prognosis in stage I endometrial cancer: a systematic review and meta-analysis. Arch Gynecol Obstet 309(3):789–799. https://doi.org/10.1007/s00404-023-07149-8

    Article  PubMed  Google Scholar 

  387. Karageorgi S, McGrath M, Lee IM, Buring J, Kraft P, De Vivo I (2011) Polymorphisms in genes hydroxysteroid-dehydrogenase-17b type 2 and type 4 and endometrial cancer risk. Gynecol Oncol 121(1):54–58. https://doi.org/10.1016/j.ygyno.2010.11.014

    Article  PubMed  CAS  Google Scholar 

  388. Kiseli M, Caglar GS, Yarci Gursoy A, Tasci T, Candar T, Akincioglu E, Pabuccu EG, Boran N, Tulunay G, Umudum H (2018) Pro-gastrin releasing peptide: a new serum marker for endometrioid adenocarcinoma. Gynecol Obstet Invest 83(6):540–545. https://doi.org/10.1159/000488854

    Article  PubMed  CAS  Google Scholar 

  389. Wu Z, Jeong JH, Ren C, Yang L, Ding L, Li F, Jiang D, Zhu Y, Lu J (2021) Fatty acid-binding protein 4 (FABP4) suppresses proliferation and migration of endometrial cancer cells via PI3K/Akt pathway. Onco Targets Ther 14:3929–3942. https://doi.org/10.2147/OTT.S311792

    Article  PubMed  PubMed Central  Google Scholar 

  390. Lin M, Lei T, Zheng J, Chen S, Du L, Xie H (2019) UBE2S mediates tumor progression via SOX6/β-Catenin signaling in endometrial cancer. Int J Biochem Cell Biol 109:17–22. https://doi.org/10.1016/j.biocel.2019.01.014

    Article  PubMed  CAS  Google Scholar 

  391. Yang X, Dong Y, Zhao J, Sun H, Deng Y, Fan J, Yan Q (2007) Increased expression of human macrophage metalloelastase (MMP-12) is associated with the invasion of endometrial adenocarcinoma. Pathol Res Pract 203(7):499–505. https://doi.org/10.1016/j.prp.2007.03.008

    Article  PubMed  CAS  Google Scholar 

  392. Rojo JV, González LO, Lamelas ML, Merino A, Vizoso F (2001) Apolipoprotein D expression in endometrial carcinomas. Acta Obstet Gynecol Scand 80(2):158–161. https://doi.org/10.1034/j.1600-0412.2001.080002158.x

    Article  PubMed  CAS  Google Scholar 

  393. Hong JH, Cho HW, Ouh YT, Lee JK, Chun Y (2023) Lymphocyte activation gene (LAG)-3 is a potential immunotherapeutic target for microsatellite stable, programmed death-ligand 1 (PD-L1)-positive endometrioid endometrial cancer. J Gynecol Oncol 34(2):e18. https://doi.org/10.3802/jgo.2023.34.e18

    Article  PubMed  CAS  Google Scholar 

  394. Zhong W, Liu Y, Zhang L, Zhuang W, Chen J, Huang Z, Zheng Y, Huang Y (2023) Combination of serum CST1 and HE4 for early diagnosis of endometrial cancer. PeerJ 11:e16424. https://doi.org/10.7717/peerj.16424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  395. Panda H, Pelakh L, Chuang TD, Luo X, Bukulmez O, Chegini N (2012) Endometrial miR-200c is altered during transformation into cancerous states and targets the expression of ZEBs, VEGFA, FLT1, IKKβ, KLF9, and FBLN5. Reprod Sci 19(8):786–796. https://doi.org/10.1177/1933719112438448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  396. Chen CH, Weng TH, Huang KY, Kao HJ, Liao KW, Weng SL (2022) Anticancer peptide Q7 suppresses the growth and migration of human endometrial cancer by inhibiting DHCR24 expression and modulating the AKT-mediated pathway. Int J Med Sci 19(14):2008–2021. https://doi.org/10.7150/ijms.78349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  397. Gu W, Mitsuhashi A, Kobayashi T, Shozu M (2022) Metformin attenuates the production and proliferative effects of prolactin induced by medroxyprogesterone acetate during fertility-sparing treatment for endometrial cancer. BMC Cancer 22(1):753. https://doi.org/10.1186/s12885-022-09858-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  398. Wasniewski T, Kiezun J, Krazinski BE, Kowalczyk AE, Szostak B, Wierzbicki PM, Kiewisz J (2019) WNT5A gene and protein expression in endometrial cancer. Folia Histochem Cytobiol 57(2):84–93. https://doi.org/10.5603/FHC.a2019.0010

    Article  PubMed  CAS  Google Scholar 

  399. Catasus L, Pons C, Muñoz J, Espinosa I, Prat J (2013) Promoter hypermethylation contributes to TIMP3 down-regulation in high stage endometrioid endometrial carcinomas. Histopathology 62(4):632–641. https://doi.org/10.1111/his.12047

    Article  PubMed  Google Scholar 

  400. Guan L, Wang Y, Cheng J, Zhang J, Kang S (2023) Expression and clinical significance of HER2/neu, aromatase P450 and adhesion molecule CD24 in endometrial cancer. Eur J Histochem 67(3):3655. https://doi.org/10.4081/ejh.2023.3655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  401. Kölbl AC, Birk AE, Kuhn C, Jeschke U, Andergassen U (2016) Influence of VEGFR and LHCGR on endometrial adenocarcinoma. Oncol Lett 12(3):2092–2098. https://doi.org/10.3892/ol.2016.4906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  402. Yue M, Hu J, Min X, Xu H (2023) Uterine tumor resembling high-grade endometrial mesenchymal sarcoma with GATAD2B-MMRN1 fusion. Int J Clin Exp Pathol 16(9):252–258

    PubMed  PubMed Central  Google Scholar 

  403. Palomero J, Panisello C, Lozano-Rabella M, Tirtakasuma R, Díaz-Gómez J, Grases D, Pasamar H, Arregui L, Dorca Duch E, Guerra Fernández E et al (2022) Biomarkers of tumor-reactive CD4+ and CD8+ TILs associate with improved prognosis in endometrial cancer. J Immunother Cancer 10(12):e005443. https://doi.org/10.1136/jitc-2022-005443

    Article  PubMed  PubMed Central  Google Scholar 

  404. Yilmaz E, Melekoglu R, Taskapan C, Olmez Budak F, Toprak S (2020) The investigation of serum levels of ADAMTS 5 and 8 (the A disintegrin and metalloproteinase with thrombospondin motifs) in the etiology of endometrial cancer. J Obstet Gynaecol 40(6):856–859. https://doi.org/10.1080/01443615.2019.1674265

    Article  PubMed  CAS  Google Scholar 

  405. Keightley MC, Sales KJ, Jabbour HN (2010) PGF2α-F-prostanoid receptor signalling via ADAMTS1 modulates epithelial cell invasion and endothelial cell function in endometrial cancer. BMC Cancer 10:488. https://doi.org/10.1186/1471-2407-10-488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  406. Xue T, Liu X, Zhang M (2021) PADI2-catalyzed MEK1 citrullination activates ERK1/2 and promotes IGF2BP1-mediated SOX2 mRNA stability in endometrial cancer. Adv Sci (Weinh) 8(6):2002831. https://doi.org/10.1002/advs.202002831

    Article  PubMed  CAS  Google Scholar 

  407. Zheng X, Xu K, Zhu L, Mao M, Zhang F, Cui L (2020) MiR-486-5p act as a biomarker in endometrial carcinoma: promotes cell proliferation, migration, invasion by targeting MARK1. Onco Targets Ther 13:4843–4853. https://doi.org/10.2147/OTT.S246841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  408. Wójcik-Krowiranda KM, Szczepaniec S, Bieńkiewicz A (2018) The role of the βKlotho gene in uterine endometrial cancer. Ginekol Pol 89(10):563–567. https://doi.org/10.5603/GP.a2018.0096

    Article  PubMed  Google Scholar 

  409. Nordengren J, Casslén B, Gustavsson B, Einarsdottir M, Willén R (1998) Discordant expression of mRNA and protein for urokinase and tissue plasminogen activators (u-PA, t-PA) in endometrial carcinoma. Int J Cancer 79(2):195–201. https://doi.org/10.1002/(sici)1097-0215(19980417)79:2%3c195::aid-ijc16%3e3.0.co;2-9

    Article  PubMed  CAS  Google Scholar 

  410. Tian W, Li Z, Bai L, Chen L, Yan Y, Li H, Han Y, Teng F, Gao C, Xue F et al (2020) The oncogenic role of SOX8 in endometrial carcinoma. Cancer Biol Ther 21(12):1136–1144. https://doi.org/10.1080/15384047.2020.1840318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  411. Egan D, Moran B, Wilkinson M, Pinyol M, Guerra E, Gatius S, Matias-Guiu X, Kolch W, le Roux CW, Brennan DJ (2022) CRABP2 - A novel biomarker for high-risk endometrial cancer. Gynecol Oncol 167(2):314–322. https://doi.org/10.1016/j.ygyno.2022.09.020

    Article  PubMed  CAS  Google Scholar 

  412. Orton S, Karkia R, Mustafov D, Gharanei S, Braoudaki M, Filipe A, Panfilov S, Saravi S, Khan N, Kyrou I et al (2024) In silico and in vitro mapping of receptor-type protein tyrosine phosphatase receptor type D in health and disease: implications for asprosin signalling in endometrial cancer and neuroblastoma. Cancers (Basel) 16(3):582. https://doi.org/10.3390/cancers16030582

    Article  PubMed  CAS  Google Scholar 

  413. Wen KC, Sung PL, Chou YT, Pan CM, Wang PH, Lee OK, Wu CW (2018) The role of EpCAM in tumor progression and the clinical prognosis of endometrial carcinoma. Gynecol Oncol 148(2):383–392. https://doi.org/10.1016/j.ygyno.2017.11.033

    Article  PubMed  CAS  Google Scholar 

  414. Xu Q, Zhou W, Zhou Y, Zhang X, Jiang R, Ai Z, Chen J, Ma L (2024) IRX2 regulates endometrial carcinoma oncogenesis by transcriptional repressing RUVBL1. Exp Cell Res 434(1):113866. https://doi.org/10.1016/j.yexcr.2023.113866

    Article  PubMed  CAS  Google Scholar 

  415. Peszek W, Kras P, Grabarek BO, Boroń D, Oplawski M (2020) Cisplatin changes expression of SEMA3B in endometrial cancer. Curr Pharm Biotechnol 21(13):1368–1376. https://doi.org/10.2174/1389201021666200514215839

    Article  PubMed  CAS  Google Scholar 

  416. Spyrou I, Sifakis S, Ploumidis A, Papalampros AE, Felekouras E, Tsatsakis AM, Spandidos DA, Androutsopoulos VP (2014) Expression profile of CYP1A1 and CYP1B1 enzymes in endometrial tumors. Tumour Biol 35(10):9549–9556. https://doi.org/10.1007/s13277-014-2240-2

    Article  PubMed  CAS  Google Scholar 

  417. Ding J, Li XM, Liu SL, Zhang Y, Li T (2014) Overexpression of platelet-derived growth factor-D as a poor prognosticator in endometrial cancer. Asian Pac J Cancer Prev 15(8):3741–3745. https://doi.org/10.7314/apjcp.2014.15.8.3741

    Article  PubMed  Google Scholar 

  418. Boroń D, Nowakowski R, Grabarek BO, Zmarzły N, Opławski M (2021) Expression pattern of leptin and its receptors in endometrioid endometrial cancer. J Clin Med 10(13):2787. https://doi.org/10.3390/jcm10132787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  419. Wu C, Li T, Cheng W (2022) The correlation between APOE expression and the clinical characteristics and prognosis of patients with endometrial cancer. Medicine (Baltimore) 101(37):e30536. https://doi.org/10.1097/MD.0000000000030536

    Article  PubMed  CAS  Google Scholar 

  420. Yang Y, Liu PY, Bao W, Chen SJ, Wu FS, Zhu PY (2020) Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer 20(1):28. https://doi.org/10.1186/s12885-019-6491-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  421. Ma X, Xia M, Wei L, Guo K, Sun R, Liu Y, Qiu C, Jiang J (2022) ABX-1431 inhibits the development of endometrial adenocarcinoma and reverses progesterone resistance by targeting MGLL. Cell Death Dis 13(12):1067. https://doi.org/10.1038/s41419-022-05507-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  422. Bayramoglu Z, Kılınc ANU, Omeroglu E, Yilmaz F, Bayramoglu D, Unlu Y, Aydin HA (2022) Expression of extracellular matrix proteins nidogen-1 and legumain in endometrial carcinomas. J Obstet Gynaecol Res 48(4):1019–1025. https://doi.org/10.1111/jog.15158

    Article  PubMed  CAS  Google Scholar 

  423. Pavlič R, Vidic S, Anko M, Knific T, Büdefeld T, Marton K, Sinreih M, Poschner S, Jäger W, Frković-Grazio S et al (2021) Altered profile of E1-S transporters in endometrial cancer: lower protein levels of ABCG2 and OSTβ and up-regulation of SLCO1B3 expression. Int J Mol Sci 22(8):3819. https://doi.org/10.3390/ijms2208381

    Article  PubMed  PubMed Central  Google Scholar 

  424. Raba G, Zawlik I, Braun M, Paszek S, Potocka N, Skrzypa M, Obrzut B, Kluza M, Kluza K, Zych B et al (2020) Evaluation of the association between angiotensin converting enzyme insertion/deletion polymorphism and the risk of endometrial cancer in and characteristics of Polish women. Adv Clin Exp Med 29(5):581–585. https://doi.org/10.17219/acem/118843

    Article  PubMed  Google Scholar 

  425. Przewoźny S, Rogaliński J, de Mezer M, Markowska A, Markowska J, Żurawski J (2024) Estrogen receptor (ER) and progesterone receptor (PgR) expression in endometrial cancer-an immunohistochemical assessment. Diagnostics (Basel) 14(3):322. https://doi.org/10.3390/diagnostics14030322

    Article  PubMed  CAS  Google Scholar 

  426. Signorini Filho RC, de Azevedo Focchi GR, Theodoro TR, Pinhal MA, Nicolau SM (2015) Immunohistochemical expression of heparanases 1 and 2 in benign tissue and in invasive neoplasia of the endometrium: a case-control study. Int J Gynecol Cancer 25(2):269–278. https://doi.org/10.1097/IGC.0000000000000329

    Article  PubMed  Google Scholar 

  427. Cai G, Sun W, Bi F, Wang D, Yang Q (2021) Knockdown of LMTK3 in the endometrioid adenocarcinoma cell line ishikawa: inhibition of growth and estrogen receptor α. Front Oncol 11:692282. https://doi.org/10.3389/fonc.2021.692282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  428. Miggiano GA, Martorana GE, Mordente A, Castelli A (1985) Biochemical properties of alkaline phosphatase from endometrial cancer cells. Enzyme 34(3):113–121. https://doi.org/10.1159/000469373

    Article  PubMed  CAS  Google Scholar 

  429. Garrett AA, Bai S, Cascio S, Gupta N, Yang D, Buckanovich RJ (2024) EGFL6 promotes endometrial cancer cell migration and proliferation. Gynecol Oncol. https://doi.org/10.1016/j.ygyno.2024.02.016

    Article  PubMed  Google Scholar 

  430. Kong X, Li M, Shao K, Yang Y, Wang Q, Cai M (2020) Progesterone induces cell apoptosis via the CACNA2D3/Ca2+/p38 MAPK pathway in endometrial cancer. Oncol Rep 43(1):121–132. https://doi.org/10.3892/or.2019.7396

    Article  PubMed  CAS  Google Scholar 

  431. Gao Q, Huang Q, Li F, Luo F (2021) LncRNA MCTP1-AS1 regulates EMT process in endometrial cancer by targeting the miR-650/SMAD7 axis. Onco Targets Ther 14:751–761. https://doi.org/10.2147/OTT.S240010

    Article  PubMed  PubMed Central  Google Scholar 

  432. Guo J, Ye F, Xie W, Zhang X, Zeng R, Sheng W, Mi Y, Sheng X (2022) The HOXC-AS2/miR-876-5p/HKDC1 axis regulates endometrial cancer progression in a high glucose-related tumor microenvironment. Cancer Sci 113(7):2297–2310. https://doi.org/10.1111/cas.15384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  433. Ren W, Chi YB, Sun JL (2021) Effect of shRNA-mediated regulation of S100A4 gene expression on proliferation and apoptosis of KLE endometrial cancer cells. Clin Transl Oncol 23(1):148–154. https://doi.org/10.1007/s12094-020-02406-7

    Article  PubMed  CAS  Google Scholar 

  434. Wang W, Jin W, Liu X, Zheng L (2022) Circ_0002577/miR-126-5p/MACC1 axis promotes endometrial carcinoma progression by regulation of proliferation, migration, invasion, and apoptosis of endometrial carcinoma cells. Arch Gynecol Obstet 306(2):481–491. https://doi.org/10.1007/s00404-022-06412-8

    Article  PubMed  CAS  Google Scholar 

  435. Beeghly-Fadiel A, Xiang YB, Deming SL, Long JR, Xu WH, Cai Q, Zheng W, Shu XO (2009) No association between matrix metalloproteinase (MMP)-1, MMP-3, and MMP-7 SNPs and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 18(6):1925–1928. https://doi.org/10.1158/1055-9965.EPI-09-0244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  436. Stehbens SJ, Ju RJ, Adams MN, Perry SR, Haass NK, Bryant DM, Pollock PM (2018) FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J Cell Sci 131(15):jcs213678. https://doi.org/10.1242/jcs.213678

    Article  PubMed  CAS  Google Scholar 

  437. Zeng X, Li J, Kang LN, Xi MR, Liao GD (2020) Potential clinical value of interleukin-31 and interleukin-33 with their receptors expression as diagnostic and predictive factors in endometrial cancer: a case-control study. Int J Clin Exp Pathol 13(6):1324–1332

    PubMed  PubMed Central  CAS  Google Scholar 

  438. Zhu Q, Tang M, Wu L (2020) Expression of combined interference of slug and FoxC2 in endometrial carcinoma and its clinicopathological relationship. Transl Cancer Res 9(9):5268–5280. https://doi.org/10.21037/tcr-20-809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  439. Liang M, Liu C, Lei T, Guo S, Min J (2022) Effect of integrin α7 on cell proliferation, invasion, apoptosis and the PI3K/AKT pathway, and its association with clinicopathological features in endometrial cancer. Oncol Lett 25(1):26. https://doi.org/10.3892/ol.2022.13612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  440. Yang T, Zhang H, Qiu H, Li B, Wang J, Du G, Ren C, Wan X (2016) EFEMP1 is repressed by estrogen and inhibits the epithelial-mesenchymal transition via Wnt/β-catenin signaling in endometrial carcinoma. Oncotarget 7(18):25712–25725. https://doi.org/10.18632/oncotarget.8263

    Article  PubMed  PubMed Central  Google Scholar 

  441. Zhao Y, Zou X, Wang G, Liu Y, Zhang C, Lu W, Li Q (2021) Effects of GATA6-AS/MMP9 on malignant progression of endometrial carcinoma. J BUON 26(5):1789–1795

    PubMed  Google Scholar 

  442. Asanoma K, Hori E, Yoshida S, Yagi H, Onoyama I, Kodama K, Yasunaga M, Ohgami T, Kaneki E, Okugawa K et al (2019) Mutual suppression between BHLHE40/BHLHE41 and the MIR301B-MIR130B cluster is involved in epithelial-to-mesenchymal transition of endometrial cancer cells. Oncotarget 10(45):4640–4654. https://doi.org/10.18632/oncotarget.27061

    Article  PubMed  PubMed Central  Google Scholar 

  443. Li Q, Lei Y, Du W (2018) A novel target of p53, TCF21, can respond to hypoxia by MAPK pathway inactivation in uterine corpus endometrial carcinoma. DNA Cell Biol 37(5):473–480. https://doi.org/10.1089/dna.2017.4062

    Article  PubMed  CAS  Google Scholar 

  444. Fan J, Zhou H (2022) Comprehensive analysis of GDF10 methylation site-associated genes as prognostic markers for endometrial cancer. J Oncol 2022:7117083. https://doi.org/10.1155/2022/7117083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  445. Yoshida H, Uno M, Ogimoto K, Kobayashi-Kato M, Tanase Y, Ishikawa M, Kato T (2023) Endometrioid endometrial carcinoma with NKX31 expression in a transgender man: a case report. Int J Gynecol Pathol 42(3):308–314. https://doi.org/10.1097/PGP.0000000000000869

    Article  PubMed  Google Scholar 

  446. Hojnik M, Kenda Šuster N, Smrkolj Š, Frković Grazio S, Verdenik I, Rižner TL (2020) AKR1C3 is associated with better survival of patients with endometrial carcinomas. J Clin Med 9(12):4105. https://doi.org/10.3390/jcm9124105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  447. Peng TF, Zhou YJ, Zhou J, Zhou Y, Li XC, Ouyang Q (2022) Long non-coding RNA VPS9D1-AS1 enhances proliferation, invasion, and epithelial-mesenchymal transition in endometrial cancer via miR-377-3p/SGK1. Kaohsiung J Med Sci 38(11):1048–1059. https://doi.org/10.1002/kjm2.12606

    Article  PubMed  CAS  Google Scholar 

  448. Tamate M, Tanaka R, Osogami H, Matsuura M, Satohisa S, Iwasaki M, Saito T (2017) Rap1GAP inhibits tumor progression in endometrial cancer. Biochem Biophys Res Commun 485(2):476–483. https://doi.org/10.1016/j.bbrc.2017.02.044

    Article  PubMed  CAS  Google Scholar 

  449. Song W, Zhang T, Li W, Mu R, Zhang L, Li Y, Jin B, Wang N, Li A, Cui J (2015) Overexpression of Fli-1 is associated with adverse prognosis of endometrial cancer. Cancer Invest 33(9):469–475. https://doi.org/10.3109/07357907.2015.1069831

    Article  PubMed  CAS  Google Scholar 

  450. Degasper C, Brunner A, Sampson N, Tsibulak I, Wieser V, Welponer H, Marth C, Fiegl H, Zeimet AG (2019) NADPH oxidase 4 expression in the normal endometrium and in endometrial cancer. Tumour Biol 41(2):1010428319830002. https://doi.org/10.1177/1010428319830002

    Article  PubMed  CAS  Google Scholar 

  451. Shen Y, Wang X, Xu J, Lu L (2017) SerpinE2, a poor biomarker of endometrial cancer, promotes the proliferation and mobility of EC cells. Cancer Biomark 19(3):271–278. https://doi.org/10.3233/CBM-160442

    Article  PubMed  CAS  Google Scholar 

  452. Shi Z, Li C, Tarwater L, Li J, Li Y, Kaliney W, Chandrashekar DS, Stack MS (2018) RNA-seq reveals the overexpression of IGSF9 in endometrial cancer. J Oncol 2018:2439527. https://doi.org/10.1155/2018/2439527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  453. Huang Z, Shen F, Chen J, Xie B, Chen X, Zhao Y, Chen S (2024) LncRNA linc01194 promotes the progress of endometrial carcinoma by up-regulating SOX2 through binding to IGF2BP1. J Gynecol Oncol 35(2):e21. https://doi.org/10.3802/jgo.2024.35.e21

    Article  PubMed  CAS  Google Scholar 

  454. Dyhdalo KS, Ababneh E, Lanigan C, Bowers K, Zhang S, McKenney JK, Joehlin-Price AS (2023) Evaluation of lineage/site-specific nuclear immunohistochemical markers SATB2, Cyclin D1, SALL4, and BCOR in high-grade endometrial carcinomas. Int J Gynecol Pathol 42(5):443–450. https://doi.org/10.1097/PGP.0000000000000922

    Article  PubMed  CAS  Google Scholar 

  455. An HJ, Song DH (2019) Displacement of vitamin D receptor is related to lower histological grade of endometrioid carcinoma. Anticancer Res 39(8):4143–4147. https://doi.org/10.21873/anticanres.13573

    Article  PubMed  CAS  Google Scholar 

  456. Qiao Z, Jiang Y, Wang L, Wang L, Jiang J, Zhang J (2019) Mutations in KIAA1109, CACNA1C, BSN, AKAP13, CELSR2, and HELZ2 are associated with the prognosis in endometrial cancer. Front Genet 10:909. https://doi.org/10.3389/fgene.2019.00909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  457. He L, He W, Luo J, Xu M (2022) Upregulated ENC1 predicts unfavorable prognosis and correlates with immune infiltration in endometrial cancer. Front Cell Dev Biol 10:919637. https://doi.org/10.3389/fcell.2022.919637

    Article  PubMed  PubMed Central  Google Scholar 

  458. Li Y, Liu J, Piao J, Ou J, Zhu X (2021) Circ_0109046 promotes the malignancy of endometrial carcinoma cells through the microRNA-105/SOX9/Wnt/β-catenin axis. IUBMB Life 73(1):159–176. https://doi.org/10.1002/iub.2415

    Article  PubMed  CAS  Google Scholar 

  459. Wang J, Song T, Zhou S, Kong X (2019) YAP promotes the malignancy of endometrial cancer cells via regulation of IL-6 and IL-11. Mol Med 25(1):32. https://doi.org/10.1186/s10020-019-0103-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  460. Bruce SF, Cho K, Noia H, Lomonosova E, Stock EC, Oplt A, Blachut B, Mullen MM, Kuroki LM, Hagemann AR et al (2022) GAS6-AXL inhibition by AVB-500 overcomes resistance to paclitaxel in endometrial cancer by decreasing tumor cell glycolysis. Mol Cancer Ther 21(8):1348–1359. https://doi.org/10.1158/1535-7163.MCT-21-0704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  461. Cheng X, Shen C, Liao Z (2023) KLF2 transcription suppresses endometrial cancer cell proliferation, invasion, and migration through the inhibition of NPM1. J Obstet Gynaecol 43(2):2238827. https://doi.org/10.1080/01443615.2023.2238827

    Article  PubMed  CAS  Google Scholar 

  462. Zhang Z, Li B, Wang Z, Yang L, Peng J, Wang H, Wang Y, Hong L (2024) Novel LncRNA LINC02936 suppresses ferroptosis and promotes tumor progression by interacting with SIX1/CP axis in endometrial cancer. Int J Biol Sci 20(4):1356–1374. https://doi.org/10.7150/ijbs.86256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  463. Gribben L, Baxter RC, Marsh DJ (2012) Insulin-like growth factor binding protein-3 inhibits migration of endometrial cancer cells. Cancer Lett 317(1):41–48. https://doi.org/10.1016/j.canlet.2011.11.011

    Article  PubMed  CAS  Google Scholar 

  464. Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Gatter KC, Harris AL, Jackson DG (2005) LYVE-1 immunohistochemical assessment of lymphangiogenesis in endometrial and lung cancer. J Clin Pathol 58(2):202–206. https://doi.org/10.1136/jcp.2004.019174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  465. Shi Y, Zha J, Zuo M, Yan Q, Song H (2020) Long noncoding RNA CHL1-AS1 promotes cell proliferation and migration by sponging miR-6076 to regulate CHL1 expression in endometrial cancer. J Cell Biochem 121(3):2655–2663. https://doi.org/10.1002/jcb.29486

    Article  PubMed  CAS  Google Scholar 

  466. Sun H, Wang X, Zhang Y, Che X, Liu Z, Zhang L, Qiu C, Lv Q, Jiang J (2016) Biglycan enhances the ability of migration and invasion in endometrial cancer. Arch Gynecol Obstet 293(2):429–438. https://doi.org/10.1007/s00404-015-3844-5

    Article  PubMed  CAS  Google Scholar 

  467. Sirohi VK, Popli P, Sankhwar P, Kaushal JB, Gupta K, Manohar M, Dwivedi A (2017) Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells. J Nutr Biochem 44:60–70. https://doi.org/10.1016/j.jnutbio.2016.12.021

    Article  PubMed  CAS  Google Scholar 

  468. Oplawski M, Dziobek K, Grabarek B, Zmarzły N, Dąbruś D, Januszyk P, Brus R, Tomala B, Boroń D (2019) Expression of NRP-1 and NRP-2 in endometrial cancer. Curr Pharm Biotechnol 20(3):254–260. https://doi.org/10.2174/1389201020666190219121602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  469. Wen Q, Xie X, Chen C, Wen B, Liu Y, Zhou J, Lin X, Jin H, Shi K (2023) Lipid reprogramming induced by the NNMT-ABCA1 axis enhanced membrane fluidity to promote endometrial cancer progression. Aging (Albany NY) 15(21):11860–11874. https://doi.org/10.18632/aging.205142

    Article  PubMed  CAS  Google Scholar 

  470. Liang M, Wang H, Liu C, Lei T, Min J (2020) LncRNA RUNX1-IT1 is downregulated in endometrial cancer and binds to miR-21 precursor to suppress its maturation. Cancer Manag Res 12:13451–13459. https://doi.org/10.2147/CMAR.S272165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  471. Whitcomb BP, Mutch DG, Herzog TJ, Rader JS, Gibb RK, Goodfellow PJ (2003) Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res 9(6):2277–2287

    PubMed  CAS  Google Scholar 

  472. Xing M, Wu B, Wang S (2023) Heat shock protein B7 inhibits the progression of endometrial carcinoma by inhibiting PI3K/AKT/mTOR pathway. Reprod Sci 30(2):590–600. https://doi.org/10.1007/s43032-022-01041-7

    Article  PubMed  CAS  Google Scholar 

  473. Srinivasan R, Benton E, McCormick F, Thomas H, Gullick WJ (1999) Expression of the c-erbB-3/HER-3 and c-erbB-4/HER-4 growth factor receptors and their ligands, neuregulin-1 alpha, neuregulin-1 beta, and betacellulin, in normal endometrium and endometrial cancer. Clin Cancer Res 5(10):2877–2883

    PubMed  CAS  Google Scholar 

  474. Kawaguchi R, Maehana T, Sugimoto S, Kawahara N, Iwai K, Yamada Y, Kimura F (2024) Immunohistochemical analysis of the tissue factor pathway inhibitor-2 in endometrial clear cell carcinoma: a single-center retrospective study. Int J Gynecol Pathol 43(1):25–32. https://doi.org/10.1097/PGP.0000000000000956

    Article  PubMed  CAS  Google Scholar 

  475. Nykopp TK, Rilla K, Tammi MI, Tammi RH, Sironen R, Hämäläinen K, Kosma VM, Heinonen S, Anttila M (2010) Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma. BMC Cancer 10:512. https://doi.org/10.1186/1471-2407-10-512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  476. Sun J, Ji G, Xie J, Jiao Z, Zhang H, Chen J (2019) Six-transmembrane epithelial antigen of the prostate 1 is associated with tumor invasion and migration in endometrial carcinomas. J Cell Biochem 120(7):11172–11189. https://doi.org/10.1002/jcb.28393

    Article  PubMed  CAS  Google Scholar 

  477. Yan J, Ye G, Shao Y (2022) High expression of the ferroptosis-associated MGST1 gene in relation to poor outcome and maladjusted immune cell infiltration in uterine corpus endometrial carcinoma. J Clin Lab Anal 36(4):e24317. https://doi.org/10.1002/jcla.24317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  478. Feng S, Lu Y, Sun L, Hao S, Liu Z, Yang F, Zhang L, Wang T, Jiang L, Zhang J et al (2022) MiR-95-3p acts as a prognostic marker and promotes cervical cancer progression by targeting VCAM1. Ann Transl Med 10(21):1171. https://doi.org/10.21037/atm-22-5184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  479. Li W, Song Y, Pan C, Yu J, Zhang J, Zhu X (2021) Aquaporin-8 is a novel marker for progression of human cervical cancer cells. Cancer Biomark 32(3):391–400. https://doi.org/10.3233/CBM-203251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  480. Romanová M, Židlík V, Javůrková V, Kondé A, Šimetka O, Klát J (2023) L1CAM is not a predictive factor in early-stage squamous-cell cervical cancer. In Vivo 37(5):2334–2339. https://doi.org/10.21873/invivo.13337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  481. Li G, Wu Q, Gong L, Xu X, Cai J, Xu L, Zeng Y, He X, Wang Z (2021) FABP4 is an independent risk factor for lymph node metastasis and poor prognosis in patients with cervical cancer. Cancer Cell Int 21(1):568. https://doi.org/10.1186/s12935-021-02273-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  482. Rodríguez-Esquivel M, Romero-Morelos P, Taniguchi-Ponciano K, Mendoza-Rodríguez M, Marrero-Rodríguez D, Bandera-Delgado A, Huerta-Padilla V, Serna-Reyna L, Gómez-Gutiérrez G, Gómez-Virgilio L et al (2020) Expression of pregnancy specific β-1 glycoprotein 1 in cervical cancer cells. Arch Med Res 51(6):504–514. https://doi.org/10.1016/j.arcmed.2020.05.025

    Article  PubMed  CAS  Google Scholar 

  483. Zheng H, Liu M, Shi S, Huang H, Yang X, Luo Z, Song Y, Xu Q, Li T, Xue L et al (2024) MAP4K4 and WT1 mediate SOX6-induced cellular senescence by synergistically activating the ATF2-TGFβ2-Smad2/3 signaling pathway in cervical cancer. Mol Oncol. https://doi.org/10.1002/1878-0261.13613

    Article  PubMed  PubMed Central  Google Scholar 

  484. Lin CL, Ying TH, Yang SF, Chiou HL, Chen YS, Kao SH, Hsieh YH (2021) MTA2 silencing attenuates the metastatic potential of cervical cancer cells by inhibiting AP1-mediated MMP12 expression via the ASK1/MEK3/p38/YB1 axis. Cell Death Dis 12(5):451. https://doi.org/10.1038/s41419-021-03729-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  485. Zhang Y, Qin Y, Li D, Yang Y (2022) A risk prediction model mediated by genes of APOD/APOC1/SQLE associates with prognosis in cervical cancer. BMC Womens Health 22(1):534. https://doi.org/10.1186/s12905-022-02083-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  486. Li Y, Wang W, Tian J, Zhou Y, Shen Y, Wang M, Tang L, Liu C, Zhang X, Shen F et al (2023) Clinical significance of soluble LAG-3 (sLAG-3) in patients with cervical cancer determined via enzyme-linked immunosorbent assay with monoclonal antibodies. Technol Cancer Res Treat 22:15330338231202650. https://doi.org/10.1177/15330338231202650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  487. Petrovic I, Milivojevic M, Popovic J, Schwirtlich M, Rankovic B, Stevanovic M (2015) SOX18 is a novel target gene of hedgehog signaling in cervical carcinoma cell lines. PLoS ONE 10(11):e0143591. https://doi.org/10.1371/journal.pone.0143591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  488. Yang SH, Wang XL, Cai J, Wang SH (2020) Diagnostic value of circulating PIGF in combination with Flt-1 in early cervical cancer. Curr Med Sci 40(5):973–978. https://doi.org/10.1007/s11596-020-2269-y

    Article  PubMed  CAS  Google Scholar 

  489. Zhang C, Liao Y, Liu P, Du Q, Liang Y, Ooi S, Qin S, He S, Yao S, Wang W (2020) FABP5 promotes lymph node metastasis in cervical cancer by reprogramming fatty acid metabolism. Theranostics 10(15):6561–6580. https://doi.org/10.7150/thno.44868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  490. Huang J, Yang J, Zhang Y, Lu D, Dai Y (2023) FTO promotes cervical cancer cell proliferation, colony formation, migration and invasion via the regulation of the BMP4/Hippo/YAP1/TAZ pathway. Exp Cell Res 427(1):113585. https://doi.org/10.1016/j.yexcr.2023.113585

    Article  PubMed  CAS  Google Scholar 

  491. Ramírez De Arellano A, Riera Leal A, Lopez-Pulido EI, González-Lucano LR, Macías Barragan J, Del Toro AS, García-Chagollan M, Palafox-Sánchez CA, Muñoz-Valle JF, Pereira-Suárez AL (2018) A 60 kDa prolactin variant secreted by cervical cancer cells modulates apoptosis and cytokine production. Oncol Rep 39(3):1253–1260. https://doi.org/10.3892/or.2018.6222

    Article  PubMed  CAS  Google Scholar 

  492. Zhang M, Xu Q, Yan S, Li Z, Yan W, Jia X (2016) Suppression of forkhead box Q1 by microRNA-506 represses the proliferation and epithelial-mesenchymal transition of cervical cancer cells. Oncol Rep 35(5):3106–3114. https://doi.org/10.3892/or.2016.4651

    Article  PubMed  CAS  Google Scholar 

  493. Shao Y, Zhu F, Zhu S, Bai L (2021) HDAC6 suppresses microRNA-199a transcription and augments HPV-positive cervical cancer progression through Wnt5a upregulation. Int J Biochem Cell Biol 136:106000. https://doi.org/10.1016/j.biocel.2021.106000

    Article  PubMed  CAS  Google Scholar 

  494. Ko J, Ryu KS, Lee YH, Na DS, Kim YS, Oh YM, Kim IS, Kim JW (2002) Human secreted frizzled-related protein is down-regulated and induces apoptosis in human cervical cancer. Exp Cell Res 280(2):280–287. https://doi.org/10.1006/excr.2002.5649

    Article  PubMed  CAS  Google Scholar 

  495. Shen HW, Tan JF, Shang JH, Hou MZ, Liu J, He L, Yao SZ, He SY (2016) CPE overexpression is correlated with pelvic lymph node metastasis and poor prognosis in patients with early-stage cervical cancer. Arch Gynecol Obstet 294(2):333–342. https://doi.org/10.1007/s00404-015-3985-6

    Article  PubMed  CAS  Google Scholar 

  496. Li T, Feng R, Chen B, Zhou J (2023) EREG is a risk factor for the prognosis of patients with cervical cancer. Front Med (Lausanne) 10:1161835. https://doi.org/10.3389/fmed.2023.1161835

    Article  PubMed  Google Scholar 

  497. Yuan Y, Ye HQ, Ren QC (2018) Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int J Oncol 52(2):461–472. https://doi.org/10.3892/ijo.2017.4230

    Article  PubMed  CAS  Google Scholar 

  498. Zhang J, Chen X, Bian L, Wang Y, Liu H (2019) CD44+/CD24+-expressing cervical cancer cells and radioresistant cervical cancer cells exhibit cancer stem cell characteristics. Gynecol Obstet Invest 84(2):174–182. https://doi.org/10.1159/000493129

    Article  PubMed  CAS  Google Scholar 

  499. Han C, Hu C, Liu T, Sun Y, Hu F, He Y, Zhang J, Chen J, Ding J, Fan J et al (2024) GF2BP3 enhances lipid metabolism in cervical cancer by upregulating the expression of SCD. Cell Death Dis 15(2):138. https://doi.org/10.1038/s41419-024-06520-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  500. Sun Y, Feng Y, Zhang G, Xu Y (2019) The endonuclease APE1 processes miR-92b formation, thereby regulating expression of the tumor suppressor LDLR in cervical cancer cells. Ther Adv Med Oncol 11:1758835919855859. https://doi.org/10.1177/1758835919855859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  501. Grover S, Mehta P, Wang Q, Bhatia R, Bvochora-Nsingo M, Davey S, Iyengar M, Shah S, Shin SS, Zetola NM (2020) Association between CD4 count and chemoradiation therapy outcomes among cervical cancer patients with HIV. J Acquir Immune Defic Syndr 85(2):201–208. https://doi.org/10.1097/QAI.0000000000002420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  502. Liu XL, Meng YH, Wang JL, Yang BB, Zhang F, Tang SJ (2014) FOXL2 suppresses proliferation, invasion and promotes apoptosis of cervical cancer cells. Int J Clin Exp Pathol 7(4):1534–1543

    PubMed  PubMed Central  Google Scholar 

  503. Dong M, Dong Z, Zhu X, Zhang Y, Song L (2019) Long non-coding RNA MIR205HG regulates KRT17 and tumor processes in cervical cancer via interaction with SRSF1. Exp Mol Pathol 111:104322. https://doi.org/10.1016/j.yexmp.2019.104322

    Article  PubMed  CAS  Google Scholar 

  504. Sato A, Ishiwata T, Matsuda Y, Yamamoto T, Asakura H, Takeshita T, Naito Z (2012) Expression and role of nestin in human cervical intraepithelial neoplasia and cervical cancer. Int J Oncol 41(2):441–448. https://doi.org/10.3892/ijo.2012.147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  505. You X, Wang Y, Meng J, Han S, Liu L, Sun Y, Zhang J, Sun S, Li X, Sun W et al (2021) Exosomal miR-663b exposed to TGF-β1 promotes cervical cancer metastasis and epithelial-mesenchymal transition by targeting MGAT3. Oncol Rep 45(4):12. https://doi.org/10.3892/or.2021.7963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  506. Natalia MA, Alejandro GT, Virginia TJ, Alvarez-Salas LM (2018) MARK1 is a novel target for miR-125a-5p: implications for cell migration in cervical tumor cells. Microrna 7(1):54–61. https://doi.org/10.2174/2211536606666171024160244

    Article  PubMed  CAS  Google Scholar 

  507. Aviel-Ronen S, Rubinek T, Zadok O, Vituri A, Avivi C, Wolf I, Barshack I (2016) Klotho expression in cervical cancer: differential expression in adenocarcinoma and squamous cell carcinoma. J Clin Pathol 69(1):53–57. https://doi.org/10.1136/jclinpath-2015-202929

    Article  PubMed  CAS  Google Scholar 

  508. Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X (2021) Correction to “construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis.” ACS Appl Mater Interfaces 13(44):53300. https://doi.org/10.1021/acsami.1c19496

    Article  PubMed  CAS  Google Scholar 

  509. Zhang W, Cao H, Yang J, Zhao J, Liang Z, Kang X, Wang R (2022) The identification and validation of EphA7 hypermethylation, a novel biomarker, in cervical cancer. BMC Cancer 22(1):636. https://doi.org/10.1186/s12885-022-09653-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  510. Sun Q, Yang Z, Li P, Wang X, Sun L, Wang S, Liu M, Tang H (2019) A novel miRNA identified in GRSF1 complex drives the metastasis via the PIK3R3/AKT/NF-κB and TIMP3/MMP9 pathways in cervical cancer cells. Cell Death Dis 10(9):636. https://doi.org/10.1038/s41419-019-1

    Article  PubMed  PubMed Central  Google Scholar 

  511. Zhao C, Liu J, Wu H, Hu J, Chen J, Chen J, Qiao F (2020) Aberrant methylation-mediated downregulation of lncRNA CCND2 AS1 promotes cell proliferation in cervical cancer. J Biol Res (Thessalon) 27:11. https://doi.org/10.1186/s40709-020-00122-5

    Article  PubMed  CAS  Google Scholar 

  512. Xu Z, Guo Y, Wang L, Cui J (2024) HECW1 restrains cervical cancer cell growth by promoting DVL1 ubiquitination and downregulating the activation of Wnt/β-catenin signaling. Exp Cell Res 435(2):113949. https://doi.org/10.1016/j.yexcr.2024.113949

    Article  PubMed  CAS  Google Scholar 

  513. Chantima W, Thepthai C, Cheunsuchon P, Dharakul T (2017) EpCAM expression in squamous cell carcinoma of the uterine cervix detected by monoclonal antibody to the membrane-proximal part of EpCAM. BMC Cancer 17(1):811. https://doi.org/10.1186/s12885-017-3798-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  514. Zong Y, Chang Y, Huang K, Liu J, Zhao Y (2024) The role of BATF2 deficiency in immune microenvironment rearrangement in cervical cancer - New biomarker benefiting from combination of radiotherapy and immunotherapy. Int Immunopharmacol 126:111199. https://doi.org/10.1016/j.intimp.2023.111199

    Article  PubMed  CAS  Google Scholar 

  515. Wongpratate M, Ishida W, Phuthong S, Natphopsuk S, Ishida T (2020) Genetic polymorphisms of the human cytochrome P450 1A1 (CYP1A1) and cervical cancer susceptibility among Northeast Thai women. Asian Pac J Cancer Prev 21(1):243–248. https://doi.org/10.31557/APJCP.2020.21.1.243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  516. Han YQ, Ming SL, Wu HT, Zeng L, Ba G, Li J, Lu WF, Han J, Du QJ, Sun MM et al (2018) Myostatin knockout induces apoptosis in human cervical cancer cells via elevated reactive oxygen species generation. Redox Biol 19:412–428. https://doi.org/10.1016/j.redox.2018.09.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  517. Vidal AC, Skaar D, Maguire R, Dodor S, Musselwhite LW, Bartlett JA, Oneko O, Obure J, Mlay P, Murphy SK et al (2015) IL-10, IL-15, IL-17, and GMCSF levels in cervical cancer tissue of Tanzanian women infected with HPV16/18 vs. non-HPV16/18 genotypes. Infect Agent Cancer 10:10. https://doi.org/10.1186/s13027-015-0005-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  518. Huang J, Xu W, Huang Q, Chen E, Chen J (2024) SYT7 (synaptotagmin 7) promotes cervical squamous cell carcinoma. Heliyon 10(3):e24806. https://doi.org/10.1016/j.heliyon.2024.e24806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  519. Zhou N, Ding B, Agler M, Cockett M, McPhee F (2015) Lethality of PAK3 and SGK2 shRNAs to human papillomavirus positive cervical cancer cells is independent of PAK3 and SGK2 knockdown. PLoS ONE 10(1):e0117357. https://doi.org/10.1371/journal.pone.0117357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  520. Okamoto S, Niikura H, Nakabayashi K, Hiyama K, Matoda M, Takeshima N, Watanabe M, Nagase S, Otsuki T, Yaegashi N (2013) Detection of sentinel lymph node metastases in cervical cancer: assessment of KRT19 mRNA in the one-step nucleic acid amplification (OSNA) method. Gynecol Oncol 130(3):530–536. https://doi.org/10.1016/j.ygyno.2013.06.027

    Article  PubMed  CAS  Google Scholar 

  521. Machida H, Matsuo K, Tanaka M, Kitatani K, Takase A, Yokoyama K, Kajiwara H, Yasaka M, Ikeda M, Yoshida H et al (2023) ROS1 as a possible prognostic biomarker of cervical adenocarcinoma: an exploratory analysis with next-generation sequencing. Gynecol Oncol 171:59–66. https://doi.org/10.1016/j.ygyno.2023.02.006

    Article  PubMed  CAS  Google Scholar 

  522. Xu J, Lu W (2021) CircSPIDR acts as a tumour suppressor in cervical adenocarcinoma by sponging miR-431-5p and regulating SORCS1 and CUBN expression. Aging (Albany NY) 13(14):18340–18359. https://doi.org/10.18632/aging.203283

    Article  PubMed  CAS  Google Scholar 

  523. Chakraborty C, Dutta S, Mukherjee N, Samadder S, Roychowdhury A, Roy A, Mondal RK, Basu P, Roychoudhury S, Panda CK (2015) Inactivation of PTCH1 is associated with the development of cervical carcinoma: clinical and prognostic implication. Tumour Biol 36(2):1143–1154. https://doi.org/10.1007/s13277-014-2707-1

    Article  PubMed  CAS  Google Scholar 

  524. Zeng L, Zhen Y, Chen Y, Zou L, Zhang Y, Hu F, Feng J, Shen J, Wei B (2014) Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF-κB/COX-2-caspase-1 pathway in HeLa cervical cancer cells. Int J Oncol 45(5):1929–1936. https://doi.org/10.3892/ijo.2014.2617

    Article  PubMed  CAS  Google Scholar 

  525. Ding M, Zhang H, Liu L, Liang R (2019) Effect of NOS1 regulating ABCG2 expression on proliferation and apoptosis of cervical cancer cells. Oncol Lett 17(2):1531–1536. https://doi.org/10.3892/ol.2018.9786

    Article  PubMed  CAS  Google Scholar 

  526. Baik S, Mehta FF, Unsal E, Park Y, Chung SH (2022) Estrogen inhibits epithelial progesterone receptor-dependent progestin therapy efficacy in a mouse model of cervical cancer. Am J Pathol 192(2):353–360. https://doi.org/10.1016/j.ajpath.2021.10.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  527. Marques RM, Focchi GR, Theodoro TR, Castelo A, Pinhal MA, Nicolau SM (2012) The immunoexpression of heparanase 2 in normal epithelium, intraepithelial, and invasive squamous neoplasia of the cervix. J Low Genit Tract Dis 16(3):256–262. https://doi.org/10.1097/LGT.0b013e3182422c69

    Article  PubMed  Google Scholar 

  528. Cao CH, Liu R, Lin XR, Luo JQ, Cao LJ, Zhang QJ, Lin SR, Geng L, Sun ZY, Ye SK et al (2021) LRP1B mutation is associated with tumor HPV status and promotes poor disease outcomes with a higher mutation count in HPV-related cervical carcinoma and head & neck squamous cell carcinoma. Int J Biol Sci 17(7):1744–1756. https://doi.org/10.7150/ijbs.56970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  529. Yu J, Zheng Q, Ding X, Zheng B, Chen X, Chen B, Shen C, Zhang Y, Luan X, Yan Y et al (2019) Systematic re-analysis strategy of serum indices identifies alkaline phosphatase as a potential predictive factor for cervical cancer. Oncol Lett 18(3):2356–2365. https://doi.org/10.3892/ol.2019.10527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  530. Guo WW, Feng MM, Li SF, Wei LH (2022) Circular RNA circ_0023404 serves as a miR-636 sponge to promote malignant behaviors in cervical cancer cells through upregulation of CYP2S1. Kaohsiung J Med Sci 38(3):218–229. https://doi.org/10.1002/kjm2.12478

    Article  PubMed  CAS  Google Scholar 

  531. Adiga D, Bhat S, Chakrabarty S, Kabekkodu SP (2022) DOC2B is a negative regulator of Wnt/β-catenin signaling pathway in cervical cancer. Pharmacol Res 180:106239. https://doi.org/10.1016/j.phrs.2022.106239

    Article  PubMed  CAS  Google Scholar 

  532. Zheng G, Wang Z, Fan Y, Wang T, Zhang L, Wang M, Chen S, Jiang L (2021) The clinical significance and immunization of MSMO1 in cervical squamous cell carcinoma based on bioinformatics analysis. Front Genet 12:705851. https://doi.org/10.3389/fgene.2021.705851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  533. Xu J, Lu W (2021) CircSPIDR acts as a tumour suppressor in cervical adenocarcinoma by sponging miR-431-5p and regulating SORCS1 and CUBN expression. Aging (Albany NY) 13(14):18340–18359. https://doi.org/10.18632/aging.203283

    Article  PubMed  CAS  Google Scholar 

  534. Madeleine MM, Johnson LG, Smith AG, Hansen JA, Nisperos BB, Li S, Zhao LP, Daling JR, Schwartz SM, Galloway DA (2008) Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res 68(9):3532–3539. https://doi.org/10.1158/0008-5472.CAN-07-6471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  535. Lee CY, Hsin MC, Chen PN, Lin CW, Wang PH, Yang SF, Hsiao YH (2022) Arctiin inhibits cervical cancer cell migration and invasion through suppression of S100A4 expression via PI3K/Akt pathway. Pharmaceutics 14(2):365. https://doi.org/10.3390/pharmaceutics14020365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  536. Mei J, Zhu C, Pan L, Li M (2022) MACC1 regulates the AKT/STAT3 signaling pathway to induce migration, invasion, cancer stemness, and suppress apoptosis in cervical cancer cells. Bioengineered 13(1):61–70. https://doi.org/10.1080/21655979.2021.2006567

    Article  PubMed  CAS  Google Scholar 

  537. Xie B, Zhang Z, Wang H, Chen Z, Wang Y, Liang H, Yang G, Yang X, Zhang H (2016) Genetic polymorphisms in MMP 2, 3, 7, and 9 genes and the susceptibility and clinical outcome of cervical cancer in a Chinese Han population. Tumour Biol 37(4):4883–4888. https://doi.org/10.1007/s13277-015-4204-6

    Article  PubMed  CAS  Google Scholar 

  538. Gill CM, Orfanelli T, Yoxtheimer L, Roy-McMahon C, Suhner J, Tomita S, Kalir T, Liu Y, Houldsworth J, Kolev V (2020) Histology-specific FGFR2 alterations and FGFR2-TACC2 fusion in mixed adenoid cystic and neuroendocrine small cell carcinoma of the uterine cervix. Gynecol Oncol Rep 34:100668. https://doi.org/10.1016/j.gore.2020.100668

    Article  PubMed  PubMed Central  Google Scholar 

  539. Zhang Y, Li J, Yang F, Zhang X, Ren X, Wei F (2022) Relationship and prognostic significance of IL-33, PD-1/PD-L1, and tertiary lymphoid structures in cervical cancer. J Leukoc Biol 112(6):1591–1603. https://doi.org/10.1002/JLB.5MA0322-746R

    Article  PubMed  CAS  Google Scholar 

  540. Faulkner S, Griffin N, Rowe CW, Jobling P, Lombard JM, Oliveira SM, Walker MM, Hondermarck H (2020) Nerve growth factor and its receptor tyrosine kinase TrkA are overexpressed in cervical squamous cell carcinoma. FASEB Bioadv 2(7):398–408. https://doi.org/10.1096/fba.2020-00016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  541. Wang J, Yue X (2017) Role and importance of the expression of transcription factor FOXC2 in cervical cancer. Oncol Lett 14(6):6627–6631. https://doi.org/10.3892/ol.2017.7004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  542. Backsch C, Rudolph B, Steinbach D, Scheungraber C, Liesenfeld M, Häfner N, Hildner M, Habenicht A, Runnebaum IB, Dürst M (2011) An integrative functional genomic and gene expression approach revealed SORBS2 as a putative tumour suppressor gene involved in cervical carcinogenesis. Carcinogenesis 32(7):1100–1106. https://doi.org/10.1093/carcin/bgr093

    Article  PubMed  CAS  Google Scholar 

  543. Yuan N, Wang L, Xi Q, Zou N, Zhang X, Lu X, Zhang Z (2022) ITGA7, CD133, ALDH1 are inter-correlated, and linked with poor differentiation, lymph node metastasis as well as worse survival in surgical cervical cancer. J Obstet Gynaecol Res 48(4):1011–1018. https://doi.org/10.1111/jog.151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  544. Song EL, Hou YP, Yu SP, Chen SG, Huang JT, Luo T, Kong LP, Xu J, Wang HQ (2011) EFEMP1 expression promotes angiogenesis and accelerates the growth of cervical cancer in vivo. Gynecol Oncol 121(1):174–180. https://doi.org/10.1016/j.ygyno.2010.11.004

    Article  PubMed  CAS  Google Scholar 

  545. Zhao X, Zheng H, Chen J (2020) LncRNA GATA6-AS inhibits cancer cell proliferation and promotes cancer cell apoptosis in cervical cancer by down-regulating miR-205. BMC Womens Health 20(1):247. https://doi.org/10.1186/s12905-020-01082-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  546. Zhao Y, Dong X, Hou R (2020) lncRNA PICART1 alleviates progression of cervical cancer by upregulating TCF21. Oncol Lett 19(6):3719–3724. https://doi.org/10.3892/ol.2020.11486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  547. Zou C, Xu F, Shen J, Xu S (2022) Identification of a ferroptosis-related prognostic gene PTGS2 based on risk modeling and immune microenvironment of early-stage cervical cancer. J Oncol 2022:3997562. https://doi.org/10.1155/2022/3997562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  548. Zhang J, Tong Y, Ren L, Li CD (2014) Expression of metastasis suppressor 1 in cervical carcinoma and the clinical significance. Oncol Lett 8(5):2145–2149. https://doi.org/10.3892/ol.2014.2508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  549. Zeng L, Chen C, Yao C (2021) Histone deacetylation regulated by KDM1A to suppress DACT1 in proliferation and migration of cervical cancer. Anal Cell Pathol (Amst) 2021:5555452. https://doi.org/10.1155/2021/5555452

    Article  PubMed  CAS  Google Scholar 

  550. Wang N, Che Y, Yin F, Yu F, Bi X, Wang Y (2018) Study on the methylation status of SPINT2 gene and its expression in cervical carcinoma. Cancer Biomark 22(3):435–442. https://doi.org/10.3233/CBM-171050

    Article  PubMed  CAS  Google Scholar 

  551. Stewart CJR, Moses J (2021) NKX3.1 expression in cervical “adenoid basal cell carcinoma”: another gynaecological lesion with prostatic differentiation? Pathology 53(2):193–198. https://doi.org/10.1016/j.pathol.2020.07.011

    Article  PubMed  CAS  Google Scholar 

  552. Huang Y, Chen L, Guo A (2018) Upregulated expression of HOXC8 is associated with poor prognosis of cervical cancer. Oncol Lett 15(5):7291–7296. https://doi.org/10.3892/ol.2018.8200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  553. Wu CH, Ko JL, Chen SC, Lin YW, Han CP, Yang TY, Chien MH, Wang PH (2014) Clinical implications of aldo-keto reductase family 1 member C3 and its relationship with lipocalin 2 in cancer of the uterine cervix. Gynecol Oncol 132(2):474–482. https://doi.org/10.1016/j.ygyno.2013.11.032

    Article  PubMed  CAS  Google Scholar 

  554. Liu J, Yang L, Zhang J, Zhang J, Chen Y, Li K, Li Y, Li Y, Yao L, Guo G (2012) Knock-down of NDRG2 sensitizes cervical cancer Hela cells to cisplatin through suppressing Bcl-2 expression. BMC Cancer 12:370. https://doi.org/10.1186/1471-2407-12-370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  555. Bierkens M, Krijgsman O, Wilting SM, Bosch L, Jaspers A, Meijer GA, Meijer CJ, Snijders PJ, Ylstra B, Steenbergen RD (2013) Focal aberrations indicate EYA2 and hsa-miR-375 as oncogene and tumor suppressor in cervical carcinogenesis. Genes Chromosomes Cancer 52(1):56–68. https://doi.org/10.1002/gcc.22006

    Article  PubMed  CAS  Google Scholar 

  556. Wu Z, Chen J, Yang L, Sun K, Jiang Q, Dong F, Lu W, Chen R, Chen Y (2024) Elevated INHBA promotes tumor progression of cervical cancer. Technol Cancer Res Treat 23:15330338241234798. https://doi.org/10.1177/15330338241234798

    Article  PubMed  PubMed Central  Google Scholar 

  557. Yu J, Zheng Q, Ding X, Zheng B, Chen X, Chen B, Shen C, Zhang Y, Luan X, Yan Y et al (2019) Systematic re-analysis strategy of serum indices identifies alkaline phosphatase as a potential predictive factor for cervical cancer. Oncol Lett 18(3):2356–2365. https://doi.org/10.3892/ol.2019.10527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  558. Wang M, Xue Y, Shen L, Qin P, Sang X, Tao Z, Yi J, Wang J, Liu P, Cheng H (2019) Inhibition of SGK1 confers vulnerability to redox dysregulation in cervical cancer. Redox Biol 24:101225. https://doi.org/10.1016/j.redox.2019.101225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  559. Wang Y, Xie Y, Sun B, Guo Y, Song L, Mohammednur DE, Zhao C (2021) The degradation of Rap1GAP via E6AP-mediated ubiquitin-proteasome pathway is associated with HPV16/18-infection in cervical cancer cells. Infect Agent Cancer 16(1):71. https://doi.org/10.1186/s13027-021-00409-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  560. Gu YY, Zhou GN, Li Y, He HY, Ding JX, Hua KQ (2022) HDAC10 inhibits cervical cancer progression through downregulating the HDAC10-microRNA-223-EPB41L3 axis. J Oncol 2022:8092751. https://doi.org/10.1155/2022/8092751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  561. Zidi S, Sghaier I, Gazouani E, Mezlini A, Yacoubi-Loueslati B (2016) Evaluation of toll-like receptors 2/3/4/9 gene polymorphisms in cervical cancer evolution. Pathol Oncol Res 22(2):323–330. https://doi.org/10.1007/s12253-015-0009-6

    Article  PubMed  CAS  Google Scholar 

  562. Rahmani F, Hasanzadeh M, Hassanian SM, Khazaei M, Esmaily H, Asef-Agah SA, Naghipour A, Ferns A (2020) Association of a genetic variant in the angiopoietin-like protein 4 gene with cervical cancer. Pathol Res Pract 216(7):153011. https://doi.org/10.1016/j.prp.2020.153011

    Article  PubMed  CAS  Google Scholar 

  563. Duan S, Wu A, Chen Z, Yang Y, Liu L, Shu Q (2018) miR-204 regulates cell proliferation and invasion by targeting EphB2 in human cervical cancer. Oncol Res 26(5):713–723. https://doi.org/10.3727/096504017X15016337254641

    Article  PubMed  PubMed Central  Google Scholar 

  564. Salmerón-Bárcenas EG, Mendoza-Catalan MA, Ramírez-Bautista ÁU, Lozano-Santos RA, Torres-Rojas FI, Ávila-López PA, Zacapala-Gómez AE (2023) Identification of Mir-182-3p/FLI-1 axis as a key signaling in immune response in cervical cancer: a comprehensive bioinformatic analysis. Int J Mol Sci 24(7):6032. https://doi.org/10.3390/ijms24076032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  565. Tian R, Li H, Ren S, Li S, Fang R, Liu Y (2023) circRNA THBS1 silencing inhibits the malignant biological behavior of cervical cancer cells via the regulation of miR-543/HMGB2 axis. Open Med (Wars) 18(1):20230709. https://doi.org/10.1515/med-2023-0709

    Article  PubMed  CAS  Google Scholar 

  566. Wang Q, Lin B, Wei H, Wang X, Nie X, Shi Y (2024) AQP3 promotes the invasion and metastasis in cervical cancer by regulating NOX4-derived H2O2 activation of Syk/PI3K/Akt signaling axis. J Cancer 15(4):1124–1137. https://doi.org/10.7150/jca.91360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  567. Tian P, Feng Y, Tao L (2024) LINC00460 knockdown sensitizes cervical cancer to cisplatin by downregulating TGFBI. Chem Biol Drug Des 103(1):e14424. https://doi.org/10.1111/cbdd.14424

    Article  PubMed  CAS  Google Scholar 

  568. Sui H, Shi C, Yan Z, Chen J, Man L, Wang F (2024) LRRC75A-AS1 drives the epithelial-mesenchymal transition in cervical cancer by binding IGF2BP1 and inhibiting SYVN1-mediated NLRP3 ubiquitination. Mol Cancer Res. https://doi.org/10.1158/1541-7786.MCR-23-0478

    Article  PubMed  Google Scholar 

  569. Chen M, Li L, Zheng PS (2019) SALL4 promotes the tumorigenicity of cervical cancer cells through activation of the Wnt/β-catenin pathway via CTNNB1. Cancer Sci 110(9):2794–2805. https://doi.org/10.1111/cas.14140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  570. Dong H, Chen S, Liang X, Cai Q, Zhang X, Xie J, Sun Z (2024) Vitamin D and its receptors in cervical cancer. J Cancer 15(4):926–938. https://doi.org/10.7150/jca.87499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  571. Wongwarangkana C, Wanlapakorn N, Chansaenroj J, Poovorawan Y (2018) Retinoic acid receptor beta promoter methylation and risk of cervical cancer. World J Virol 7(1):1–9. https://doi.org/10.5501/wjv.v7.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  572. Kina S, Kinjo T, Liang F, Nakasone T, Yamamoto H, Arasaki A (2018) Targeting EphA4 abrogates intrinsic resistance to chemotherapy in well-differentiated cervical cancer cell line. Eur J Pharmacol 840:70–78. https://doi.org/10.1016/j.ejphar.2018.09.031

    Article  PubMed  CAS  Google Scholar 

  573. Zhang P, Zhao F, Jia K, Liu X (2022) The LOXL1 antisense RNA 1 (LOXL1-AS1)/microRNA-423-5p (miR-423-5p)/ectodermal-neural cortex 1 (ENC1) axis promotes cervical cancer through the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Bioengineered 13(2):2567–2584. https://doi.org/10.1080/21655979.2021.2018975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  574. Chen H, Chen X, Zeng F, Fu A, Huang M (2022) Prognostic value of SOX9 in cervical cancer: bioinformatics and experimental approaches. Front Genet 13:939328. https://doi.org/10.3389/fgene.2022.939328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  575. Li J, Wang X, Li Z, Li M, Zheng X, Zheng D, Wang Y, Xi M (2023) SULF1 activates the VEGFR2/PI3K/AKT pathway to promote the development of cervical cancer. Curr Cancer Drug Targets. https://doi.org/10.2174/1568009623666230804161607

    Article  PubMed  PubMed Central  Google Scholar 

  576. Yang S, Liu L, Xu D, Li X (2020) The relationship of the TLR9 and TLR2 genetic polymorphisms with cervical cancer risk: a meta-analysis of case-control studies. Pathol Oncol Res 26(1):307–315. https://doi.org/10.1007/s12253-018-0465-x

    Article  PubMed  CAS  Google Scholar 

  577. Hao Y, Yan Z, Zhang A, Hu S, Wang N, Luo XG, Ma W, Zhang TC, He H (2020) IL-6/STAT3 mediates the HPV18 E6/E7 stimulated upregulation of MALAT1 gene in cervical cancer HeLa cells. Virus Res 281:197907. https://doi.org/10.1016/j.virusres.2020.197907

    Article  PubMed  CAS  Google Scholar 

  578. Hu R, Zhu Z (2019) ELK1-activated GPC3-AS1/GPC3 axis promotes the proliferation and migration of cervical cancer cells. J Gene Med 21(8):e3099. https://doi.org/10.1002/jgm.3099

    Article  PubMed  CAS  Google Scholar 

  579. Ji H, Li K, Jiang W, Li J, Zhang JA, Zhu X (2022) MRVI1 and NTRK3 are potential tumor suppressor genes commonly inactivated by DNA methylation in cervical cancer. Front Oncol 11:802068. https://doi.org/10.3389/fonc.2021.802068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  580. Cao J, Dong J, Wang Y, Chen Y (2019) The expressions of DNA methyltransferase 1 (DNMT1) and cyclin A1 (CCNA1) in cervical carcinogenesis. Int J Clin Exp Pathol 12(1):40–49

    PubMed  PubMed Central  CAS  Google Scholar 

  581. Iida Y, Osaki M, Sato S, Izutsu R, Seong H, Okawa M, Osaku D, Komatsu H, Taniguchi F, Okada F (2023) AMIGO2 expression as a predictor of recurrence in cervical cancer with intermediate risk. Mol Clin Oncol 19(1):56. https://doi.org/10.3892/mco.2023.2652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  582. Chang S, Sun L, Feng G (2019) SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed Pharmacother 117:109133. https://doi.org/10.1016/j.biopha.2019.109133

    Article  PubMed  CAS  Google Scholar 

  583. Wang J, Chen S (2020) RACK1 promotes miR-302b/c/d-3p expression and inhibits CCNO expression to induce cell apoptosis in cervical squamous cell carcinoma. Cancer Cell Int 20:385. https://doi.org/10.1186/s12935-020-01435-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  584. Ma X, Wu Z, Zhang J, Shao X, Shen H (2021) Increased ADAM12 expression predicts poor prognosis in cervical cancer patients before general anesthesia. Clin Lab. https://doi.org/10.7754/Clin.Lab.2020.200611

    Article  PubMed  Google Scholar 

  585. Guerrero-Setas D, Pérez-Janices N, Blanco-Fernandez L, Ojer A, Cambra K, Berdasco M, Esteller M, Maria-Ruiz S, Torrea N, Guarch R (2013) RASSF2 hypermethylation is present and related to shorter survival in squamous cervical cancer. Mod Pathol 26(8):1111–1122. https://doi.org/10.1038/modpathol.2013.32

    Article  PubMed  CAS  Google Scholar 

  586. Zhao X, Dong W, Luo G, Xie J, Liu J, Yu F (2021) Silencing of hsa_circ_0009035 suppresses cervical cancer progression and enhances radiosensitivity through MicroRNA 889–3p-dependent regulation of HOXB7. Mol Cell Biol 41(6):e0063120. https://doi.org/10.1128/MCB.00631-20

    Article  PubMed  Google Scholar 

  587. Wu L, Gong Y, Yan T, Zhang H (2020) LINP1 promotes the progression of cervical cancer by scaffolding EZH2, LSD1, and DNMT1 to inhibit the expression of KLF2 and PRSS8. Biochem Cell Biol 98(5):591–599. https://doi.org/10.1139/bcb-2019-0446

    Article  PubMed  CAS  Google Scholar 

  588. Peng J, Hou F, Zhu W, Li J, Teng Z (2020) lncRNA NR2F1-AS1 regulates miR-17/SIK1 axis to suppress the invasion and migration of cervical squamous cell carcinoma cells. Reprod Sci 27(7):1534–1539. https://doi.org/10.1007/s43032-020-00149-y

    Article  PubMed  CAS  Google Scholar 

  589. Liu X, Xie S, Zhang J, Kang Y (2020) Long noncoding RNA XIST contributes to cervical cancer development through targeting miR-889-3p/SIX1 Axis. Cancer Biother Radiopharm 35(9):640–649. https://doi.org/10.1089/cbr.2019.3318

    Article  PubMed  CAS  Google Scholar 

  590. Shang A, Zhou C, Bian G, Chen W, Lu W, Wang W, Li D (2019) miR-381-3p restrains cervical cancer progression by downregulating FGF7. J Cell Biochem 120(1):778–789. https://doi.org/10.1002/jcb.27438

    Article  PubMed  CAS  Google Scholar 

  591. Lee SW, Lee SY, Lee SR, Ju W, Kim SC (2010) Plasma levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in women with cervical neoplasia. J Gynecol Oncol 21(3):174–180. https://doi.org/10.3802/jgo.2010.21.3.174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  592. Chu Y, Ouyang Y, Wang F, Zheng A, Bai L, Han L, Chen Y, Wang H (2014) MicroRNA-590 promotes cervical cancer cell growth and invasion by targeting CHL1. J Cell Biochem 115(5):847–853. https://doi.org/10.1002/jcb.24726

    Article  PubMed  CAS  Google Scholar 

  593. Ma D, Pan Z, Chang Q, Zhang JJ, Liu X, Hua N, Li GH (2021) KLF5-mediated Eppk1 expression promotes cell proliferation in cervical cancer via the p38 signaling pathway. BMC Cancer 21(1):377. https://doi.org/10.1186/s12885-021-08040-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  594. Nie J, Shao J, Guo SW, Liu X (2021) The relevance of plasma R-spondin 1 and Slit2 as predictive biomarkers in cervical cancer chemotherapy and radiotherapy. Ann Transl Med 9(10):837. https://doi.org/10.21037/atm-21-87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  595. Bager P, Wohlfahrt J, Sørensen E, Ullum H, Høgdall CK, Palle C, Husemoen LL, Linneberg A, Kjaer SK, Melbye M et al (2015) Common filaggrin gene mutations and risk of cervical cancer. Acta Oncol 54(2):217–223. https://doi.org/10.3109/0284186X.2014.973613

    Article  PubMed  CAS  Google Scholar 

  596. Zhang M, Song Y, Zhai F (2018) ARFHPV E7 oncogene, lncRNA HOTAIR, miR-331-3p and its target, NRP2, form a negative feedback loop to regulate the apoptosis in the tumorigenesis in HPV positive cervical cancer. J Cell Biochem 119(6):4397–4407. https://doi.org/10.1002/jcb.26503

    Article  PubMed  CAS  Google Scholar 

  597. Akar S, Harmankaya İ, Uğraş S, Çelik Ç (2020) Expression and clinical significance of nicotinamide N-methyltransferase in cervical squamous cell carcinoma. Int J Gynecol Pathol 39(3):289–295. https://doi.org/10.1097/PGP.0000000000000605

    Article  PubMed  CAS  Google Scholar 

  598. Qin Y, Zhao W (2022) The modeling analysis and effect of CHI3L1 and CD31-marked microvessel density in the occurrence and development of cervical squamous cell carcinoma. Comput Math Methods Med 2022:3516335. https://doi.org/10.1155/2022/3516335

    Article  PubMed  PubMed Central  Google Scholar 

  599. Zheng LL, Cai L, Zhang XQ, Lei Z, Yi CS, Liu XD, Yang JG (2022) Dysregulated RUNX1 predicts poor prognosis by mediating epithelialmesenchymal transition in cervical cancer. Curr Med Sci 42(6):1285–1296. https://doi.org/10.1007/s11596-022-2661-x

    Article  PubMed  CAS  Google Scholar 

  600. Wang Q, Wang B, Zhang W, Zhang T, Liu Q, Jiao X, Ye J, Hao Y, Gao Q, Ma G et al (2024) APLN promotes the proliferation, migration, and glycolysis of cervical cancer through the PI3K/AKT/mTOR pathway. Arch Biochem Biophys 755:109983. https://doi.org/10.1016/j.abb.2024.109983

    Article  PubMed  CAS  Google Scholar 

  601. Liu R, Shuai Y, Luo J, Zhang Z (2019) SEMA3C promotes cervical cancer growth and is associated with poor prognosis. Front Oncol 9:1035. https://doi.org/10.3389/fonc.2019.01035

    Article  PubMed  PubMed Central  Google Scholar 

  602. Ou R, Lv M, Liu X, Lv J, Zhao J, Zhao Y, Li X, Li W, Zhao L, Li J et al (2020) HPV16 E6 oncoprotein-induced upregulation of lncRNA GABPB1-AS1 facilitates cervical cancer progression by regulating miR-519e-5p/Notch2 axis. FASEB J 34(10):13211–13223. https://doi.org/10.1096/fj.202000762R

    Article  PubMed  CAS  Google Scholar 

  603. Wang X, Xu J, Hua F, Wang Y, Fang G, Zhang H, Wu X, Wang X, Xu J, Hua F, Wang Y, Fang G, Zhang H, Wu X (2023) MiR-214-3p suppresses cervical cancer cell metastasis by downregulating THBS2. Cell Mol Biol (Noisy-le-grand) 69(9):195–200. https://doi.org/10.14715/cmb/2023.69.9.30

    Article  PubMed  Google Scholar 

  604. Chang PA, Sun YJ, Huang FF, Qin WZ, Chen YY, Zeng X, Wu YJ (2013) Identification of human patatin-like phospholipase domain-containing protein 1 and a mutant in human cervical cancer HeLa cells. Mol Biol Rep 40(10):5597–5605. https://doi.org/10.1007/s11033-013-2661-9

    Article  PubMed  CAS  Google Scholar 

  605. Liu G, Du X, Xiao L, Zeng Q, Liu Q (2021) Activation of FGD5-AS1 promotes progression of cervical cancer through regulating BST2 to inhibit macrophage M1 polarization. J Immunol Res 2021:5857214. https://doi.org/10.1155/2021/5857214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  606. Wen D, Wang L, Tan S, Tang R, Xie W, Liu S, Tang C, He Y (2022) HOXD9 aggravates the development of cervical cancer by transcriptionally activating HMCN1. Panminerva Med 64(4):532–536. https://doi.org/10.23736/S0031-0808.20.03911-7

    Article  PubMed  Google Scholar 

  607. Cho H, Chung JY, Kim S, Braunschweig T, Kang TH, Kim J, Chung EJ, Hewitt SM, Kim JH (2014) MICA/B and ULBP1 NKG2D ligands are independent predictors of good prognosis in cervical cancer. BMC Cancer 14:957. https://doi.org/10.1186/1471-2407-14-957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  608. Fullár A, Karászi K, Hollósi P, Lendvai G, Oláh L, Reszegi A, Papp Z, Sobel G, Dudás J, Kovalszky I (2020) Two ways of epigenetic silencing of TFPI2 in cervical cancer. PLoS ONE 15(6):e0234873. https://doi.org/10.1371/journal.pone.0234873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  609. Gasimli K, Raab M, Becker S, Sanhaji M, Strebhardt K (2022) The role of DAPK1 in the cell cycle regulation of cervical cancer cells and in response to topotecan. J Cancer 13(3):728–743. https://doi.org/10.7150/jca.66492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  610. Taniguchi-Ponciano K, Ribas-Aparicio RM, Marrero-Rodríguez D, Arreola-De la Cruz H, Huerta-Padilla V, Muñoz N, Gómez-Ortiz L, Ponce-Navarrete G, Rodríguez-Esquivel M, Mendoza-Rodríguez M, Gómez-Virgilio L et al (2018) The KISS1 gene overexpression as a potential molecular marker for cervical cancer cells. Cancer Biomark 22(4):709–719. https://doi.org/10.3233/CBM-181215

    Article  PubMed  CAS  Google Scholar 

  611. Cao G, Zhang Z (2018) FPR1 mediates the tumorigenicity of human cervical cancer cells. Cancer Manag Res 10:5855–5865. https://doi.org/10.2147/CMAR.S182795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  612. Tong W, Zhang H (2021) Overexpression of long non-coding RNA WT1-AS or silencing of PIK3AP1 are inhibitory to cervical cancer progression. Cell Cycle 20(24):2583–2596. https://doi.org/10.1080/15384101.2021.1991106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  613. Wang EL, Zhang JJ, Luo FM, Fu MY, Li D, Peng J, Liu B (2023) Cerebellin-2 promotes endothelial-mesenchymal transition in hypoxic pulmonary hypertension rats by activating NF-κB/HIF-1α/Twist1 pathway. Life Sci 328:121879. https://doi.org/10.1016/j.lfs.2023.121879

    Article  PubMed  CAS  Google Scholar 

  614. Oguri M, Kato K, Yokoi K, Yoshida T, Watanabe S, Metoki N, Yoshida H, Satoh K, Aoyagi Y, Nozawa Y et al (2010) Assessment of a polymorphism of SDK1 with hypertension in Japanese individuals. Am J Hypertens 23(1):70–77. https://doi.org/10.1038/ajh.2009.190

    Article  PubMed  Google Scholar 

  615. Li L, Chu Y, Fink GD, Engelhardt JF, Heistad DD, Chen AF (2003) Endothelin-1 stimulates arterial VCAM-1 expression via NADPH oxidase-derived superoxide in mineralocorticoid hypertension. Hypertension 42(5):997–1003. https://doi.org/10.1161/01.HYP.0000095980.43859.59

    Article  PubMed  CAS  Google Scholar 

  616. Fogelgren B, Yang S, Sharp IC, Huckstep OJ, Ma W, Somponpun SJ, Carlson EC, Uyehara CF, Lozanoff S (2009) Deficiency in Six2 during prenatal development is associated with reduced nephron number, chronic renal failure, and hypertension in Br/+ adult mice. Am J Physiol Renal Physiol 296(5):F1166–F1178. https://doi.org/10.1152/ajprenal.90550.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  617. Zhang L, Liu J, Cheng P, Lv F (2019) Correlation between miRNA target site polymorphisms in the 3’ UTR of AVPR1A and the risk of hypertension in the Chinese Han population. Biosci Rep 39(5):BSR20182232. https://doi.org/10.1042/BSR20182232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  618. Kim M, Yoo HJ, Kim M, Kim J, Baek SH, Song M, Lee JH (2017) EPHA6 rs4857055 C > T polymorphism associates with hypertension through triglyceride and LDL particle size in the Korean population. Lipids Health Dis 16(1):230. https://doi.org/10.1186/s12944-017-0620-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  619. Li B, Yang H, Zhang W, Shi Y, Qin S, Wei Y, He Y, Yang W, Jiang S, Jin H (2018) Fatty acid-binding protein 4 predicts gestational hypertension and preeclampsia in women with gestational diabetes mellitus. PLoS ONE 13(2):e0192347. https://doi.org/10.1371/journal.pone.0192347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  620. Toprak K, Yıldız Z, Akdemir S, Esen K, Kada R, Can Güleç N, Omar B, Biçer A, Demirbağ R (2023) Low pregnancy-specific beta-1-glycoprotein is associated with nondipper hypertension and increased risk of preeclampsia in pregnant women with newly diagnosed chronic hypertension. Scand J Clin Lab Invest 83(7):479–488. https://doi.org/10.1080/00365513.2023.2275083

    Article  PubMed  CAS  Google Scholar 

  621. Jimenez C, Hawn MB, Akin E, Leblanc N (2022) Translational potential of targeting anoctamin-1-encoded calcium-activated chloride channels in hypertension. Biochem Pharmacol 206:115320. https://doi.org/10.1016/j.bcp.2022.115320

    Article  PubMed  CAS  Google Scholar 

  622. Saleem M, Saavedra-Sánchez L, Barturen-Larrea P, Gomez JA (2021) The transcription factor Sox6 controls renin expression during renal artery stenosis. Kidney360 2(5):842–856. https://doi.org/10.34067/KID.0002792020

    Article  PubMed  PubMed Central  Google Scholar 

  623. Shi L, Tian C, Sun L, Cao F, Meng Z (2018) The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem Biophys Res Commun 501(3):688–695. https://doi.org/10.1016/j.bbrc.2018.05.049

    Article  PubMed  CAS  Google Scholar 

  624. Miwa Y, Kamide K, Takiuchi S, Yoshii M, Horio T, Tanaka C, Banno M, Miyata T, Kawano Y (2009) Association of PLA2G7 polymorphisms with carotid atherosclerosis in hypertensive Japanese. Hypertens Res 32(12):1112–1118. https://doi.org/10.1038/hr.2009.151

    Article  PubMed  CAS  Google Scholar 

  625. Soler A, Hunter I, Joseph G, Hutcheson R, Hutcheson B, Yang J, Zhang FF, Joshi SR, Bradford C, Gotlinger KH et al (2018) Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. J Mol Cell Cardiol 117:88–99. https://doi.org/10.1016/j.yjmcc.2018.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  626. Du H, Xiao G, Xue Z, Li Z, He S, Du X, Zhou Z, Cao L, Wang Y, Yang J et al (2021) QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt-sensitive rats. Biomed Pharmacother 141:111941. https://doi.org/10.1016/j.biopha.2021.111941

    Article  PubMed  CAS  Google Scholar 

  627. Liang Y, Liu Y, Wang S, Gu Y, Wang P, Meng J (2022) Abnormal expression of the LAG-3/FGL-1 signaling pathway in patients with early-onset preeclampsia. Med Sci Monit 28:e937498. https://doi.org/10.12659/MSM.937498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  628. Morris BJ, Chen R, Donlon TA, Kallianpur KJ, Masaki KH, Willcox BJ (2023) Vascular endothelial growth factor receptor 1 gene (FLT1) longevity variant increases lifespan by reducing mortality risk posed by hypertension. Aging (Albany NY) 15(10):3967–3983. https://doi.org/10.18632/aging.204722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  629. Lei Q, Yu Z, Li H, Cheng J, Wang Y (2022) Fatty acid-binding protein 5 aggravates pulmonary artery fibrosis in pulmonary hypertension secondary to left heart disease via activating wnt/β-catenin pathway. J Adv Res 40:197–206. https://doi.org/10.1016/j.jare.2021.11.011

    Article  PubMed  CAS  Google Scholar 

  630. Wu X, Zhang N, Yu J, Liang M, Xu H, Hu J, Lin S, Qiu J, Lin C et al (2023) The underlying mechanism of transcription factor IRF1, PRDM1, and ZNF263 involved in the regulation of NPPB rs3753581 on pulse pressure hypertension. Gene 878:147580. https://doi.org/10.1016/j.gene.2023.147580

    Article  PubMed  CAS  Google Scholar 

  631. Hu Y, Xia W, Li Y, Wang Q, Lin S, Wang B, Zhou C, Cui Y, Jiang Y, Pu X et al (2020) High-salt intake increases TRPC3 expression and enhances TRPC3-mediated calcium influx and systolic blood pressure in hypertensive patients. Hypertens Res 43(7):679–687. https://doi.org/10.1038/s41440-020-0409-1

    Article  PubMed  CAS  Google Scholar 

  632. Peng W, Xie Y, Xia J, Li B, Zhang F, Wen F, Liu K, Cao H, Qi H, Zhang L (2022) Association of circulating biomarkers of lnc-IGSF3-1:1, SCOC-AS1, and SLC8A1-AS1 with salt sensitivity of blood pressure in Chinese population. J Cardiovasc Transl Res 15(4):906–917. https://doi.org/10.1007/s12265-021-10190-0

    Article  PubMed  Google Scholar 

  633. Cai B, Du J (2021) Role of bone morphogenic protein-4 in gestational diabetes mellitus-related hypertension. Exp Ther Med 22(1):762. https://doi.org/10.3892/etm.2021.10194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  634. Chen P, Zhang K, Zhou B, Zhang Z, Song Y, Pu Y, Yang Y, Zhang Y, Zhou R, Wang T et al (2014) The variations in the IL1RL1 gene and susceptibility to preeclampsia. Immunol Invest 43(5):424–435. https://doi.org/10.3109/08820139.2013.879173

    Article  PubMed  CAS  Google Scholar 

  635. Stern N, Eshkol A, Lunenfeld B, Rosenthal T (1983) Prolactin secretion in essential hypertension. Clin Exp Hypertens A 5(4):543–558. https://doi.org/10.3109/10641968309081791

    Article  PubMed  CAS  Google Scholar 

  636. Pajewski NM, Elahi FM, Tamura MK, Hinman JD, Nasrallah IM, Ix JH, Miller LM, Launer LJ, Wright CB, Supiano MA et al (2022) Plasma amyloid beta, neurofilament light chain, and total tau in the systolic blood pressure intervention trial (SPRINT). Alzheimers Dement 18(8):1472–1483. https://doi.org/10.1002/alz.12496

    Article  PubMed  CAS  Google Scholar 

  637. Kawarazaki W, Mizuno R, Nishimoto M, Ayuzawa N, Hirohama D, Ueda K, Kawakami-Mori F, Oba S, Marumo T, Fujita T (2020) Salt causes aging-associated hypertension via vascular Wnt5a under Klotho deficiency. J Clin Invest 130(8):4152–4166. https://doi.org/10.1172/JCI134431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  638. Wang C, Xu H, Liao X, Wang W, Wu W, Li W, Niu L, Li Z, Li A, Sun Y et al (2023) Hypertension promotes the proliferation and migration of ccRCC cells by downregulation of TIMP3 in tumor endothelial cells through the miR-21-5p/TGFBR2/P38/EGR1 axis. Mol Cancer Res 21(1):62–75. https://doi.org/10.1158/1541-7786.MCR-22-0089

    Article  PubMed  CAS  Google Scholar 

  639. Kadoya M, Koyama H, Kanzaki A, Kurajoh M, Hatayama M, Shiraishi J, Okazaki H, Shoji T, Moriwaki Y, Yamamoto T et al (2014) Plasma brain-derived neurotrophic factor and reverse dipping pattern of nocturnal blood pressure in patients with cardiovascular risk factors. PLoS ONE 9(8):e105977. https://doi.org/10.1371/journal.pone.0105977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  640. Li Q, Wong JH, Lu G, Antonio GE, Yeung DK, Ng TB, Forster LE, Yew DT (2009) Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR). Biochim Biophys Acta 1792(8):766–776. https://doi.org/10.1016/j.bbadis.2009.05.006

    Article  PubMed  CAS  Google Scholar 

  641. Sammar M, Apicella C, Altevogt P, Meiri H, Vaiman D (2022) Modeling preeclampsia in vitro: polymorphic variants of STOX1-A/B genes can downregulate CD24 in trophoblast cell lines. Int J Mol Sci 23(24):15927. https://doi.org/10.3390/ijms232415927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  642. Rossi E, Casali B, Regolisti G, Davoli S, Perazzoli F, Negro A, Sani C, Tumiati B, Nicoli D (1998) Increased plasma levels of platelet-derived growth factor (PDGF-BB + PDGF-AB) in patients with never-treated mild essential hypertension. Am J Hypertens 11(10):1239–1243. https://doi.org/10.1016/s0895-7061(98)00124-1

    Article  PubMed  CAS  Google Scholar 

  643. Calvier L, Herz J, Hansmann G (2022) Interplay of low-density lipoprotein receptors, LRPs, and lipoproteins in pulmonary hypertension. JACC Basic Transl Sci 7(2):164–180. https://doi.org/10.1016/j.jacbts.2021.09.011

    Article  PubMed  PubMed Central  Google Scholar 

  644. Manner IW, Trøseid M, Oektedalen O, Baekken M, Os I (2013) Low nadir CD4 cell count predicts sustained hypertension in HIV-infected individuals. J Clin Hypertens (Greenwich) 15(2):101–106. https://doi.org/10.1111/jch.12029

    Article  PubMed  CAS  Google Scholar 

  645. Sullivan MN, Thakore P, Krishnan V, Alphonsa S, Li W, Feng Earley Y, Earley S (2023) Endothelial cell TRPA1 activity exacerbates cerebral hemorrhage during severe hypertension. Front Mol Biosci 10:1129435. https://doi.org/10.3389/fmolb.2023.1129435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  646. Namlı Kalem M, Kalem Z, Yüce T, Soylemez F (2018) ADAMTS 1, 4, 12, and 13 levels in maternal blood, cord blood, and placenta in preeclampsia. Hypertens Pregnancy 37(1):9–17. https://doi.org/10.1080/10641955.2017.1397690

    Article  PubMed  CAS  Google Scholar 

  647. Pan Z, Wu X, Zhang X, Hu K (2023) Phosphodiesterase 4B activation exacerbates pulmonary hypertension induced by intermittent hypoxia by regulating mitochondrial injury and cAMP/PKA/p-CREB/PGC-1α signaling. Biomed Pharmacother 158:114095. https://doi.org/10.1016/j.biopha.2022.114095

    Article  PubMed  CAS  Google Scholar 

  648. Zhou JJ, Li H, Qian YL, Quan RL, Chen XX, Li L, Li Y, Wang PH, Meng XM, Jing XL et al (2020) Nestin represents a potential marker of pulmonary vascular remodeling in pulmonary arterial hypertension associated with congenital heart disease. J Mol Cell Cardiol 149:41–53. https://doi.org/10.1016/j.yjmcc.2020.09.00

    Article  PubMed  CAS  Google Scholar 

  649. Lee YH, Kim YG, Moon JY, Kim JS, Jeong KH, Lee TW, Ihm CG, Lee SH (2016) Genetic variations of tyrosine hydroxylase in the pathogenesis of hypertension. Electrolyte Blood Press 14(2):21–26. https://doi.org/10.5049/EBP.2016.14.2.21

    Article  PubMed  PubMed Central  Google Scholar 

  650. Kandel M, MacDonald TM, Walker SP, Cluver C, Bergman L, Myers J, Hastie R, Keenan E, Hannan NJ, Cannon P et al (2022) PSG7 and 9 (pregnancy-specific β-1 glycoproteins 7 and 9): Novel biomarkers for preeclampsia. J Am Heart Assoc 11(7):e024536. https://doi.org/10.1161/JAHA.121.024536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  651. Ortner NJ (2023) CACNA1D-related channelopathies: from hypertension to autism. Handb Exp Pharmacol 279:183–225. https://doi.org/10.1007/164_2022_626

    Article  PubMed  Google Scholar 

  652. Maghajothi S, Subramanian L, Mani P, Singh M, Iyer DR, Sharma S, Khullar M, Victor SM, Asthana S, Mullasari AS et al (2022) A common Matrix metalloproteinase 8 promoter haplotype enhances the risk for hypertension via diminished interactions with nuclear factor kappa B. J Hypertens 40(11):2147–2160. https://doi.org/10.1097/HJH.0000000000003234

    Article  PubMed  CAS  Google Scholar 

  653. Gjesing AP, Andersen G, Burgdorf KS, Borch-Johnsen K, Jørgensen T, Hansen T, Pedersen O (2007) Studies of the associations between functional beta2-adrenergic receptor variants and obesity, hypertension and type 2 diabetes in 7,808 white subjects. Diabetologia 50(3):563–568. https://doi.org/10.1007/s00125-006-0578-8

    Article  PubMed  CAS  Google Scholar 

  654. Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, Ortiz A (2021) Role of klotho in the development of essential hypertension. Hypertension 77(3):740–750. https://doi.org/10.1161/HYPERTENSIONAHA.120.16635

    Article  PubMed  CAS  Google Scholar 

  655. Levi M, Moons L, Bouché A, Shapiro SD, Collen D, Carmeliet P (2001) Deficiency of urokinase-type plasminogen activator-mediated plasmin generation impairs vascular remodeling during hypoxia-induced pulmonary hypertension in mice. Circulation 103(15):2014–2020. https://doi.org/10.1161/01.cir.103.15.2014

    Article  PubMed  CAS  Google Scholar 

  656. Jin X, Narisawa M, Piao L, Cheng XW (2022) Protein tyrosine phosphatase receptor type D as a potential therapeutic target in pulmonary artery hypertension. J Hypertens 40(9):1650–1654. https://doi.org/10.1097/HJH.0000000000003232

    Article  PubMed  CAS  Google Scholar 

  657. Samara TD, Liem IK, Prijanti AR (2019) SEMA3B but Not CUL1 as marker for pre-eclampsia progression. Malays J Med Sci 26(1):66–72. https://doi.org/10.21315/mjms2019.26.1.6

    Article  PubMed  PubMed Central  Google Scholar 

  658. Dzieza-Grudnik A, Siga O, Walczewska J, Wizner B, Wolkow PP, Messerli FH, Grodzicki T (2023) Urocortin 2 - a protective effect in hypertension? J Physiol Pharmacol. https://doi.org/10.26402/jpp.2023.1.01

    Article  PubMed  Google Scholar 

  659. Ongun MC, Tonyali NV, Kaplan O, Deger I, Celebier M, Basci Akduman NE, Sahin D, Yucel A, Babaoglu MO (2023) Effects of genetic polymorphisms of CYP2J2, CYP2C9, CYP2C19, CYP4F2, CYP4F3 and CYP4A11 enzymes in preeclampsia and gestational hypertension. Placenta 137:88–95. https://doi.org/10.1016/j.placenta.2023.04.019

    Article  PubMed  CAS  Google Scholar 

  660. Park HY, Kim JH, Bae S, Choi YY, Park JY, Hong YC (2015) Interaction effect of serum 25-hydroxyvitamin D levels and CYP1A1, CYP1B1 polymorphisms on blood pressure in an elderly population. J Hypertens 33(1):69–76. https://doi.org/10.1097/HJH.0000000000000381

    Article  PubMed  CAS  Google Scholar 

  661. Montani D, Girerd B, Günther S, Riant F, Tournier-Lasserve E, Magy L, Maazi N, Guignabert C, Savale L, Sitbon O et al (2014) Pulmonary arterial hypertension in familial hemiplegic migraine with ATP1A2 channelopathy. Eur Respir J 43(2):641–643. https://doi.org/10.1183/09031936.001470

    Article  PubMed  Google Scholar 

  662. Zhao A, Qi Y, Liu K (2020) CLDN3 expression and function in pregnancy-induced hypertension. Exp Ther Med 20(4):3798–3806. https://doi.org/10.3892/etm.2020.9084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  663. Fernández-Solà J, Borrisser-Pairó F, Antúnez E, Tobías E (2015) Myostatin and insulin-like growth factor-1 in hypertensive heart disease: a prospective study in human heart donors. J Hypertens 33(4):851–859. https://doi.org/10.1097/HJH.0000000000000493

    Article  PubMed  CAS  Google Scholar 

  664. Nowzari Z, Masoumi M, Nazari-Robati M, Akbari H, Shahrokhi N, Asadikaram G (2018) Association of polymorphisms of leptin, leptin receptor and apelin receptor genes with susceptibility to coronary artery disease and hypertension. Life Sci 207:166–171. https://doi.org/10.1016/j.lfs.2018.06.007

    Article  PubMed  CAS  Google Scholar 

  665. Hilton LR, Rätsep MT, VandenBroek MM, Jafri S, Laverty KJ, Mitchell M, Theilmann AL, Smart JA, Hawke LG, Moore SD et al (2022) Impaired interleukin-15 signaling via BMPR2 loss drives natural killer cell deficiency and pulmonary hypertension. Hypertension 79(11):2493–2504. https://doi.org/10.1161/HYPERTENSIONAHA.122.19178

    Article  PubMed  CAS  Google Scholar 

  666. Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC et al (2015) Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 4:e06315. https://doi.org/10.7554/eLife.06315

    Article  PubMed  PubMed Central  Google Scholar 

  667. Anderson L, Lowery JW, Frank DB, Novitskaya T, Jones M, Mortlock DP, Chandler RL, de Caestecker MP (2010) Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 298(3):R833–R842. https://doi.org/10.1152/ajpregu.00534.2009

    Article  PubMed  CAS  Google Scholar 

  668. Zhang X, Li Q, Jiang W, Xiong X, Li H, Zhao J, Qi H (2020) LAMA5 promotes human umbilical vein endothelial cells migration, proliferation, and angiogenesis and is decreased in preeclampsia. J Matern Fetal Neonatal Med 33(7):1114–1124. https://doi.org/10.1080/14767058.2018.1514597

    Article  PubMed  CAS  Google Scholar 

  669. Yamada Y, Kato K, Yoshida T, Yokoi K, Matsuo H, Watanabe S, Ichihara S, Metoki N, Yoshida H, Satoh K et al (2008) Association of polymorphisms of ABCA1 and ROS1 with hypertension in Japanese individuals. Int J Mol Med 21(1):83–89

    PubMed  CAS  Google Scholar 

  670. Shi J, Liu Y, Liu Y, Li Y, Qiu S, Bai Y, Gu Y, Luo J, Cui H, Li Y et al (2018) Association between ApoE polymorphism and hypertension: a meta-analysis of 28 studies including 5898 cases and 7518 controls. Gene 675:197–207. https://doi.org/10.1016/j.gene.2018.06.097

    Article  PubMed  CAS  Google Scholar 

  671. Udjus C, Cero FT, Halvorsen B, Behmen D, Carlson CR, Bendiksen BA, Espe EKS, Sjaastad I, Løberg EM, Yndestad A et al (2019) Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 316(6):L999–L1012. https://doi.org/10.1152/ajplung.00322.2018

    Article  PubMed  CAS  Google Scholar 

  672. Kolb TM, Johnston L, Damarla M, Kass DA, Hassoun PM (2021) PDE9A deficiency does not prevent chronic-hypoxic pulmonary hypertension in mice. Physiol Rep 9(18):e15057. https://doi.org/10.14814/phy2.15057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  673. Crnkovic S, Rittchen S, Jandl K, Gindlhuber J, Zabini D, Mutgan AC, Valzano F, Boehm PM, Hoetzenecker K, Toller W et al (2023) Divergent roles of Ephrin-B2/EphB4 guidance system in pulmonary hypertension. Hypertension 80(2):e17–e28. https://doi.org/10.1161/HYPERTENSIONAHA.122.19479

    Article  PubMed  CAS  Google Scholar 

  674. Malfará BN, Benzi JRL, de Oliveira Filgueira GC, Zanelli CF, Duarte G, de Carvalho CR, de Moraes NV (2019) ABCG2 c.421C>A polymorphism alters nifedipine transport to breast milk in hypertensive breastfeeding women. Reprod Toxicol 85:1–5. https://doi.org/10.1016/j.reprotox.2019.01.007

    Article  PubMed  CAS  Google Scholar 

  675. Ishigami T, Iwamoto T, Tamura K, Yamaguchi S, Iwasawa K, Uchino K, Umemura S, Ishii M (1995) Angiotensin I converting enzyme (ACE) gene polymorphism and essential hypertension in Japan. Ethnic difference of ACE genotype. Am J Hypertens 8(1):95–97. https://doi.org/10.1016/0895-7061(94)00184-D

    Article  PubMed  CAS  Google Scholar 

  676. Barberis MC, Veronese S, Bauer D, De Juli E, Harari S (1995) Immunocytochemical detection of progesterone receptors. A study in a patient with primary pulmonary hypertension. Chest 107(3):869–872. https://doi.org/10.1378/chest.107.3.869

    Article  PubMed  CAS  Google Scholar 

  677. Seo JY, Choi JH (2021) Genetic variations in thiamin transferase SLC35F3 and the risk of hypertension in Koreans. Clin Nutr Res 10(2):140–149. https://doi.org/10.7762/cnr.2021.10.2.140

    Article  PubMed  PubMed Central  Google Scholar 

  678. Ariff A, Melton PE, Brennecke SP, Moses EK (2019) Analysis of the epigenome in multiplex pre-eclampsia families identifies SORD, DGKI, and ICA1 as novel candidate risk genes. Front Genet 10:227. https://doi.org/10.3389/fgene.2019.00227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  679. Rajagambeeram R, Abu Raghavan S, Ghosh S, Basu S, Ramasamy R, Murugaiyan SB (2014) Diagnostic utility of heat stable alkaline phosphatase in hypertensive disorders of pregnancy. J Clin Diagn Res 8(11):CC10–CC13. https://doi.org/10.7860/JCDR/2014/10895.5084

    Article  PubMed  PubMed Central  Google Scholar 

  680. Jain PP, Lai N, Xiong M, Chen J, Babicheva A, Zhao T, Parmisano S, Zhao M, Paquin C, Matti M et al (2021) TRPC6, a therapeutic target for pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 321(6):L1161–L1182. https://doi.org/10.1152/ajplung.00159.2021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  681. Fiorucci S, Distrutti E (2016) Targeting the transsulfuration-H2S pathway by FXR and GPBAR1 ligands in the treatment of portal hypertension. Pharmacol Res 111:749–756. https://doi.org/10.1016/j.phrs.2016.07.040

    Article  PubMed  CAS  Google Scholar 

  682. Scheiner B, Mandorfer M, Schwabl P, Payer BA, Bucsics T, Bota S, Aichelburg MC, Grabmeier-Pfistershammer K, Stättermayer A, Ferenci P et al (2015) The Impact of PNPLA3 rs738409 SNP on liver fibrosis progression, portal hypertension and hepatic steatosis in HIV/HCV coinfection. PLoS ONE 10(11):e0143429. https://doi.org/10.1371/journal.pone.0143429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  683. Dunk CE, Bucher M, Zhang J, Hayder H, Geraghty DE, Lye SJ, Myatt L, Hackmon R (2022) Human leukocyte antigen HLA-C, HLA-G, HLA-F, and HLA-E placental profiles are altered in early severe preeclampsia and preterm birth with chorioamnionitis. Am J Obstet Gynecol 227(4):641.e1-641.e13. https://doi.org/10.1016/j.ajog.2022.07.021

    Article  PubMed  CAS  Google Scholar 

  684. Laggner M, Hacker P, Oberndorfer F, Bauer J, Raunegger T, Gerges C, Szerafin T, Thanner J, Lang I, Skoro-Sajer N et al (2022) The roles of S100A4 and the EGF/EGFR signaling axis in pulmonary hypertension with right ventricular hypertrophy. Biology (Basel) 11(1):118. https://doi.org/10.3390/biology11010118

    Article  PubMed  CAS  Google Scholar 

  685. Zhou X, Liang B, Lin W, Zha L (2024) Identification of MACC1 as a potential biomarker for pulmonary arterial hypertension based on bioinformatics and machine learning. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2024.108372

    Article  PubMed  PubMed Central  Google Scholar 

  686. Zou X, Wu Z, Huang J, Liu P, Qin X, Chen L, Zhu W, Zhao Y, Li P, Song J et al (2018) The role of matrix metalloproteinase-3 in the doxycycline attenuation of intracranial venous hypertension-induced angiogenesis. Neurosurgery 83(6):1317–1327. https://doi.org/10.1093/neuros/nyx633

    Article  PubMed  Google Scholar 

  687. Yamagata K, Tagami M, Ikeda K, Tsumagari S, Yamori Y, Nara Y (2002) Differential regulation of glial cell line-derived neurotrophic factor (GDNF) mRNA expression during hypoxia and reoxygenation in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Glia 37(1):1–7. https://doi.org/10.1002/glia.10003

    Article  PubMed  Google Scholar 

  688. Jiao K, Su P, Li Y (2023) FGFR2 modulates the Akt/Nrf2/ARE signaling pathway to improve angiotensin II-induced hypertension-related endothelial dysfunction. Clin Exp Hypertens 45(1):2208777. https://doi.org/10.1080/10641963.2023.2208777

    Article  PubMed  CAS  Google Scholar 

  689. Wang X, Shields C, Tardo G, Peacock G, Hester E, Anderson M, Williams JM, Cornelius DC (2024) IL-33 supplementation improves uterine artery resistance and maternal hypertension in response to placental ischemia. Am J Physiol Heart Circ Physiol 326(4):H1006–H1016. https://doi.org/10.1152/ajpheart.00045.2024

    Article  PubMed  CAS  Google Scholar 

  690. Tomoda F, Nitta A, Sugimori H, Koike T, Kinugawa K (2022) Plasma and urinary levels of nerve growth factor are elevated in primary hypertension. Int J Hypertens 2022:3003269. https://doi.org/10.1155/2022/3003269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  691. Wang Y, Jia H, Gao WH, Zou T, Yao S, Du MF, Zhang XY, Chu C, Liao YY, Chen C et al (2021) Associations of plasma PAPP-A2 and genetic variations with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults. J Hypertens 39(9):1817–1825. https://doi.org/10.1097/HJH.0000000000002846

    Article  PubMed  CAS  Google Scholar 

  692. Wang H, Yuan Z, Wang B, Li B, Lv H, He J, Huang Y, Cui Z, Ma Q, Li T et al (2022) COMP (cartilage oligomeric matrix protein), a novel PIEZO1 regulator that controls blood pressure. Hypertension 79(3):549–561. https://doi.org/10.1161/HYPERTENSIONAHA.121.179

    Article  PubMed  Google Scholar 

  693. Toyama T, Kudryashova TV, Ichihara A, Lenna S, Looney A, Shen Y, Jiang L, Teos L, Avolio T, Lin D et al (2023) GATA6 coordinates cross-talk between BMP10 and oxidative stress axis in pulmonary arterial hypertension. Sci Rep 13(1):6593. https://doi.org/10.1038/s41598-023-33779-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  694. van der Have O, Mead TJ, Westöö C, Peruzzi N, Mutgan AC, Norvik C, Bech M, Struglics A, Hoetzenecker K, Brunnström H et al (2023) Aggrecan accumulates at sites of increased pulmonary arterial pressure in idiopathic pulmonary arterial hypertension. Pulm Circ 13(1):e12200. https://doi.org/10.1002/pul2.12200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  695. Fujimaki T, Oguri M, Horibe H, Kato K, Matsuoka R, Abe S, Tokoro F, Arai M, Noda T, Watanabe S et al (2015) Association of a transcription factor 21 gene polymorphism with hypertension. Biomed Rep 3(1):118–122. https://doi.org/10.3892/br.2014.371

    Article  PubMed  Google Scholar 

  696. Li R, Xie J, Xu W, Zhang L, Lin H, Huang W (2022) LPS-induced PTGS2 manipulates the inflammatory response through trophoblast invasion in preeclampsia via NF-κB pathway. Reprod Biol 22(4):100696. https://doi.org/10.1016/j.repbio.2022.100696

    Article  PubMed  CAS  Google Scholar 

  697. Lozano-Velasco E, Wangensteen R, Quesada A, Garcia-Padilla C, Osorio JA, Ruiz-Torres MD, Aranega A, Franco D (2017) Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling. PLoS ONE 12(12):e0188473. https://doi.org/10.1371/journal.pone.0188473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  698. Sun CJ, Li L, Li X, Zhang WY, Liu XW (2018) Novel SNPs of WNK1 and AKR1C3 are associated with preeclampsia. Gene 668:27–32. https://doi.org/10.1016/j.gene.2018.05.055

    Article  PubMed  CAS  Google Scholar 

  699. Schäfer K, Tello K, Pak O, Richter M, Gierhardt M, Kwapiszewska G, Veith C, Fink L, Gall H, Hecker M et al (2023) Decreased plasma levels of the brain-derived neurotrophic factor correlate with right heart congestion in pulmonary arterial hypertension. ERJ Open Res 9(2):00230–02022. https://doi.org/10.1183/23120541.00230-2022

    Article  PubMed  PubMed Central  Google Scholar 

  700. Sierra-Ramos C, Velazquez-Garcia S, Vastola-Mascolo A, Hernández G, Faresse N, de la Rosa DA (2020) SGK1 activation exacerbates diet-induced obesity, metabolic syndrome and hypertension. J Endocrinol 244(1):149–162

    Article  PubMed  CAS  Google Scholar 

  701. Bhagwani AR, Ali M, Piper B, Liu M, Hudson J, Kelly N, Bogamuwa S, Yang H, Londino JD, Bednash JS et al (2023) A p53-TLR3 axis ameliorates pulmonary hypertension by inducing BMPR2 via IRF3. iScience 26(2):105935. https://doi.org/10.1016/j.isci.2023.105935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  702. Abu-Farha M, Cherian P, Qaddoumi MG, AlKhairi I, Sriraman D, Alanbaei M, Abubaker J (2018) Increased plasma and adipose tissue levels of ANGPTL8/Betatrophin and ANGPTL4 in people with hypertension. Lipids Health Dis 17(1):35. https://doi.org/10.1186/s12944-018-0681-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  703. Agalakova NI, Reznik VA, Ershov IA, Lupanova EA, Nadei OV, Ivanov DO, David Adair C, Bagrov AY (2022) Silencing of Fli1 gene mimics effects of preeclampsia and induces collagen synthesis in human umbilical arteries. Am J Hypertens 35(9):828–832. https://doi.org/10.1093/ajh/hpac065

    Article  PubMed  CAS  Google Scholar 

  704. Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, Hou JW, Yang YL, Wang YP, Li YG (2024) Ntsr1 contributes to pulmonary hypertension by enhancing endoplasmic reticulum stress via JAK2-STAT3-Thbs1 signaling. Transl Res. https://doi.org/10.1016/j.trsl.2024.02.002

    Article  PubMed  Google Scholar 

  705. Avecilla V (2019) Effect of transcriptional regulator ID3 on pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Int J Vasc Med 2019:2123906. https://doi.org/10.1155/2019/2123906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  706. Pavlov TS, Palygin O, Isaeva E, Levchenko V, Khedr S, Blass G, Ilatovskaya DV, Cowley AW Jr, Staruschenko A (2020) NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J 34(10):13396–13408. https://doi.org/10.1096/fj.202000966RR

    Article  PubMed  CAS  Google Scholar 

  707. Gu Q, Yazdanpanah M, van Hoek M, Hofman A, Gao X, de Rooij FW, Sijbrands EJ (2015) Common variants in PCSK1 influence blood pressure and body mass index. J Hum Hypertens 29(2):82–86. https://doi.org/10.1038/jhh.2014.59

    Article  PubMed  CAS  Google Scholar 

  708. Palumbo V, Segat L, Padovan L, Amoroso A, Trimarco B, Izzo R, Lembo G, Regitz-Zagrosek V, Knoll R, Brancaccio M et al (2009) Melusin gene (ITGB1BP2) nucleotide variations study in hypertensive and cardiopathic patients. BMC Med Genet 10:140. https://doi.org/10.1186/1471-2350-10-140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  709. Guo XG, Ding J, Xu H, Xuan TM, Jin WQ, Yin X, Shang YP, Zhang FR, Zhu JH, Zheng LR (2014) Comprehensive assessment of the association of WNK4 polymorphisms with hypertension: evidence from a meta-analysis. Sci Rep 4:6507. https://doi.org/10.1038/srep06507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  710. Zadora J, Singh M, Herse F, Przybyl L, Haase N, Golic M, Yung HW, Huppertz B, Cartwright JE, Whitley G et al (2017) Disturbed placental imprinting in preeclampsia leads to altered expression of DLX5, a human-specific early trophoblast marker. Circulation 136(19):1824–1839. https://doi.org/10.1161/CIRCULATIONAHA.117.028110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  711. Caccamo D, Cannata A, Ricca S, Catalano LM, Montalto AF, Alibrandi A, Ercoli A, Granese R (2020) Role of vitamin-D receptor (VDR) single nucleotide polymorphisms in gestational hypertension development: a case-control study. PLoS ONE 15(11):e0239407. https://doi.org/10.1371/journal.pone.0239407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  712. Zhang Z, Tremblay J, Raelson J, Sofer T, Du L, Fang Q, Argos M, Marois-Blanchet FC, Wang Y, Yan L et al (2019) EPHA4 regulates vascular smooth muscle cell contractility and is a sex-specific hypertension risk gene in individuals with type 2 diabetes. J Hypertens 37(4):775–789. https://doi.org/10.1097/HJH.0000000000001948

    Article  PubMed  CAS  Google Scholar 

  713. Chirinos JA, Sardana M, Syed AA, Koppula MR, Varakantam S, Vasim I, Oldland HG, Phan TS, Drummen NEA, Vermeer C et al (2018) Aldosterone, inactive matrix gla-protein, and large artery stiffness in hypertension. J Am Soc Hypertens 12(9):681–689. https://doi.org/10.1016/j.jash.2018.06.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  714. Bao Q, Wang D, Zhang Y, Bao L, Jia H (2020) The impact of CYP24A1 polymorphisms on hypertension susceptibility. Kidney Blood Press Res 45(1):28–37. https://doi.org/10.1159/000503925

    Article  PubMed  CAS  Google Scholar 

  715. Gratze P, Dechend R, Stocker C, Park JK, Feldt S, Shagdarsuren E, Wellner M, Gueler F, Rong S, Gross V et al (2008) Novel role for inhibitor of differentiation 2 in the genesis of angiotensin II-induced hypertension. Circulation 117(20):2645–2656. https://doi.org/10.1161/CIRCULATIONAHA.107.760116

    Article  PubMed  CAS  Google Scholar 

  716. Holmes L Jr, Lim A, Comeaux CR, Dabney KW, Okundaye O (2019) DNA methylation of candidate genes (ACE II, IFN-γ, AGTR 1, CKG, ADD1, SCNN1B and TLR2) in essential hypertension: a systematic review and quantitative evidence synthesis. Int J Environ Res Public Health 16(23):4829. https://doi.org/10.3390/ijerph16234829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  717. Manhiani MM, Seth DM, Banes-Berceli AK, Satou R, Navar LG, Brands MW (2015) The role of IL-6 in the physiologic versus hypertensive blood pressure actions of angiotensin II. Physiol Rep 3(10):e12595. https://doi.org/10.14814/phy2.12595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  718. Seidelmann SB, Vardeny O, Claggett B, Yu B, Shah AM, Ballantyne CM, Selvin E, MacRae CA, Boerwinkle E, Solomon SD (2017) An NPPB promoter polymorphism associated with elevated N-terminal pro-B-type natriuretic peptide and lower blood pressure, hypertension, and mortality. J Am Heart Assoc 6(4):e005257. https://doi.org/10.1161/JAHA.116.005257

    Article  PubMed  PubMed Central  Google Scholar 

  719. Van Beusecum JP, Barbaro NR, Smart CD, Patrick DM, Loperena R, Zhao S, de la Visitacion N, Ao M, Xiao L, Shibao CA et al (2021) Growth arrest specific-6 and Axl coordinate inflammation and hypertension. Circ Res 129(11):975–991. https://doi.org/10.1161/CIRCRESAHA.121.319643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  720. Ong KL, Leung RY, Babinska A, Salifu MO, Ehrlich YH, Kornecki E, Wong LY, Tso AW, Cherny SS, Sham PC et al (2009) Elevated plasma level of soluble F11 receptor/junctional adhesion molecule-A (F11R/JAM-A) in hypertension. Am J Hypertens 22(5):500–505. https://doi.org/10.1038/ajh.2009.2

    Article  PubMed  CAS  Google Scholar 

  721. Quintero-Ronderos P, Jiménez KM, Esteban-Pérez C, Ojeda DA, Bello S, Fonseca DJ, Coronel MA, Moreno-Ortiz H, Sierra-Díaz DC, Lucena E et al (2019) FOXD1 mutations are related to repeated implantation failure, intra-uterine growth restriction and preeclampsia. Mol Med 25(1):37. https://doi.org/10.1186/s10020-019-0104-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  722. Wang X, Chow FL, Oka T, Hao L, Lopez-Campistrous A, Kelly S, Cooper S, Odenbach J, Finegan BA, Schulz R et al (2009) Matrix metalloproteinase-7 and ADAM-12 (a disintegrin and metalloproteinase-12) define a signaling axis in agonist-induced hypertension and cardiac hypertrophy. Circulation 119(18):2480–2489. https://doi.org/10.1161/CIRCULATIONAHA.108.835488

    Article  PubMed  CAS  Google Scholar 

  723. Arnett DK, Meyers KJ, Devereux RB, Tiwari HK, Gu CC, Vaughan LK, Perry RT, Patki A, Claas SA, Sun YV et al (2011) Genetic variation in NCAM1 contributes to left ventricular wall thickness in hypertensive families. Circ Res 108(3):279–283. https://doi.org/10.1161/CIRCRESAHA.110.239210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  724. Jin HS, Hong KW, Lim JE, Hwang SY, Lee SH, Shin C, Park HK, Oh B (2010) Genetic variations in the sodium balance-regulating genes ENaC, NEDD4L, NDFIP2 and USP2 influence blood pressure and hypertension. Kidney Blood Press Res 33(1):15–23. https://doi.org/10.1159/000275706

    Article  PubMed  CAS  Google Scholar 

  725. Sindi HA, Russomanno G, Satta S, Abdul-Salam VB, Jo KB, Qazi-Chaudhry B, Ainscough AJ, Szulcek R, Jan Bogaard H, Morgan CC et al (2020) Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat Commun 11(1):1185. https://doi.org/10.1038/s41467-020-14966-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  726. Pu J, Wang F, Ye P, Jiang X, Zhou W, Gu Y, Chen S (2022) Salt-inducible kinase 1 deficiency promotes vascular remodeling in pulmonary arterial hypertension via enhancement of yes-associated protein-mediated proliferation. Heliyon 8(10):e11016. https://doi.org/10.1016/j.heliyon.2022.e11016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  727. Zhou C, Chen Y, Kang W, Lv H, Fang Z, Yan F, Li L, Zhang W, Shi J (2019) Mir-455-3p-1 represses FGF7 expression to inhibit pulmonary arterial hypertension through inhibiting the RAS/ERK signaling pathway. J Mol Cell Cardiol 130:23–35. https://doi.org/10.1016/j.yjmcc.2019.03.002

    Article  PubMed  CAS  Google Scholar 

  728. Neto ABL, Vasconcelos NBR, Dos Santos TR, Duarte LEC, Assunção ML, de Sales-Marques C, Ferreira HDS (2021) Prevalence of IGFBP3, NOS3 and TCF7L2 polymorphisms and their association with hypertension: a population-based study with Brazilian women of African descent. BMC Res Notes 14(1):186. https://doi.org/10.1186/s13104-021-05598-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  729. Sardo MA, Mandraffino G, Riggio S, D’Ascola A, Alibrandi A, Saitta C, Imbalzano E, Castaldo M, Cinquegrani M, Saitta A (2010) Effects of the angiotensin II receptor blocker losartan on the monocyte expression of biglycan in hypertensive patients. Clin Exp Pharmacol Physiol 37(9):933–938. https://doi.org/10.1111/j.1440-1681.2010.05407.x

    Article  PubMed  CAS  Google Scholar 

  730. Su L, Li X, Mao X, Xu T, Zhang Y, Li S, Zhu X, Wang L, Yao D, Wang J et al (2023) Circ-Ntrk2 acts as a miR-296-5p sponge to activate the TGF-β1/p38 MAPK pathway and promote pulmonary hypertension and vascular remodelling. Respir Res 24(1):78. https://doi.org/10.1186/s12931-023-02385-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  731. Fedorowicz A, Mateuszuk Ł, Kopec G, Skórka T, Kutryb-Zając B, Zakrzewska A, Walczak M, Jakubowski A, Łomnicka M, Słomińska E et al (2016) Activation of the nicotinamide N-methyltransferase (NNMT)-1-methylnicotinamide (MNA) pathway in pulmonary hypertension. Respir Res 17(1):108. https://doi.org/10.1186/s12931-016-0423-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  732. Sun X, Nakajima E, Norbrun C, Sorkhdini P, Yang AX, Yang D, Ventetuolo CE, Braza J, Vang A, Aliotta J et al (2022) Chitinase 3 like 1 contributes to the development of pulmonary vascular remodeling in pulmonary hypertension. JCI Insight 7(18):e159578. https://doi.org/10.1172/jci.insight.159578

    Article  PubMed  PubMed Central  Google Scholar 

  733. Simmons Beck R, Liang OD, Klinger JR (2023) Light at the ENDothelium-role of Sox17 and Runx1 in endothelial dysfunction and pulmonary arterial hypertension. Front Cardiovasc Med 10:1274033. https://doi.org/10.3389/fcvm.2023.1274033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  734. Gandham R, Dayanand CD, Sheela SR, Kiranmayee P (2022) Maternal serum Apelin 13 and APLN gene promoter variant -1860T > C in preeclampsia. J Matern Fetal Neonatal Med 35(25):5008–5016. https://doi.org/10.1080/14767058.2021.1874341

    Article  PubMed  CAS  Google Scholar 

  735. Oudejans CB, Poutsma A, Michel OJ, Thulluru HK, Mulders J, van de Vrugt HJ, Sistermans EA, van Dijk M (2016) Noncoding RNA-regulated gain-of-function of STOX2 in Finnish pre-eclamptic families. Sci Rep 6:32129. https://doi.org/10.1038/srep32129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  736. Carr G, Barrese V, Stott JB, Povstyan OV, Jepps TA, Figueiredo HB, Zheng D, Jamshidi Y, Greenwood IA (2016) MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension. Cardiovasc Res 112(2):581–589. https://doi.org/10.1093/cvr/cvw177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  737. Sahoo S, Li Y, de Jesus D, Sembrat J, Rojas MM, Goncharova E, Cifuentes-Pagano E, Straub AC, Pagano PJ (2021) Notch2 suppression mimicking changes in human pulmonary hypertension modulates Notch1 and promotes endothelial cell proliferation. Am J Physiol Heart Circ Physiol 321(3):H542–H557. https://doi.org/10.1152/ajpheart.00125.2021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  738. Spradley FT, Tan AY, Joo WS, Daniels G, Kussie P, Karumanchi SA, Granger JP (2016) Placental growth factor administration abolishes placental ischemia-induced hypertension. Hypertension 67(4):740–747. https://doi.org/10.1161/HYPERTENSIONAHA.115.06783

    Article  PubMed  CAS  Google Scholar 

  739. Ye Y, Li M, Chen L, Li S, Quan Z (2021) Circ-AK2 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-454-3p/THBS2. Placenta 103:156–163. https://doi.org/10.1016/j.placenta.2020.10.023

    Article  PubMed  CAS  Google Scholar 

  740. Owusu D, Pan Y, Xie C, Harirforoosh S, Wang KS (2017) Polymorphisms in PDLIM5 gene are associated with alcohol dependence, type 2 diabetes, and hypertension. J Psychiatr Res 84:27–34. https://doi.org/10.1016/j.jpsychires.2016.09.015

    Article  PubMed  Google Scholar 

  741. Gunawardhana KL, Hong L, Rugira T, Uebbing S, Kucharczak J, Mehta S, Karunamuni DR, Cabera-Mendoza B, Gandotra N, Scharfe C et al (2023) A systems biology approach identifies the role of dysregulated PRDM6 in the development of hypertension. J Clin Invest 133(4):e160036. https://doi.org/10.1172/JCI160036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  742. Chechekhin VI, Ivanova AM, Kulebyakin KY, Antropova YG, Karagyaur MN, Skryabina MN, Chechekhina ES, Basalova NA, Grigorieva OA, Sysoeva VY et al (2024) Peripheral 5-HT/HTR6 axis is responsible for obesity-associated hypertension. Biochim Biophys Acta Mol Cell Res 1871(2):119651. https://doi.org/10.1016/j.bbamcr.2023.119651

    Article  PubMed  CAS  Google Scholar 

  743. Adão R, Mendes-Ferreira P, Maia-Rocha C, Santos-Ribeiro D, Rodrigues PG, Vidal-Meireles A, Monteiro-Pinto C, Pimentel LD, Falcão-Pires I, De Keulenaer GW et al (2019) Neuregulin-1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension. Clin Exp Pharmacol Physiol 46(3):255–265. https://doi.org/10.1111/1440-1681.13043

    Article  PubMed  CAS  Google Scholar 

  744. Tomaszewski M, Grywalska E, Topyła-Putowska W, Błaszczak P, Kurzyna M, Roliński J, Kopeć G (2021) High CD200 expression on T CD4+ and T CD8+ lymphocytes as a non-invasive marker of idiopathic pulmonary hypertension-preliminary study. J Clin Med 10(5):950. https://doi.org/10.3390/jcm10050950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  745. Jinyu L, Shuying W, Panchan Z, Dan C, Chao C, Xingyu Y, Weiwei C (2022) Bone marrow stromal cell antigen 2(BST2) suppresses the migration and invasion of trophoblasts in preeclampsia by downregulating matrix metallopeptidase 2(MMP2). Bioengineered 13(5):13174–13187. https://doi.org/10.1080/21655979.2022.2074712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  746. Koot BG, Alders M, Verheij J, Beuers U, Cobben JM (2016) A de novo mutation in KCNN3 associated with autosomal dominant idiopathic non-cirrhotic portal hypertension. J Hepatol 64(4):974–977. https://doi.org/10.1016/j.jhep.2015.11.027

    Article  PubMed  CAS  Google Scholar 

  747. Le MT, Lobmeyer MT, Campbell M, Cheng J, Wang Z, Turner ST, Chapman AB, Boerwinkle E, Gums JG, Gong Y et al (2013) Impact of genetic polymorphisms of SLC2A2, SLC2A5, and KHK on metabolic phenotypes in hypertensive individuals. PLoS ONE 8(1):e52062. https://doi.org/10.1371/journal.pone.0052062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  748. Hu Z, Dong C, Dong Q (2021) Circ_0015382 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-149-5p/TFPI2 axis. Placenta 108:73–80. https://doi.org/10.1016/j.placenta.2021.03.005

    Article  PubMed  CAS  Google Scholar 

  749. Lang CT, Markham KB, Behrendt NJ, Suarez AA, Samuels P, Vandre DD, Robinson JM, Ackerman WE 4th (2009) Placental dysferlin expression is reduced in severe preeclampsia. Placenta 30(8):711–718. https://doi.org/10.1016/j.placenta.2009.05.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  750. Sasagawa S, Nishimura Y, Sawada H, Zhang E, Okabe S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R et al (2016) Comparative transcriptome analysis identifies CCDC80 as a novel gene associated with pulmonary arterial hypertension. Front Pharmacol 7:142. https://doi.org/10.3389/fphar.2016.00142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  751. Yung C, MacDonald TM, Walker SP, Cannon P, Harper A, Pritchard N, Hannan NJ, Kaitu’u-Lino TJ, Tong S (2019) Death associated protein kinase 1 (DAPK-1) is increased in preeclampsia. Placenta 88:1–7. https://doi.org/10.1016/j.placenta.2019.09.010

    Article  PubMed  Google Scholar 

  752. Pinilla L, Castellano JM, Romero M, Tena-Sempere M, Gaytán F, Aguilar E (2009) Delayed puberty in spontaneously hypertensive rats involves a primary ovarian failure independent of the hypothalamic KiSS-1/GPR54/GnRH system. Endocrinology 150(6):2889–2897. https://doi.org/10.1210/en.2008-1381

    Article  PubMed  CAS  Google Scholar 

  753. Yang HC, Liang YJ, Chen JW, Chiang KM, Chung CM, Ho HY, Ting CT, Lin TH, Sheu SH, Tsai WC et al (2012) Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as hypertension susceptibility genes in Han Chinese with a genome-wide gene-based association study. PLoS ONE 7(3):e32907. https://doi.org/10.1371/journal.pone.0032907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  754. Batool M, Berghausen EM, Zierden M, Vantler M, Schermuly RT, Baldus S, Rosenkranz S, Ten Freyhaus H (2020) The six-transmembrane protein Stamp2 ameliorates pulmonary vascular remodeling and pulmonary hypertension in mice. Basic Res Cardiol 115(6):68. https://doi.org/10.1007/s00395-020-00826-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  755. Chang TJ, Wang WC, Hsiung CA, He CT, Lin MW, Sheu WH, Chang YC, Quertermous T, Chen I, Rotter J et al (2016) Genetic variation in the human SORBS1 gene is associated with blood pressure regulation and age at onset of hypertension: a SAPPHIRe cohort study. Medicine (Baltimore) 95(10):e2970. https://doi.org/10.1097/MD.0000000000002970

    Article  PubMed  CAS  Google Scholar 

  756. Yan S, Cui S, Zhang L, Yang B, Yuan Y, Lv X, Fu H, Li Y, Huang C, Wang P (2020) Expression of ACKR2 in placentas from different types of preeclampsia. Placenta 90:121–127. https://doi.org/10.1016/j.placenta.2019.12.01

    Article  PubMed  CAS  Google Scholar 

  757. Edwards JM, Roy S, Galla SL, Tomcho JC, Bearss NR, Waigi EW, Mell B, Cheng X, Saha P, Vijay-Kumar M et al (2021) FPR-1 (Formyl peptide receptor-1) activation promotes spontaneous, premature hypertension in dahl salt-sensitive rats. Hypertension 77(4):1191–1202. https://doi.org/10.1161/HYPERTENSIONAHA.120.16237

    Article  PubMed  CAS  Google Scholar 

  758. Nakano M, Koga M, Hashimoto T, Matsushita N, Masukawa D, Mizuno Y, Uchimura H, Niikura R, Miyazaki T, Nakamura F et al (2022) Right ventricular overloading is attenuated in monocrotaline-induced pulmonary hypertension model rats with a disrupted Gpr143 gene, the gene that encodes the 3,4-l-dihydroxyphenyalanine (l-DOPA) receptor. J Pharmacol Sci 148(2):214–220. https://doi.org/10.1016/j.jphs.2021.11.008

    Article  PubMed  CAS  Google Scholar 

  759. García SI, Porto PI, Dieuzeide G, Landa MS, Kirszner T, Plotquin Y, Gonzalez C, Pirola CJ (2001) Thyrotropin-releasing hormone receptor (TRHR) gene is associated with essential hypertension. Hypertension 38(3 Pt 2):683–687. https://doi.org/10.1161/01.hyp.38.3.683

    Article  PubMed  Google Scholar 

  760. Wang X, Singh P, Zhou L, Sharafeldin N, Landier W, Hageman L, Burridge P, Yasui Y, Sapkota Y, Blanco JG et al (2023) Genome-wide association study identifies ROBO2 as a novel susceptibility gene for anthracycline-related cardiomyopathy in childhood cancer survivors. J Clin Oncol 41(9):1758–1769. https://doi.org/10.1200/JCO.22.01527

    Article  PubMed  CAS  Google Scholar 

  761. Singh V, Kaur R, Kumari P, Pasricha C, Singh R (2023) ICAM-1 and VCAM-1: gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta 548:117487. https://doi.org/10.1016/j.cca.2023.117487

    Article  PubMed  CAS  Google Scholar 

  762. Ueland T, Gullestad L, Kou L, Aukrust P, Anand IS, Broughton MN, McMurray JJ, van Veldhuisen DJ, Warren DJ, Bolstad N (2018) Pro-gastrin-releasing peptide and outcome in patients with heart failure and anaemia: results from the RED-HF study. ESC Heart Fail 5(6):1052–1059. https://doi.org/10.1002/ehf2.12312

    Article  PubMed  PubMed Central  Google Scholar 

  763. Saito N, Furuhashi M, Koyama M, Higashiura Y, Akasaka H, Tanaka M, Moniwa N, Ohnishi H, Saitoh S, Ura N et al (2021) Elevated circulating FABP4 concentration predicts cardiovascular death in a general population: a 12-year prospective study. Sci Rep 11(1):4008. https://doi.org/10.1038/s41598-021-83494-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  764. Tian X, Sun C, Wang X, Ma K, Chang Y, Guo Z, Si J (2020) ANO1 regulates cardiac fibrosis via ATI-mediated MAPK pathway. Cell Calcium 92:102306. https://doi.org/10.1016/j.ceca.2020.102306

    Article  PubMed  CAS  Google Scholar 

  765. Saleem M, Rahman S, Elijovich F, Laffer CL, Ertuglu LA, Masenga SK, Kirabo A (2022) Sox6, a potential target for MicroRNAs in cardiometabolic disease. Curr Hypertens Rep 24(5):145–156. https://doi.org/10.1007/s11906-022-01175-8

    Article  PubMed  CAS  Google Scholar 

  766. Zeng M, Wei X, He YL, Chen JX, Lin WT (2023) TFAP2C inhibits cell autophagy to alleviate myocardial ischemia/reperfusion injury by regulating miR-23a-5p/SFRP5/Wnt5a axis. FASEB J 37(6):e22959. https://doi.org/10.1096/fj.202201962R

    Article  PubMed  CAS  Google Scholar 

  767. Barrick CJ, Lenhart PM, Dackor RT, Nagle E, Caron KM (2012) Loss of receptor activity-modifying protein 3 exacerbates cardiac hypertrophy and transition to heart failure in a sex-dependent manner. J Mol Cell Cardiol 52(1):165–174. https://doi.org/10.1016/j.yjmcc.2011.10.021

    Article  PubMed  CAS  Google Scholar 

  768. Li Y, Jiang Y, Zhang Y, Li N, Yin Q, Liu L, Lv X, Liu Y, Li A, Fang B et al (2021) Abnormal upregulation of cardiovascular disease biomarker PLA2G7 induced by proinflammatory macrophages in COVID-19 patients. Sci Rep 11(1):6811. https://doi.org/10.1038/s41598-021-85848-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  769. Marcos-Jubilar M, Orbe J, Roncal C, Machado FJD, Rodriguez JA, Fernández-Montero A, Colina I, Rodil R, Pastrana JC, Páramo JA (2021) Association of SDF1 and MMP12 with atherosclerosis and inflammation: clinical and experimental study. Life (Basel) 11(5):414. https://doi.org/10.3390/life11050414

    Article  PubMed  CAS  Google Scholar 

  770. Corella D, Sorlí JV, González JI, Ortega C, Fitó M, Bulló M, Martínez-González MA, Ros E, Arós F, Lapetra J et al (2014) Novel association of the obesity risk-allele near fas apoptotic inhibitory molecule 2 (FAIM2) gene with heart rate and study of its effects on myocardial infarction in diabetic participants of the PREDIMED trial. Cardiovasc Diabetol 13:5. https://doi.org/10.1186/1475-2840-13-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  771. Annema W, Gawinecka J, Muendlein A, Saely CH, Drexel H, von Eckardstein A (2022) Elevated levels of apolipoprotein D predict poor outcome in patients with suspected or established coronary artery disease. Atherosclerosis 341:27–33. https://doi.org/10.1016/j.atherosclerosis.2021.12.011

    Article  PubMed  CAS  Google Scholar 

  772. Jimenez J, Prabhu SD (2022) LAG3 blockade expands T cells within atherosclerotic plaque: an ongoing need for cardiovascular disease risk assessment. JACC CardioOncol 4(5):646–648. https://doi.org/10.1016/j.jaccao.2022.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  773. Shi HY, Xie MS, Yang CX, Huang RT, Xue S, Liu XY, Xu YJ, Yang YQ (2022) Identification of SOX18 as a new gene predisposing to congenital heart disease. Diagnostics (Basel) 12(8):1917. https://doi.org/10.3390/diagnostics12081917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  774. Wu Z, Geng J, Bai Y, Qi Y, Chang C, Jiao Y, Guo Z (2023) miR-125b-5p alleviates the damage of myocardial infarction by inhibiting the NFAT2 to reduce F2RL2 expression. Regen Med 18(7):543–559. https://doi.org/10.2217/rme-2022-0150

    Article  PubMed  CAS  Google Scholar 

  775. Chen C, Peng H, Zeng Y, Dong G (2020) CD14, CD163, and CCR1 are involved in heart and blood communication in ischemic cardiac diseases. J Int Med Res 48(9):300060520951649. https://doi.org/10.1177/0300060520951649

    Article  PubMed  CAS  Google Scholar 

  776. Mauricio R, Singh K, Sanghavi M, Ayers CR, Rohatgi A, Vongpatanasin W, de Lemos JA, Khera A (2022) Soluble Fms-like tyrosine kinase-1 (sFlt-1) is associated with subclinical and clinical atherosclerotic cardiovascular disease: the dallas heart study. Atherosclerosis 346:46–52. https://doi.org/10.1016/j.atherosclerosis.2022.02.026

    Article  PubMed  CAS  Google Scholar 

  777. Ma T, Lin S, Wang B, Wang Q, Xia W, Zhang H, Cui Y, He C, Wu H, Sun F et al (2019) TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Biochem Biophys Res Commun 519(4):674–681. https://doi.org/10.1016/j.bbrc.2019.09.018

    Article  PubMed  CAS  Google Scholar 

  778. Li Y, Wang DW, Chen Y, Chen C, Guo J, Zhang S, Sun Z, Ding H, Yao Y, Zhou L et al (2018) Genome-wide association and functional studies identify SCML4 and THSD7A as novel susceptibility genes for coronary artery disease. Arterioscler Thromb Vasc Biol 38(4):964–975. https://doi.org/10.1161/ATVBAHA.117.310594

    Article  PubMed  CAS  Google Scholar 

  779. Li XX, Mu B, Li X, Bie ZD (2022) circCELF1 inhibits myocardial fibrosis by regulating the expression of DKK2 through FTO/m6A and miR-636. J Cardiovasc Transl Res 15(5):998–1009. https://doi.org/10.1007/s12265-022-10209-0

    Article  PubMed  Google Scholar 

  780. Li Q, Park K, Li C, Rask-Madsen C, Mima A, Qi W, Mizutani K, Huang P, King GL (2013) Induction of vascular insulin resistance and endothelin-1 expression and acceleration of atherosclerosis by the overexpression of protein kinase C-β isoform in the endothelium. Circ Res 113(4):418–427. https://doi.org/10.1161/CIRCRESAHA.113.301074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  781. Han F, Chen Q, Su J, Zheng A, Chen K, Sun S, Wu H, Jiang L, Xu X, Yang M et al (2019) MicroRNA-124 regulates cardiomyocyte apoptosis and myocardial infarction through targeting Dhcr24. J Mol Cell Cardiol 132:178–188. https://doi.org/10.1016/j.yjmcc.2019.05.007

    Article  PubMed  CAS  Google Scholar 

  782. Polidovitch N, Yang S, Sun H, Lakin R, Ahmad F, Gao X, Turnbull PC, Chiarello C, Perry CGR, Manganiello V et al (2019) Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J Mol Cell Cardiol 132:60–70. https://doi.org/10.1016/j.yjmcc.2019.04.028

    Article  PubMed  CAS  Google Scholar 

  783. Mu W, Qian S, Song Y, Yang L, Song S, Yang Q, Liu H, Liu Y, Pan D, Tang Y et al (2021) BMP4-mediated browning of perivascular adipose tissue governs an anti-inflammatory program and prevents atherosclerosis. Redox Biol 43:101979. https://doi.org/10.1016/j.redox.2021.101979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  784. Lin JF, Wu S, Juang JJ, Chiang FT, Hsu LA, Teng MS, Cheng ST, Huang HL, Sun YC, Liu PY et al (2017) IL1RL1 single nucleotide polymorphism predicts sST2 level and mortality in coronary and peripheral artery disease. Atherosclerosis 257:71–77. https://doi.org/10.1016/j.atherosclerosis.2016.12.020

    Article  PubMed  CAS  Google Scholar 

  785. Wang T, Wang X, Teng Y, Wu L, Zhu F, Ma D, Wang H, Liu X (2024) APLAID complicated with arrhythmogenic dilated cardiomyopathy caused by a novel PLCG2 variant. Immunol Res. https://doi.org/10.1007/s12026-024-09455-y

    Article  PubMed  PubMed Central  Google Scholar 

  786. Meyer T, Ruppert V, Ackermann S, Richter A, Perrot A, Sperling SR, Posch MG, Maisch B, Pankuweit S (2013) Novel mutations in the sarcomeric protein myopalladin in patients with dilated cardiomyopathy. Eur J Hum Genet 21(3):294–300. https://doi.org/10.1038/ejhg.2012.173

    Article  PubMed  CAS  Google Scholar 

  787. Glezer A, Santana MR, Bronstein MD, Donato J Jr, Jallad RS (2023) The interplay between prolactin and cardiovascular disease. Front Endocrinol (Lausanne) 13:1018090. https://doi.org/10.3389/fendo.2022.1018090

    Article  PubMed  Google Scholar 

  788. Tong S, Du Y, Ji Q, Dong R, Cao J, Wang Z, Li W, Zeng M, Chen H et al (2020) Expression of Sfrp5/Wnt5a in human epicardial adipose tissue and their relationship with coronary artery disease. Life Sci 245:117338. https://doi.org/10.1016/j.lfs.2020.117338

    Article  PubMed  CAS  Google Scholar 

  789. Schumacher D, Peisker F, Kramann R (2021) MEOX1: a novel druggable target that orchestrates the activation of fibroblasts in cardiac fibrosis. Signal Transduct Target Ther 6(1):440. https://doi.org/10.1038/s41392-021-00842-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  790. Chen H, Chen S, Ye H, Guo X (2022) Protective effects of circulating TIMP3 on coronary artery disease and myocardial infarction: a mendelian randomization study. J Cardiovasc Dev Dis 9(8):277. https://doi.org/10.3390/jcdd9080277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  791. Guan H, Zhang J, Luan J, Xu H, Huang Z, Yu Q, Gou X, Xu L (2021) Secreted frizzled related proteins in cardiovascular and metabolic diseases. Front Endocrinol (Lausanne) 12:712217. https://doi.org/10.3389/fendo.2021.712217

    Article  PubMed  Google Scholar 

  792. Jia EZ, Wang J, Yang ZJ, Zhu TB, Wang LS, Wang H, Li CJ, Chen B, Cao KJ, Huang J et al (2009) Association of the mutation for the human carboxypeptidase E gene exon 4 with the severity of coronary artery atherosclerosis. Mol Biol Rep 36(2):245–254. https://doi.org/10.1007/s11033-007-9173-4

    Article  PubMed  CAS  Google Scholar 

  793. Wei M, Pan H, Guo K (2021) Association between plasma ADAMTS-9 levels and severity of coronary artery disease. Angiology 72(4):371–380. https://doi.org/10.1177/0003319720979238

    Article  PubMed  CAS  Google Scholar 

  794. Yang K, Song HF, He S, Yin WJ, Fan XM, Ru F, Gong H, Zhai XY, Zhang J, Peng ZX et al (2019) Effect of neuron-derived neurotrophic factor on rejuvenation of human adipose-derived stem cells for cardiac repair after myocardial infarction. J Cell Mol Med 23(9):5981–5993. https://doi.org/10.1111/jcmm.14456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  795. Tuuminen R, Dashkevich A, Keränen MA, Raissadati A, Krebs R, Jokinen JJ, Arnaudova R, Rouvinen E, Ylä-Herttuala S, Nykänen AI et al (2016) Platelet-derived growth factor-B protects rat cardiac allografts from ischemia-reperfusion injury. Transplantation 100(2):303–313. https://doi.org/10.1097/TP.0000000000000909

    Article  PubMed  CAS  Google Scholar 

  796. Liu Q, Dong Y, Escames G, Wu X, Ren J, Yang W, Zhang S, Zhu Y, Tian Y, Acuña-Castroviejo D et al (2022) Identification of PIK3CG as a hub in septic myocardial injury using network pharmacology and weighted gene co-expression network analysis. Bioeng Transl Med 8(1):e10384. https://doi.org/10.1002/btm2.10384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  797. Ference BA, Kastelein JJP, Ray KK, Ginsberg HN, Chapman MJ, Packard CJ, Laufs U, Oliver-Williams C, Wood AM, Butterworth AS et al (2019) Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321(4):364–373. https://doi.org/10.1001/jama.2018.20045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  798. Saigusa R, Roy P, Freuchet A, Gulati R, Ghosheh Y, Suthahar SSA, Durant CP, Hanna DB, Kiosses WB, Orecchioni M et al (2022) Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. Nat Cardiovasc Res 1(5):462–475. https://doi.org/10.1038/s44161-022-00063-3

    Article  PubMed  PubMed Central  Google Scholar 

  799. Li R, Liu R, Yan F, Zhuang X, Shi H, Gao X (2020) Inhibition of TRPA1 promotes cardiac repair in mice after myocardial infarction. J Cardiovasc Pharmacol 75(3):240–249. https://doi.org/10.1097/FJC.0000000000000783

    Article  PubMed  CAS  Google Scholar 

  800. Zhao X, Zhu L, Yin Q, Xu Z, Jia Q, Yang R, He K (2022) F2RL3 methylation in the peripheral blood as a potential marker for the detection of coronary heart disease: a case-control study. Front Genet 13:833923. https://doi.org/10.3389/fgene.2022.833923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  801. Guan H, Shi T, Liu M, Wang X, Guo F (2022) C1QL1/CTRP14 is largely dispensable for atherosclerosis formation in apolipoprotein-E-deficient mice. J Cardiovasc Dev Dis 9(10):341. https://doi.org/10.3390/jcdd9100341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  802. Wang Z, Ye D, Ye J, Wang M, Liu J, Jiang H, Xu Y, Zhang J, Chen J, Wan J (2019) ADAMTS-5 decreases in coronary arteries and plasma from patients with coronary artery disease. Dis Markers 2019:6129748. https://doi.org/10.1155/2019/6129748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  803. Wan Q, Xu C, Zhu L, Zhang Y, Peng Z, Chen H, Rao H, Zhang E, Wang H, Chu F et al (2022) Targeting PDE4B (phosphodiesterase-4 subtype B) for cardioprotection in acute myocardial infarction via neutrophils and microcirculation. Circ Res 131(5):442–455. https://doi.org/10.1161/CIRCRESAHA.122.321365

    Article  PubMed  CAS  Google Scholar 

  804. Del Toro R, Chèvre R, Rodríguez C, Ordóñez A, Martínez-González J, Andrés V, Méndez-Ferrer S et al (2016) Nestin(+) cells direct inflammatory cell migration in atherosclerosis. Nat Commun 7:12706. https://doi.org/10.1038/ncomms12706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  805. Penttilä O, Merikallio E, Pispa J, Klinge E, Siltanen P, Kyösola K (1978) Auricular tyrosine hydroxylase and dopamine-beta-hydroxylase activities and noradrenaline content in ischaemic heart disease. Acta Med Scand 203(3):161–166. https://doi.org/10.1111/j.0954-6820.1978.tb14850.x

    Article  PubMed  Google Scholar 

  806. Salminen A, Vlachopoulou E, Havulinna AS, Tervahartiala T, Sattler W, Lokki ML, Nieminen MS, Perola M, Salomaa V, Sinisalo J et al (2017) Genetic variants contributing to circulating matrix metalloproteinase 8 levels and their association with cardiovascular diseases: a genome-wide analysis. Circ Cardiovasc Genet 10(6):e001731. https://doi.org/10.1161/CIRCGENETICS.117.001731

    Article  PubMed  CAS  Google Scholar 

  807. Wang Y, Zheng Y, Zhang W, Yu H, Lou K, Zhang Y, Qin Q, Zhao B, Yang Y, Hui R (2007) Polymorphisms of KDR gene are associated with coronary heart disease. J Am Coll Cardiol 50(8):760–767. https://doi.org/10.1016/j.jacc.2007.04.074

    Article  PubMed  CAS  Google Scholar 

  808. Onrat ST, Dural İE, Yalım Z, Onrat E (2022) Correction to: Investigating changes in β-adrenergic gene expression (ADRB1 and ADRB2) in Takotsubo (stress) cardiomyopathy syndrome; a pilot study. Mol Biol Rep 49(4):3373–3375. https://doi.org/10.1007/s11033-022-07258-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  809. Duval V, Alayrac P, Silvestre JS, Levoye A (2022) Emerging roles of the atypical chemokine receptor 3 (ACKR3) in cardiovascular diseases. Front Endocrinol (Lausanne) 13:906586. https://doi.org/10.3389/fendo.2022.906586

    Article  PubMed  Google Scholar 

  810. Thude H, Gerlach K, Richartz B, Krack A, Brenke B, Pethig K, Figulla HR, Barz D (2005) No association between transmembrane protein-tyrosine phosphatase receptor type C (CD45) exon a point mutation (77C>G) and idiopathic dilated cardiomyopathy. Hum Immunol 66(9):1008–1012. https://doi.org/10.1016/j.humimm.2005.07.004

    Article  PubMed  CAS  Google Scholar 

  811. Martín-Núñez E, Pérez-Castro A, Tagua VG, Hernández-Carballo C, Ferri C, Pérez-Delgado N, Rodríguez-Ramos S, Cerro-López P, López-Castillo Á, Delgado-Molinos A et al (2022) Klotho expression in peripheral blood circulating cells is associated with vascular and systemic inflammation in atherosclerotic vascular disease. Sci Rep 12(1):8422. https://doi.org/10.1038/s41598-022-12548-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  812. Xu JP, Zeng RX, He MH, Lin SS, Guo LH, Zhang MZ (2022) Associations between serum soluble α-klotho and the prevalence of specific cardiovascular disease. Front Cardiovasc Med 9:899307. https://doi.org/10.3389/fcvm.2022.899307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  813. Gupta KK, Donahue DL, Sandoval-Cooper MJ, Castellino FJ, Ploplis VA (2017) Plasminogen activator inhibitor-1 protects mice against cardiac fibrosis by inhibiting urokinase-type plasminogen activator-mediated plasminogen activation. Sci Rep 7(1):365. https://doi.org/10.1038/s41598-017-00418-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  814. Dai R, Yang X, He W, Su Q, Deng X, Li J (2023) LncRNA AC005332.7 inhibited ferroptosis to alleviate acute myocardial infarction through regulating miR-331-3p/CCND2 Axis. Korean Circ J 53(3):151–167. https://doi.org/10.4070/kcj.2022.0242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  815. Licis N, Krivmane B, Latkovskis G, Erglis A (2011) A common promoter variant of the gene encoding cyclooxygenase-1 (PTGS1) is related to decreased incidence of myocardial infarction in patients with coronary artery disease. Thromb Res 127(6):600–602. https://doi.org/10.1016/j.thromres.2010.12.019

    Article  PubMed  CAS  Google Scholar 

  816. Liu X, Li Y, Wang L, Zhao Q, Lu X, Huang J, Fan Z, Gu D (2008) The INSIG1 gene, not the INSIG2 gene, associated with coronary heart disease: tagSNPs and haplotype-based association study. The Beijing Atherosclerosis Study. Thromb Haemost 100(5):886–892

    Article  PubMed  CAS  Google Scholar 

  817. Wang K, Zhou M, Zhang Y, Du Y, Li P, Guan C, Huang Z (2023) IRX2 activated by jumonji domain-containing protein 2A is crucial for cardiac hypertrophy and dysfunction in response to the hypertrophic stimuli. Int J Cardiol 371:332–344. https://doi.org/10.1016/j.ijcard.2022.09.070

    Article  PubMed  Google Scholar 

  818. Clancy RM, Halushka M, Rasmussen SE, Lhakhang T, Chang M, Buyon JP (2019) Siglec-1 macrophages and the contribution of IFN to the development of autoimmune congenital heart block. J Immunol 202(1):48–55. https://doi.org/10.4049/jimmunol.1800357

    Article  PubMed  CAS  Google Scholar 

  819. Adão R, Santos-Ribeiro D, Rademaker MT, Leite-Moreira AF, Brás-Silva C (2015) Urocortin 2 in cardiovascular health and disease. Drug Discov Today 20(7):906–914. https://doi.org/10.1016/j.drudis.2015.02.012

    Article  PubMed  CAS  Google Scholar 

  820. Tantray JA, Reddy KP, Jamil K, Yerra SK (2019) Role of cytochrome epoxygenase (CYP2J2) in the pathophysiology of coronary artery disease in South Indian population. Indian Heart J 71(1):60–64. https://doi.org/10.1016/j.ihj.2018.11.011

    Article  PubMed  Google Scholar 

  821. Peng DD, Xie W, Yu ZX (2017) Impact of interaction between CYP1A1 genetic polymorphisms and smoking on coronary artery disease in the Han of China. Clin Exp Hypertens 39(4):339–343. https://doi.org/10.1080/10641963.2016.1259326

    Article  PubMed  CAS  Google Scholar 

  822. Burt O, Johnston KJA, Graham N, Cullen B, Lyall DM, Lyall LM, Pell JP, Ward J, Smith DJ, Strawbridge RJ (2021) Genetic variation in the ASTN2 locus in cardiovascular, metabolic and psychiatric traits: evidence for pleiotropy rather than shared biology. Genes (Basel) 12(8):1194. https://doi.org/10.3390/genes12081194

    Article  PubMed  CAS  Google Scholar 

  823. Schlegel M, Moore KJ (2020) A heritable netrin-1 mutation increases atherogenic immune responses. Atherosclerosis 301:82–83. https://doi.org/10.1016/j.atherosclerosis.2020.04.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  824. Lee C, Li X (2018) Platelet-derived growth factor-C and -D in the cardiovascular system and diseases. Mol Aspects Med 62:12–21. https://doi.org/10.1016/j.mam.2017.09.005

    Article  PubMed  CAS  Google Scholar 

  825. Nosalski R, Guzik TJ (2021) IL-15 and IL-7: keys to dysregulated inflammation in acute coronary syndromes. Cardiovasc Res 117(8):1806–1808. https://doi.org/10.1093/cvr/cvab189

    Article  PubMed  CAS  Google Scholar 

  826. Wang MX, Liu X, Li JM, Liu L, Lu W, Chen GC (2020) Inhibition of CACNA1H can alleviate endoplasmic reticulum stress and reduce myocardial cell apoptosis caused by myocardial infarction. Eur Rev Med Pharmacol Sci 24(24):12887–12895. https://doi.org/10.26355/eurrev_202012_24192

    Article  PubMed  Google Scholar 

  827. Bobos D, Soufla G, Angouras DC, Lekakis I, Georgopoulos S, Melissari E (2023) Investigation of the role of BMP2 and -4 in ASD, VSD and complex congenital heart disease. Diagnostics (Basel) 13(16):2717. https://doi.org/10.3390/diagnostics13162717

    Article  PubMed  CAS  Google Scholar 

  828. Sun T, Han Y, Li JL, Wang S, Jing ZJ, Yan Z, Zhou L, Zuo L, Yang JL, Cao JM (2024) Synaptotagmin-7 mediates cardiac hypertrophy by targeting autophagy. FEBS J 291(3):489–509. https://doi.org/10.1111/febs.16961

    Article  PubMed  CAS  Google Scholar 

  829. Fu Y, Jia Q, Ren M, Bie H, Zhang X, Zhang Q, He S, Li C, Zhou H, Wang Y et al (2023) Circular RNA ZBTB46 depletion alleviates the progression of Atherosclerosis by regulating the ubiquitination and degradation of hnRNPA2B1 via the AKT/mTOR pathway. Immun Ageing 20(1):66. https://doi.org/10.1186/s12979-023-00386-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  830. Theodoraki EV, Nikopensius T, Suhorutsenko J, Papamikos V, Kolovou GD, Peppes V, Panagiotakos D, Limberi S, Zakopoulos N, Metspalu A et al (2009) ROS1 Asp2213Asn polymorphism is not associated with coronary artery disease in a Greek case-control study. Clin Chem Lab Med 47(12):1471–1473. https://doi.org/10.1515/CCLM.2009.155

    Article  PubMed  CAS  Google Scholar 

  831. Marais AD (2019) Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 51(2):165–176. https://doi.org/10.1016/j.pathol.2018.11.002

    Article  PubMed  CAS  Google Scholar 

  832. Park HS, Kim IJ, Kim EG, Ryu CS, Lee JY, Ko EJ, Park HW, Sung JH, Kim NK (2020) A study of associations between CUBN, HNF1A, and LIPC gene polymorphisms and coronary artery disease. Sci Rep 10(1):16294. https://doi.org/10.1038/s41598-020-73048-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  833. Zhang Y, Wang C, Sun M, Jin Y, Braz CU, Khatib H, Hacker TA, Liss M, Gotthardt M, Granzier H et al (2022) RBM20 phosphorylation and its role in nucleocytoplasmic transport and cardiac pathogenesis. FASEB J 36(5):e22302. https://doi.org/10.1096/fj.202101811RR

    Article  PubMed  CAS  Google Scholar 

  834. Zheng F, Gong Z, Xing S, Xing Q (2014) Overexpression of caspase-1 in aorta of patients with coronary atherosclerosis. Heart Lung Circ 23(11):1070–1074. https://doi.org/10.1016/j.hlc.2014.04.256

    Article  PubMed  Google Scholar 

  835. Besler C, Rommel KP, Kresoja KP, Mörbitz J, Kirsten H, Scholz M, Klingel K, Thiery J, Burkhardt R, Büttner P et al (2021) Evaluation of phosphodiesterase 9A as a novel biomarker in heart failure with preserved ejection fraction. ESC Heart Fail 8(3):1861–1872. https://doi.org/10.1002/ehf2.13327

    Article  PubMed  PubMed Central  Google Scholar 

  836. Liu J, Yang W, Li Y, Wei Z, Dan X (2020) ABCG2 rs2231142 variant in hyperuricemia is modified by SLC2A9 and SLC22A12 polymorphisms and cardiovascular risk factors in an elderly community-dwelling population. BMC Med Genet 21(1):54. https://doi.org/10.1186/s12881-020-0987-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  837. Li H, Lewis A, Brodsky S, Rieger R, Iden C, Goligorsky MS (2002) Homocysteine induces 3-hydroxy-3-methylglutaryl coenzyme a reductase in vascular endothelial cells: a mechanism for development of atherosclerosis? Circulation 105(9):1037–1043. https://doi.org/10.1161/hc0902.104713

    Article  PubMed  CAS  Google Scholar 

  838. Ferrari R (2005) Angiotensin-converting enzyme inhibition in cardiovascular disease: evidence with perindopril. Expert Rev Cardiovasc Ther 3(1):15–29. https://doi.org/10.1586/14779072.3.1.15

    Article  PubMed  CAS  Google Scholar 

  839. Sanders LN, Schoenhard JA, Saleh MA, Mukherjee A, Ryzhov S, McMaster WG Jr, Nolan K, Gumina RJ, Thompson TB, Magnuson MA et al (2016) BMP antagonist gremlin 2 limits inflammation after myocardial infarction. Circ Res 119(3):434–449. https://doi.org/10.1161/CIRCRESAHA.116.308700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  840. Thériault S, Gaudreault N, Lamontagne M, Rosa M, Boulanger MC, Messika-Zeitoun D, Clavel MA, Capoulade R, Dagenais F et al (2018) A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. Nat Commun 9(1):988. https://doi.org/10.1038/s41467-018-03260-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  841. Lin YJ, Liu X, Chang JS, Chien WK, Chen JH, Tsang H, Hung CH, Lin TH, Huang SM, Liao CC et al (2014) Coronary artery aneurysms occurrence risk analysis between Kawasaki disease and LRP1B gene in Taiwanese children. Biomedicine (Taipei) 4(2):10. https://doi.org/10.7603/s40681-014-0010-5

    Article  PubMed  Google Scholar 

  842. Ren Y, Li X, Wang S, Pan W, Lv H, Wang M, Zhou X, Xia Y, Yin D (2021) Serum alkaline phosphatase levels are associated with coronary artery calcification patterns and plaque vulnerability. Catheter Cardiovasc Interv 97(Suppl 2):1055–1062. https://doi.org/10.1002/ccd.29642

    Article  PubMed  Google Scholar 

  843. Federspiel JM, Gartner J, Lipp P, Schmidt P, Tschernig T (2023) Elderly with varying extents of cardiac disease show interindividual fluctuating myocardial TRPC6-immunoreactivity. J Cardiovasc Dev Dis 10(1):26. https://doi.org/10.3390/jcdd10010026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  844. Biagioli M, Marchianò S, Di Giorgio C, Bordoni M, Urbani G, Bellini R, Massa C, Sami Ullah Khan R, Roselli R, Chiara Monti M et al (2023) Activation of GPBAR1 attenuates vascular inflammation and atherosclerosis in a mouse model of NAFLD-related cardiovascular disease. Biochem Pharmacol 218:115900. https://doi.org/10.1016/j.bcp.2023.115900

    Article  PubMed  CAS  Google Scholar 

  845. Ochoa JP, Lalaguna L, Mirelis JG, Dominguez F, Gonzalez-Lopez E, Salas C, Roustan G, McGurk KA, Zheng SL, Barton PJR et al (2024) Biallelic loss of function variants in myocardial zonula adherens protein gene (MYZAP) cause a severe recessive form of dilated cardiomyopathy. Circ Heart Fail 17(3):e011226. https://doi.org/10.1161/CIRCHEARTFAILURE.123.011226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  846. Moreira JBN, Wohlwend M, Fenk S, Åmellem I, Flatberg A, Kraljevic J, Marinovic J, Ljubkovic M, Bjørkøy G, Wisløff U (2019) Exercise reveals proline dehydrogenase as a potential target in heart failure. Prog Cardiovasc Dis 62(2):193–202. https://doi.org/10.1016/j.pcad.2019.03.002

    Article  PubMed  Google Scholar 

  847. Chen X, Wang X, Zhang Z, Chen Y, Wang C (2021) Role of IL-9, IL-2RA, and IL-2RB genetic polymorphisms in coronary heart disease. Bedeutung der genetischen polymorphismen IL-9, IL-2RA und IL-2RB bei koronarer Herzkrankheit. Herz 46(6):558–566. https://doi.org/10.1007/s00059-020-05004-z

    Article  PubMed  Google Scholar 

  848. Alghamdi MA, Al-Eitan L, Alkhatib R, Al-Assi A, Almasri A, Aljamal H, Aman H, Khasawneh R (2021) Variants in CDHR3, CACNAC1, and LTA genes predisposing sensitivity and response to warfarin in patients with cardiovascular disease. Int J Gen Med 14:1093–1100. https://doi.org/10.2147/IJGM.S298597

    Article  PubMed  PubMed Central  Google Scholar 

  849. Akuta N, Kawamura Y, Arase Y, Saitoh S, Fujiyama S, Sezaki H, Hosaka T, Kobayashi M, Kobayashi M, Suzuki Y et al (2021) PNPLA3 genotype and fibrosis-4 index predict cardiovascular diseases of Japanese patients with histopathologically-confirmed NAFLD. BMC Gastroenterol 21(1):434. https://doi.org/10.1186/s12876-021-02020-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  850. Yuan S, Bäck M, Bruzelius M, Mason AM, Burgess S, Larsson S (2019) Plasma phospholipid fatty acids, FADS1 and risk of 15 cardiovascular diseases: a Mendelian randomisation study. Nutrients 11(12):3001. https://doi.org/10.3390/nu11123001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  851. Bonaccorsi I, Carrega P, Venanzi Rullo E, Ducatelli R, Falco M, Freni J, Miceli M, Cavaliere R, Fontana V, Versace A et al (2021) HLA-C*17 in COVID-19 patients: Hints for associations with severe clinical outcome and cardiovascular risk. Immunol Lett 234:44–46. https://doi.org/10.1016/j.imlet.2021.04.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  852. Yu Y, Shi H, Wang Y, Yu Y, Chen R (2024) A pilot study of S100A4, S100A8/A9, and S100A12 in dilated cardiomyopathy: novel biomarkers for diagnosis or prognosis? ESC Heart Fail 11(1):503–512. https://doi.org/10.1002/ehf2.14605

    Article  PubMed  Google Scholar 

  853. Wenwang L (2023) Susceptibility of MMP3 gene polymorphism to coronary artery disease: A meta-analysis. J Med Biochem 42(4):685–693. https://doi.org/10.5937/jomb0-43315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  854. Wang D, Fang J, Lv J, Pan Z, Yin X, Cheng H, Guo X (2019) Novel polymorphisms in PDLIM3 and PDLIM5 gene encoding Z-line proteins increase risk of idiopathic dilated cardiomyopathy. J Cell Mol Med 23(10):7054–7062. https://doi.org/10.1111/jcmm.14607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  855. Duan X, Zhu T, Chen C, Zhang G, Zhang J, Wang L, Zhang L, Wang M, Wang X (2018) Serum glial cell line-derived neurotrophic factor levels and postoperative cognitive dysfunction after surgery for rheumatic heart disease. J Thorac Cardiovasc Surg 155(3):958-965.e1. https://doi.org/10.1016/j.jtcvs.2017.07.073

    Article  PubMed  CAS  Google Scholar 

  856. Jeong A, Lim Y, Kook T, Kwon DH, Cho YK, Ryu J, Lee YG, Shin S, Choe N, Kim YS et al (2023) Circular RNA circSMAD4 regulates cardiac fibrosis by targeting miR-671-5p and FGFR2 in cardiac fibroblasts. Mol Ther Nucleic Acids 34:102071. https://doi.org/10.1016/j.omtn.2023.102071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  857. Thanikachalam PV, Ramamurthy S, Mallapu P, Varma SR, Narayanan J, Abourehab MA, Kesharwani P (2023) Modulation of IL-33/ST2 signaling as a potential new therapeutic target for cardiovascular diseases. Cytokine Growth Factor Rev 71–72:94–104. https://doi.org/10.1016/j.cytogfr.2023.06.003

    Article  PubMed  CAS  Google Scholar 

  858. Pius-Sadowska E, Machaliński B (2021) Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 8(2):974–987. https://doi.org/10.1002/ehf2.13138

    Article  PubMed  PubMed Central  Google Scholar 

  859. Yan T, Song S, Sun W, Ge Y (2024) HAPLN1 knockdown inhibits heart failure development via activating the PKA signaling pathway. BMC Cardiovasc Disord 24(1):197. https://doi.org/10.1186/s12872-024-03861-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  860. Wang R, Wu Y, Jiang S (2021) FOXC2 alleviates myocardial ischemia-reperfusion injury in rats through regulating Nrf2/HO-1 signaling pathway. Dis Markers 2021:9628521. https://doi.org/10.1155/2021/9628521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  861. Fu Y, Kong W (2017) Cartilage oligomeric matrix protein: matricellular and matricrine signaling in cardiovascular homeostasis and disease. Curr Vasc Pharmacol 15(3):186–196. https://doi.org/10.2174/1570161115666170201121232

    Article  PubMed  CAS  Google Scholar 

  862. Pan J, Nilsson J, Engström G, De Marinis Y (2024) Elevated circulating follistatin associates with increased risk of mortality and cardiometabolic disorders. Nutr Metab Cardiovasc Dis 34(2):418–425. https://doi.org/10.1016/j.numecd.2023.09.012

    Article  PubMed  CAS  Google Scholar 

  863. Bugiardini E, Nunes AM, Oliveira-Santos A, Dagda M, Fontelonga TM, Barraza-Flores P, Pittman AM, Morrow JM, Parton M, Houlden H et al (2022) Integrin α7 mutations are associated with adult-onset cardiac dysfunction in humans and mice. J Am Heart Assoc 11(23):e026494. https://doi.org/10.1161/JAHA.122.026494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  864. Liu MM, Peng J, Guo YL, Zhu CG, Wu NQ, Xu RX, Dong Q, Cui CJ, Li JJ (2022) SORBS2 as a molecular target for atherosclerosis in patients with familial hypercholesterolemia. J Transl Med 20(1):233. https://doi.org/10.1186/s12967-022-03381-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  865. Yokoe S, Asahi M (2017) Phospholamban is downregulated by pVHL-mediated degradation through oxidative stress in failing heart. Int J Mol Sci 18(11):2232. https://doi.org/10.3390/ijms18112232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  866. Wu H, Wu H, He Y, Sun W, Meng Y, Wen B, Chu M (2023) Functional characterization of GATA6 genetic variants associated with mild congenital heart defects. Biochem Biophys Res Commun 641:77–83. https://doi.org/10.1016/j.bbrc.2022.12.004

    Article  PubMed  CAS  Google Scholar 

  867. Xu Y, Jiang K, Su F, Deng R, Cheng Z, Wang D, Yu Y, Xiang Y (2023) A transient wave of Bhlhe41+ resident macrophages enables remodeling of the developing infarcted myocardium. Cell Rep 42(10):113174. https://doi.org/10.1016/j.celrep.2023.113174

    Article  PubMed  CAS  Google Scholar 

  868. Koch CD, Lee CM, Apte SS (2020) Aggrecan in cardiovascular development and disease. J Histochem Cytochem 68(11):777–795. https://doi.org/10.1369/0022155420952902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  869. Hu H, Lin S, Wang S, Chen X (2020) The role of transcription factor 21 in epicardial cell differentiation and the development of coronary heart disease. Front Cell Dev Biol 8:457. https://doi.org/10.3389/fcell.2020.00457

    Article  PubMed  PubMed Central  Google Scholar 

  870. Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y, Dou X (2022) Suppression of lncRNA Gm47283 attenuates myocardial infarction via miR-706/ Ptgs2/ferroptosis axis. Bioengineered 13(4):10786–10802. https://doi.org/10.1080/21655979.2022.2065743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  871. Hou J, Yue Y, Hu B, Xu G, Su R, Lv L, Huang J, Yao J, Guan Y, Wang K et al (2019) DACT1 involvement in the cytoskeletal arrangement of cardiomyocytes in atrial fibrillation by regulating Cx43. Braz J Cardiovasc Surg 34(6):711–722. https://doi.org/10.21470/1678-9741-2019-0033

    Article  PubMed  PubMed Central  Google Scholar 

  872. Franco D, Campione M (2003) The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med 13(4):157–163. https://doi.org/10.1016/s1050-1738(03)00039-2

    Article  PubMed  CAS  Google Scholar 

  873. Liang J, Cao Y, He M, Li W, Huang G, Ma T, Li M, Huang Y, Huang X, Hu Y (2021) AKR1C3 and its transcription factor HOXB4 are promising diagnostic biomarkers for acute myocardial infarction. Front Cardiovasc Med 8:694238. https://doi.org/10.3389/fcvm.2021.694238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  874. Fioranelli M, Roccia MG, Przybylek B, Garo ML (2023) The role of brain-derived neurotrophic factor (BDNF) in depression and cardiovascular disease: a systematic review. Life (Basel) 13(10):1967. https://doi.org/10.3390/life13101967

    Article  PubMed  CAS  Google Scholar 

  875. Zhao J, Zhao Q, Mao S (2021) N-myc downstream regulated gene 2 ameliorates myocardial remodeling and cardiac function in heart failure rats. Hum Exp Toxicol 40(8):1296–1307. https://doi.org/10.1177/0960327121993208

    Article  PubMed  CAS  Google Scholar 

  876. Lee SH, Yang DK, Choi BY, Lee YH, Kim SY, Jeong D, Hajjar RJ, Park WJ (2009) The transcription factor Eya2 prevents pressure overload-induced adverse cardiac remodeling. J Mol Cell Cardiol 46(4):596–605. https://doi.org/10.1016/j.yjmcc.2008.12.021

    Article  PubMed  CAS  Google Scholar 

  877. Zhang S, Wang Y, Yu M, Shang Y, Chang Y, Zhao H, Kang Y, Zhao L, Xu L, Zhao X et al (2022) Discovery of herbacetin as a novel SGK1 inhibitor to alleviate myocardial hypertrophy. Adv Sci (Weinh) 9(2):e2101485. https://doi.org/10.1002/advs.202101485

    Article  PubMed  CAS  Google Scholar 

  878. Shan T, Li X, Xie W, Wang S, Gao Y, Zheng Y, Su G, Li Y, Zhao Z (2024) Rap1GAP exacerbates myocardial infarction by regulating the AMPK/SIRT1/NF-κB signaling pathway. Cell Signal 117:111080. https://doi.org/10.1016/j.cellsig.2024.111080

    Article  PubMed  CAS  Google Scholar 

  879. Dill TL, Naya FJ (2018) A hearty dose of noncoding RNAs: the imprinted DLK1-DIO3 locus in cardiac development and disease. J Cardiovasc Dev Dis 5(3):37. https://doi.org/10.3390/jcdd5030037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  880. Zhuang C, Chen R, Zheng Z, Lu J, Hong C (2022) Toll-like receptor 3 in cardiovascular diseases. Heart Lung Circ 31(7):e93–e109. https://doi.org/10.1016/j.hlc.2022.02.012

    Article  PubMed  Google Scholar 

  881. Katanasaka Y, Saito A, Sunagawa Y, Sari N, Funamoto M, Shimizu S, Shimizu K, Akimoto T, Ueki C, Kitano M et al (2022) ANGPTL4 expression is increased in epicardial adipose tissue of patients with coronary artery disease. J Clin Med 11(9):2449. https://doi.org/10.3390/jcm11092449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  882. Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L et al (2017) EphrinB2 regulates cardiac fibrosis through modulating the interaction of stat3 and TGF-β/Smad3 signaling. Circ Res 121(6):617–627. https://doi.org/10.1161/CIRCRESAHA.117.311045

    Article  PubMed  CAS  Google Scholar 

  883. Xiao J, Zhang Y, Tang Y, Dai H, OuYang Y, Li C, Yu M (2021) hsa-miR-4443 inhibits myocardial fibroblast proliferation by targeting THBS1 to regulate TGF-β1/α-SMA/collagen signaling in atrial fibrillation. Braz J Med Biol Res 54(4):e10692. https://doi.org/10.1590/1414-431X202010692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  884. Kondo T, Higo S, Shiba M, Kohama Y, Kameda S, Tabata T, Inoue H, Okuno S, Ogawa S, Nakamura S et al (2022) Human-induced pluripotent stem cell-derived cardiomyocyte model for TNNT2 Δ160E-induced cardiomyopathy. Circ Genom Precis Med 15(5):e003522. https://doi.org/10.1161/CIRCGEN.121.003522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  885. Vendrov AE, Vendrov KC, Smith A, Yuan J, Sumida A, Robidoux J, Runge MS, Madamanchi NR (2015) NOX4 NADPH oxidase-dependent mitochondrial oxidative stress in aging-associated cardiovascular disease. Antioxid Redox Signal 23(18):1389–1409. https://doi.org/10.1089/ars.2014.6221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  886. Xiong F, Mao R, Zhao R, Zhang L, Tan K, Liu C, Wang S, Xu M, Li Y, Zhang T (2022) Plasma exosomal S1PR5 and CARNS1 as potential non-invasive screening biomarkers of coronary heart disease. Front Cardiovasc Med 9:845673. https://doi.org/10.3389/fcvm.2022.845673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  887. Li C, Lv LF, Qi-Li MG, Yang R, Wang YJ, Chen SS, Zhang MX, Li TY, Yu T, Zhou YH et al (2022) Endocytosis of peptidase inhibitor SerpinE2 promotes myocardial fibrosis through activating ERK1/2 and β-catenin signaling pathways. Int J Biol Sci 18(16):6008–6019. https://doi.org/10.7150/ijbs.67726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  888. Wei X, Ma X, Lu R, Bai G, Zhang J, Deng R, Gu N, Feng N, Guo X (2014) Genetic variants in PCSK1 gene are associated with the risk of coronary artery disease in type 2 diabetes in a Chinese Han population: a case control study. PLoS ONE 9(1):e87168. https://doi.org/10.1371/journal.pone.0087168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  889. Schwanekamp JA, Lorts A, Sargent MA, York AJ, Grimes KM, Fischesser DM, Gokey JJ, Whitsett JA, Conway SJ, Molkentin JD (2017) TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS ONE 12(7):e0181945. https://doi.org/10.1371/journal.pone.0181945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  890. Watanabe D, Nakato D, Yamada M, Suzuki H, Takenouchi T, Miya F, Kosaki K (2024) SALL4 deletion and kidney and cardiac defects associated with VACTERL association. Pediatr Nephrol. https://doi.org/10.1007/s00467-024-06306-8

    Article  PubMed  Google Scholar 

  891. Williams T, Hundertmark M, Nordbeck P, Voll S, Arias-Loza PA, Oppelt D, Mühlfelder M, Schraut S, Elsner I, Czolbe M et al (2015) Eya4 induces hypertrophy via regulation of p27kip1. Circ Cardiovasc Genet 8(6):752–764. https://doi.org/10.1161/CIRCGENETICS.115.001134

    Article  PubMed  CAS  Google Scholar 

  892. Gonzalez-Parra E, Rojas-Rivera J, Tuñón J, Praga M, Ortiz A, Egido J (2012) Vitamin D receptor activation and cardiovascular disease. Nephrol Dial Transplant 27:iv17–iv21. https://doi.org/10.1093/ndt/gfs534

    Article  PubMed  CAS  Google Scholar 

  893. Muendlein A, Heinzle C, Leiherer A, Brandtner EM, Geiger K, Gaenger S, Fraunberger P, Mader A, Saely CH, Drexel H (2023) Circulating glypican-4 is a new predictor of all-cause mortality in patients with heart failure. Clin Biochem 121–122:110675. https://doi.org/10.1016/j.clinbiochem.2023.110675

    Article  PubMed  CAS  Google Scholar 

  894. Castillo-Avila RG, González-Castro TB, Tovilla-Zárate CA, Martínez-Magaña JJ, López-Narváez ML, Juárez-Rojop IE, Arias-Vázquez PI, Borgonio-Cuadra VM, Pérez-Hernández N, Rodríguez-Pérez JM (2023) Association between genetic variants of CELSR2-PSRC1-SORT1 and cardiovascular diseases: a systematic review and meta-analysis. J Cardiovasc Dev Dis 10(3):91. https://doi.org/10.3390/jcdd10030091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  895. Li J, Dong W, Gao X, Chen W, Sun C, Li J, Gao S, Zhang Y, He J, Lu D et al (2021) EphA4 is highly expressed in the atria of heart and its deletion leads to atrial hypertrophy and electrocardiographic abnormalities in rats. Life Sci 278:119595. https://doi.org/10.1016/j.lfs.2021.119595

    Article  PubMed  CAS  Google Scholar 

  896. Guay SP, Légaré C, Brisson D, Mathieu P, Bossé Y, Gaudet D, Bouchard L (2016) Epigenetic and genetic variations at the TNNT1 gene locus are associated with HDL-C levels and coronary artery disease. Epigenomics 8(3):359–371. https://doi.org/10.2217/epi.15.120

    Article  PubMed  CAS  Google Scholar 

  897. Murphy NP, Lubbers ER, Mohler PJ (2020) Advancing our understanding of AnkRD1 in cardiac development and disease. Cardiovasc Res 116(8):1402–1404. https://doi.org/10.1093/cvr/cvaa063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  898. Pu T, Liu Y, Xu R, Li F, Chen S, Sun K (2018) Identification of ZFPM2 mutations in sporadic conotruncal heart defect patients. Mol Genet Genom 293(1):217–223. https://doi.org/10.1007/s00438-017-1373-6

    Article  CAS  Google Scholar 

  899. Rui L, Liu R, Jiang H, Liu K (2022) Sox9 promotes cardiomyocyte apoptosis after acute myocardial infarction by promoting miR-223-3p and inhibiting MEF2C. Mol Biotechnol 64(8):902–913. https://doi.org/10.1007/s12033-022-00471-7

    Article  PubMed  CAS  Google Scholar 

  900. Roumeliotis S, Dounousi E, Eleftheriadis T, Liakopoulos V (2019) Association of the inactive circulating matrix gla protein with vitamin K intake, calcification, mortality, and cardiovascular disease: a review. Int J Mol Sci 20(3):628. https://doi.org/10.3390/ijms20030628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  901. Qian P, Cao X, Xu X, Duan M, Zhang Q, Huang G (2020) Contribution of CYP24A1 variants in coronary heart disease among the Chinese population. Lipids Health Dis 19(1):181. https://doi.org/10.1186/s12944-020-01356-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  902. Xia H, Huang X, Deng S, Xu H, Yang Y, Liu X, Yuan L, Deng H (2021) DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease. PLoS ONE 16(6):e0252786. https://doi.org/10.1371/journal.pone.0252786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  903. Roshan MH, Tambo A, Pace NP (2016) The role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis. Int J Inflam 2016:1532832. https://doi.org/10.1155/2016/1532832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  904. Kreiner FF, Kraaijenhof JM, von Herrath M, Hovingh GKK, von Scholten BJ (2022) Interleukin 6 in diabetes, chronic kidney disease, and cardiovascular disease: mechanisms and therapeutic perspectives. Exp Rev Clin Immunol 18(4):377–389. https://doi.org/10.1080/1744666X.2022.2045952

    Article  CAS  Google Scholar 

  905. Ma T, Huang R, Xu Y, Lv Y, Liu Y, Pan X, Dong J, Gao D, Wang Z, Zhang F et al (2023) Plasma GAS6 predicts mortality risk in acute heart failure patients: insights from the DRAGON-HF trial. J Transl Med 21(1):21. https://doi.org/10.1186/s12967-022-03859-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  906. Ng A, Wong M, Viviano B, Erlich JM, Alba G, Pflederer C, Jay PY, Saunders S (2009) Loss of glypican-3 function causes growth factor-dependent defects in cardiac and coronary vascular development. Dev Biol 335(1):208–215. https://doi.org/10.1016/j.ydbio.2009.08.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  907. Werner P, Paluru P, Simpson AM, Latney B, Iyer R, Brodeur GM, Goldmuntz E (2014) Mutations in NTRK3 suggest a novel signaling pathway in human congenital heart disease. Hum Mutat 35(12):1459–1468. https://doi.org/10.1002/humu.2268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  908. Ma X, Hu P, Chen H, Fang T (2019) Loss of AMIGO2 causes dramatic damage to cardiac preservation after ischemic injury. Cardiol J 26(4):394–404. https://doi.org/10.5603/CJ.a2018.0049

    Article  PubMed  PubMed Central  Google Scholar 

  909. Cavusoglu E, Kornecki E, Sobocka MB, Babinska A, Ehrlich YH, Chopra V, Yanamadala S, Ruwende C, Salifu MO, Clark LT et al (2007) Association of plasma levels of F11 receptor/junctional adhesion molecule-A (F11R/JAM-A) with human atherosclerosis. J Am Coll Cardiol 50(18):1768–1776. https://doi.org/10.1016/j.jacc.2007.05.051

    Article  PubMed  CAS  Google Scholar 

  910. Yu P, Zhao J, Jiang H, Liu M, Yang X, Zhang B, Yu Y, Zhang L, Tong R, Liu G et al (2018) Neural cell adhesion molecule-1 may be a new biomarker of coronary artery disease. Int J Cardiol 257:238–242. https://doi.org/10.1016/j.ijcard.2017.12.040

    Article  PubMed  Google Scholar 

  911. Gao W, Guo N, Yan H, Zhao S, Sun Y, Chen Z (2024) Mycn ameliorates cardiac hypertrophy-induced heart failure in mice by mediating the USP2/JUP/Akt/β-catenin cascade. BMC Cardiovasc Disord 24(1):82. https://doi.org/10.1186/s12872-024-03748-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  912. Dabravolski SA, Sukhorukov VN, Kalmykov VA, Grechko AV, Shakhpazyan NK, Orekhov AN (2022) The role of KLF2 in the regulation of atherosclerosis development and potential use of KLF2-targeted therapy. Biomedicines 10(2):254. https://doi.org/10.3390/biomedicines10020254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  913. Hsu A, Duan Q, McMahon S, Huang Y, Wood SA, Gray NS, Wang B, Bruneau BG, Haldar SM (2020) Salt-inducible kinase 1 maintains HDAC7 stability to promote pathologic cardiac remodeling. J Clin Invest 130(6):2966–2977. https://doi.org/10.1172/JCI133753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  914. Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H, Chi K (2020) FBXW7 promotes pathological cardiac hypertrophy by targeting EZH2-SIX1 signaling. Exp Cell Res 393(1):112059. https://doi.org/10.1016/j.yexcr.2020.112059

    Article  PubMed  CAS  Google Scholar 

  915. Wu JJ, Jin J, Li YH, Wang C, Bai J, Jiang QJ, He TX, Nie SJ, Li DJ, Qu LF (2023) LncRNA FGF7-5 and lncRNA GLRX3 together inhibits the formation of carotid plaque via regulating the miR-2681-5p/ERCC4 axis in atherosclerosis. Cell Cycle 22(2):165–182. https://doi.org/10.1080/15384101.2022.2110446

    Article  PubMed  CAS  Google Scholar 

  916. Hong L, Lai HL, Fang Y, Tao Y, Qiu Y (2018) Silencing CTGF/CCN2 inactivates the MAPK signaling pathway to alleviate myocardial fibrosis and left ventricular hypertrophy in rats with dilated cardiomyopathy. J Cell Biochem 119(11):9519–9531. https://doi.org/10.1002/jcb.27268

    Article  PubMed  CAS  Google Scholar 

  917. Douglas G, Mehta V, Al Haj Zen A, Akoumianakis I, Goel A, Rashbrook VS, Trelfa L, Donovan L, Drydale E, Chuaiphichai S et al (2020) A key role for the novel coronary artery disease gene JCAD in atherosclerosis via shear stress mechanotransduction. Cardiovasc Res 116(11):1863–1874. https://doi.org/10.1093/cvr/cvz263

    Article  PubMed  CAS  Google Scholar 

  918. Aneke-Nash CS, Xue X, Qi Q, Biggs ML, Cappola A, Kuller L, Pollak M, Psaty BM, Siscovick D, Mukamal K et al (2017) The association between IGF-I and IGFBP-3 and incident diabetes in an older population of men and women in the cardiovascular health study. J Clin Endocrinol Metab 102(12):4541–4547. https://doi.org/10.1210/jc.2017-01273

    Article  PubMed  PubMed Central  Google Scholar 

  919. Jiang X, Cui J, Yang C, Song Y, Yuan J, Liu S, Hu F, Yang W, Qiao S (2020) Elevated lymphatic vessel density measured by Lyve-1 expression in areas of replacement fibrosis in the ventricular septum of patients with hypertrophic obstructive cardiomyopathy (HOCM). Heart Vessels 35(1):78–85. https://doi.org/10.1007/s00380-019-01463-5

    Article  PubMed  Google Scholar 

  920. Massadeh S, Albeladi M, Albesher N, Alhabshan F, Kampe KD, Chaikhouni F, Kabbani MS, Beetz C, Alaamery M (2021) Novel autosomal recessive splice-altering variant in PRKD1 is associated with congenital heart disease. Genes (Basel) 12(5):612. https://doi.org/10.3390/genes12050612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  921. Scuruchi M, Potì F, Rodríguez-Carrio J, Campo GM, Mandraffino G (2020) Biglycan and atherosclerosis: lessons from high cardiovascular risk conditions. Biochim Biophys Acta Mol Cell Biol Lipids 1865(2):158545. https://doi.org/10.1016/j.bbalip.2019.158545

    Article  PubMed  CAS  Google Scholar 

  922. Toprak K, Kaplangoray M, Palice A, Taşcanov MB, Altıparmak İH, Biçer A, Demirbağ R (2023) Ectodysplasin a is associated with the presence and severity of coronary artery disease and poor long-term clinical outcome in patients presenting with ST-elevation myocardial infarction. Acta Clin Belg 78(4):270–279. https://doi.org/10.1080/17843286.2022.2140246

    Article  PubMed  CAS  Google Scholar 

  923. Liu Y, Yin Z, Xu X, Liu C, Duan X, Song Q, Tuo Y, Wang C, Yang J, Yin S (2021) Crosstalk between the activated Slit2-Robo1 pathway and TGF-β1 signalling promotes cardiac fibrosis. ESC Heart Fail 8(1):447–460. https://doi.org/10.1002/ehf2.13095

    Article  PubMed  Google Scholar 

  924. Chong JX, Childers MC, Marvin CT, Marcello AJ, Gonorazky H, Hazrati LN, Dowling JJ, Al Amrani F, Alanay Y, Nieto Y et al (2023) Variants in ACTC1 underlie distal arthrogryposis accompanied by congenital heart defects. HGG Adv 4(3):100213. https://doi.org/10.1016/j.xhgg.2023.100213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  925. Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC (2024) Orchestrating resilience: how neuropilin-2 and macrophages contribute to cardiothoracic disease. J Clin Med 13(5):1446. https://doi.org/10.3390/jcm13051446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  926. Tsantilas P, Lao S, Wu Z, Eberhard A, Winski G, Vaerst M, Nanda V, Wang Y, Kojima Y, Ye J et al (2021) Chitinase 3 like 1 is a regulator of smooth muscle cell physiology and atherosclerotic lesion stability. Cardiovasc Res 117(14):2767–2780. https://doi.org/10.1093/cvr/cvab014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  927. Qi P, Zhai Q, Zhang X (2023) RUNX1 facilitates heart failure progression through regulating TGF-β-induced cardiac remodeling. PeerJ 11:e16202. https://doi.org/10.7717/peerj.16202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  928. Gao S, Chen H (2023) Therapeutic potential of apelin and Elabela in cardiovascular disease. Biomed Pharmacother 166:115268. https://doi.org/10.1016/j.biopha.2023.115268

    Article  PubMed  CAS  Google Scholar 

  929. Ji M, Su L, Liu L, Zhuang M, Xiao J, Guan Y, Zhu S, Ma L, Pu H (2023) CaMKII regulates the proteins TPM1 and MYOM2 and promotes diacetylmorphine-induced abnormal cardiac rhythms. Sci Rep 13(1):5827. https://doi.org/10.1038/s41598-023-32941-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  930. Martin RI, Babaei MS, Choy MK, Owens WA, Chico TJ, Keenan D, Yonan N, Koref MS, Keavney BD (2015) Genetic variants associated with risk of atrial fibrillation regulate expression of PITX2, CAV1, MYOZ1, C9orf3 and FANCC. J Mol Cell Cardiol 85:207–214. https://doi.org/10.1016/j.yjmcc.2015.06.005

    Article  PubMed  CAS  Google Scholar 

  931. Tulbah S, Alruwaili N, Alhashem A, Aljohany A, Alhadeq F, Brotons DCA, Alwadai A, Al-Hassnan ZN (2024) Variable phenotype of a null PPP1R13L allele in children with dilated cardiomyopathy. Am J Med Genet A 194(1):59–63. https://doi.org/10.1002/ajmg.a.63402

    Article  PubMed  CAS  Google Scholar 

  932. Hsu CH, Liu IF, Kuo HF, Li CY, Lian WS, Chang CY, Chen YH, Liu WL, Lu CY, Liu YR et al (2021) miR-29a-3p/THBS2 axis regulates PAH-induced cardiac fibrosis. Int J Mol Sci 22(19):10574. https://doi.org/10.3390/ijms221910574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  933. Piesanen J, Kunnas T, Nikkari ST (2022) The gene variant for desmin rs1058261 may protect against combined cancer and cardiovascular death, the Tampere adult population cardiovascular risk study. Medicine (Baltimore) 101(40):e31005. https://doi.org/10.1097/MD.0000000000031005

    Article  PubMed  CAS  Google Scholar 

  934. Prasongsukarn K, Dechkhajorn W, Benjathummarak S, Maneerat Y (2021) TRPM2, PDLIM5, BCL3, CD14, GBA genes as feasible markers for premature coronary heart disease risk. Front Genet 12:598296. https://doi.org/10.3389/fgene.2021.598296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  935. Cappola TP, Li M, He J, Ky B, Gilmore J, Qu L, Keating B, Reilly M, Kim CE, Glessner J et al (2010) Common variants in HSPB7 and FRMD4B associated with advanced heart failure. Circ Cardiovasc Genet 3(2):147–154. https://doi.org/10.1161/CIRCGENETICS.109.898395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  936. Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X (2022) Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 13:945206. https://doi.org/10.3389/fphar.2022.945206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  937. Künzel SR, Hoffmann M, Weber S, Künzel K, Kämmerer S, Günscht M, Klapproth E, Rausch JSE, Sadek MS, Kolanowski T et al (2021) Diminished PLK2 induces cardiac fibrosis and promotes atrial fibrillation. Circ Res 129(8):804–820. https://doi.org/10.1161/CIRCRESAHA.121.319425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  938. Chen X, Li X, Wu X, Ding Y, Li Y, Zhou G, Wei Y, Chen S, Lu X, Xu J et al (2023) Integrin beta-like 1 mediates fibroblast-cardiomyocyte crosstalk to promote cardiac fibrosis and hypertrophy. Cardiovasc Res 119(10):1928–1941. https://doi.org/10.1093/cvr/cvad104

    Article  PubMed  CAS  Google Scholar 

  939. Kassiteridi C, Cole JE, Griseri T, Falck-Hansen M, Goddard ME, Seneviratne AN, Green PA, Park I, Shami AG, Pattarabanjird T et al (2021) CD200 limits monopoiesis and monocyte recruitment in atherosclerosis. Circ Res 129(2):280–295. https://doi.org/10.1161/CIRCRESAHA.119.316062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  940. Ivanova AA, Maksimov VN, Ivanoshchuk DE, Orlov PS, Novoselov VP, Savchenko SV, Voevoda MI (2017) Association of polymorphism in SCN5A, GJA5, and KCNN3 gene with sudden cardiac death. Bull Exp Biol Med 163(1):73–77. https://doi.org/10.1007/s10517-017-3741-y

    Article  PubMed  CAS  Google Scholar 

  941. Ortega A, Tarazón E, Roselló-Lletí E, Gil-Cayuela C, Lago F, González-Juanatey JR, Cinca J, Jorge E, Martínez-Dolz L, Portolés M et al (2015) Patients with dilated cardiomyopathy and sustained monomorphic ventricular tachycardia show up-regulation of KCNN3 and KCNJ2 genes and CACNG8-linked left ventricular dysfunction. PLoS ONE 10(12):e0145518. https://doi.org/10.1371/journal.pone.0145518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  942. Li J, Chen Y, Gao J, Chen Y, Zhou C, Lin X, Liu C, Zhao M, Xu Y, Ji L et al (2021) Eva1a ameliorates atherosclerosis by promoting re-endothelialization of injured arteries via Rac1/Cdc42/Arpc1b. Cardiovasc Res 117(2):450–461. https://doi.org/10.1093/cvr/cvaa011

    Article  PubMed  CAS  Google Scholar 

  943. Zhou H, Che Y, Fu X, Wei H, Gao X, Chen Y, Zhang S (2019) Interaction between tissue factor pathway inhibitor-2 gene polymorphisms and environmental factors associated with coronary atherosclerosis in a Chinese Han. J Thromb Thrombol 47(1):67–72. https://doi.org/10.1007/s11239-018-1755-6

    Article  CAS  Google Scholar 

  944. Zhang X, He D, Xiang Y, Wang C, Liang B, Li B, Qi D, Deng Q, Yu H, Lu Z et al (2022) DYSF promotes monocyte activation in atherosclerotic cardiovascular disease as a DNA methylation-driven gene. Transl Res 247:19–38. https://doi.org/10.1016/j.trsl.2022.04.001

    Article  PubMed  CAS  Google Scholar 

  945. Giguère H, Dumont AA, Berthiaume J, Oliveira V, Laberge G, Auger-Messier M (2018) ADAP1 limits neonatal cardiomyocyte hypertrophy by reducing integrin cell surface expression. Sci Rep 8(1):13605. https://doi.org/10.1038/s41598-018-31784-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  946. Wang HH, Luo WY, Lin M, Li XJ, Xiang GD, Triganti D (2021) Plasma asprosin, CCDC80 and ANGPTL4 levels are associated with metabolic and cardiovascular risk in patients with inflammatory bowel disease. Physiol Res 70(2):203–211. https://doi.org/10.33549/physiolres.934547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  947. Zhang J, Zhang J, Zhou B, Jiang X, Tang Y, Zhang Z (2022) Death-associated protein kinase 1 (DAPK1) protects against myocardial injury induced by myocardial infarction in rats via inhibition of inflammation and oxidative stress. Dis Markers 2022:9651092. https://doi.org/10.1155/2022/9651092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  948. Xiong H, Yang Q, Zhang X, Wang P, Chen F, Liu Y, Wang P, Zhao Y, Li S, Huang Y et al (2019) Significant association of rare variant p.Gly8Ser in cardiac sodium channel β4-subunit SCN4B with atrial fibrillation. Ann Hum Genet 83(4):239–248. https://doi.org/10.1111/ahg.12305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  949. Jiang F, Dong Y, Wu C, Yang X, Zhao L, Guo J, Li Y, Dong J, Zheng GY, Cao H et al (2011) Fine mapping of chromosome 3q22.3 identifies two haplotype blocks in ESYT3 associated with coronary artery disease in female Han Chinese. Atherosclerosis 218(2):397–403. https://doi.org/10.1016/j.atherosclerosis.2011.06.017

    Article  PubMed  CAS  Google Scholar 

  950. Fan LL, Liu L, Wang CY, Guo T, Luo H (2022) A novel nonsense mutation of ABCA8 in a patient with reduced HDL-c levels and atherosclerosis. QJM 115(5):321–322. https://doi.org/10.1093/qjmed/hcac009

    Article  PubMed  CAS  Google Scholar 

  951. Tamargo IA, Baek KI, Xu C, Kang DW, Kim Y, Andueza A, Williams D, Demos C, Villa-Roel N, Kumar S et al (2024) HEG1 protects against atherosclerosis by regulating stable flow-induced KLF2/4 expression in endothelial cells. Circulation 149(15):1183–1201. https://doi.org/10.1161/CIRCULATIONAHA.123.064735

    Article  PubMed  CAS  Google Scholar 

  952. Zhou QL, Teng F, Zhang YS, Sun Q, Cao YX, Meng GW (2018) FPR1 gene silencing suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/reperfusion injury through the inhibition of MAPK signaling pathway. Exp Cell Res 370(2):506–518. https://doi.org/10.1016/j.yexcr.2018.07.016

    Article  PubMed  CAS  Google Scholar 

  953. Hwang HS, Kahmini AR, Prascak J, Cejas-Carbonell A, Valera IC, Champion S, Corrigan M, Mumbi F, Parvatiyar MS (2023) Sarcospan deficiency increases oxidative stress and arrhythmias in hearts after acute ischemia-reperfusion injury. Int J Mol Sci 24(14):11868. https://doi.org/10.3390/ijms241411868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  954. Latella MC, Di Castelnuovo A, de Lorgeril M, Arnout J, Cappuccio FP, Krogh V, Siani A, van Dongen M, Donati MB, de Gaetano G et al (2009) Genetic variation of alcohol dehydrogenase type 1C (ADH1C), alcohol consumption, and metabolic cardiovascular risk factors: results from the IMMIDIET study. Atherosclerosis 207(1):284–290. https://doi.org/10.1016/j.atherosclerosis.2009.04.022

    Article  PubMed  CAS  Google Scholar 

  955. Jiang DS, Zhang XF, Gao L, Zong J, Zhou H, Liu Y, Zhang Y, Bian ZY, Zhu LH, Fan GC et al (2014) Signal regulatory protein-α protects against cardiac hypertrophy via the disruption of toll-like receptor 4 signaling. Hypertension 63(1):96–104. https://doi.org/10.1161/HYPERTENSIONAHA.113.0150

    Article  PubMed  CAS  Google Scholar 

  956. García SI, Pirola CJ (2005) Thyrotropin-releasing hormone in cardiovascular pathophysiology. Regul Pept 128(3):239–246. https://doi.org/10.1016/j.regpep.2005.01.002

    Article  PubMed  CAS  Google Scholar 

  957. Buensuceso AV, Son AI, Zhou R, Paquet M, Withers BM, Deroo BJ (2016) Ephrin-A5 is required for optimal fertility and a complete ovulatory response to gonadotropins in the female mouse. Endocrinology 157(2):942–955. https://doi.org/10.1210/en.2015-1216

    Article  PubMed  CAS  Google Scholar 

  958. Barišić A, Pereza N, Hodžić A, Kapović M, Peterlin B, Ostojić S (2017) Functional single nucleotide polymorphisms of matrix metalloproteinase 7 and 12 genes in idiopathic recurrent spontaneous abortion. J Assist Reprod Genet 34(3):365–371. https://doi.org/10.1007/s10815-016-0848-4

    Article  PubMed  Google Scholar 

  959. Karaer A, Cigremis Y, Celik E, Urhan GR (2014) Prokineticin 1 and leukemia inhibitory factor mRNA expression in the endometrium of women with idiopathic recurrent pregnancy loss. Fertil Steril 102(4):1091-1095.e1. https://doi.org/10.1016/j.fertnstert.2014.07.010

    Article  PubMed  CAS  Google Scholar 

  960. Yang H, Lin J, Li H, Liu Z, Chen X, Chen Q (2021) Prolactin is associated with insulin resistance and beta-cell dysfunction in infertile women with polycystic ovary syndrome. Front Endocrinol (Lausanne) 12:571229. https://doi.org/10.3389/fendo.2021.571229

    Article  PubMed  Google Scholar 

  961. Mu J, Wang W, Chen B, Wu L, Li B, Mao X, Zhang Z, Fu J, Kuang Y, Sun X et al (2019) Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J Med Genet 56(7):471–480. https://doi.org/10.1136/jmedgenet-2018-105936

    Article  PubMed  CAS  Google Scholar 

  962. Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK (2019) Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 25(2):224–242. https://doi.org/10.1093/humupd/dmy047

    Article  PubMed  CAS  Google Scholar 

  963. Pan Z, Wang W, Wu L, Yao Z, Wang W, Chen Y, Gu H, Dong J, Mu J, Zhang Z et al (2024) Bi-allelic missense variants in MEI4 cause preimplantation embryonic arrest and female infertility. Hum Genet. https://doi.org/10.1007/s00439-023-02633-2

    Article  PubMed  Google Scholar 

  964. Drosch M, Schmidt N, Markowski DN, Zollner TM, Koch M, Bullerdiek J (2014) The CD24hi smooth muscle subpopulation is the predominant fraction in uterine fibroids. Mol Hum Reprod 20(7):664–676. https://doi.org/10.1093/molehr/gau022

    Article  PubMed  CAS  Google Scholar 

  965. Zhang Z, Wu L, Diao F, Chen B, Fu J, Mao X, Yan Z, Li B, Mu J, Zhou Z et al (2020) Novel mutations in LHCGR (luteinizing hormone/choriogonadotropin receptor): expanding the spectrum of mutations responsible for human empty follicle syndrome. J Assist Reprod Genet 37(11):2861–2868. https://doi.org/10.1007/s10815-020-01931-2

    Article  PubMed  PubMed Central  Google Scholar 

  966. Shakerian B, Irvani S, Mostafavi S, Moghtaderi M (2022) Quantitative serum determination of CD3, CD4, CD8, CD16, and CD56 in women with primary infertility: the role of cell-mediated immunity. Turk J Obstet Gynecol 19(3):242–245. https://doi.org/10.4274/tjod.galenos.2022.47527

    Article  PubMed  PubMed Central  Google Scholar 

  967. Hu J, Ke H, Luo W, Yang Y, Liu H, Li G, Qin Y, Ma J, Zhao S (2020) A novel FOXL2 mutation in two infertile patients with blepharophimosis-ptosis-epicanthus inversus syndrome. J Assist Reprod Genet 37(1):223–229. https://doi.org/10.1007/s10815-019-01651-2

    Article  PubMed  Google Scholar 

  968. Honarvar N, Sheikhha MH, Farashahi Yazd E, Pashaiefar H, Mohtaram S, Sazegari A, Feizollahi Z, Ghasemi N (2016) KDR gene polymorphisms and idiopathic recurrent spontaneous abortion. J Matern Fetal Neonatal Med 29(22):3737–3740. https://doi.org/10.3109/14767058.2016.1142966

    Article  PubMed  CAS  Google Scholar 

  969. Zangeneh FZ, Bagheri M, Shoushtari MS, Naghizadeh MM (2021) Expression of ADR-α1, 2 and ADR-β2 in cumulus cell culture of infertile women with polycystic ovary syndrome and poor responder who are a candidate for IVF: the novel strategic role of clonidine in this expression. J Recept Signal Transduct Res 41(3):263–272. https://doi.org/10.1080/10799893.2020.1806320

    Article  PubMed  CAS  Google Scholar 

  970. Heidarzadehpilehrood R, Pirhoushiaran M, Abdollahzadeh R, Binti Osman M, Sakinah M, Nordin N, Abdul HH (2022) A review on CYP11A1, CYP17A1, and CYP19A1 polymorphism studies: candidate susceptibility genes for polycystic ovary syndrome (PCOS) and infertility. Genes (Basel) 13(2):302. https://doi.org/10.3390/genes13020302

    Article  PubMed  CAS  Google Scholar 

  971. Bouilly J, Messina A, Papadakis G, Cassatella D, Xu C, Acierno JS, Tata B, Sykiotis G, Santini S, Sidis Y et al (2018) DCC/NTN1 complex mutations in patients with congenital hypogonadotropic hypogonadism impair GnRH neuron development. Hum Mol Genet 27(2):359–372. https://doi.org/10.1093/hmg/ddx408

    Article  PubMed  CAS  Google Scholar 

  972. Wang S, Fang L, Cong L, Chung JPW, Li TC, Chan DYL (2022) Myostatin: a multifunctional role in human female reproduction and fertility - a short review. Reprod Biol Endocrinol 20(1):96. https://doi.org/10.1186/s12958-022-00969-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  973. Demiray SB, Yilmaz O, Goker ENT, Tavmergen E, Calimlioglu N, Sezerman U, Soykam HO, Oktem G (2017) Expression of the bone morphogenetic protein-2 (BMP2) in the human cumulus cells as a biomarker of oocytes and embryo quality. J Hum Reprod Sci 10(3):194–200. https://doi.org/10.4103/jhrs.JHRS_21_17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  974. Li J, Chen Y, Wu H, Li L (2014) Apolipoprotein E (Apo E) gene polymorphisms and recurrent pregnancy loss: a meta-analysis. J Assist Reprod Genet 31(2):139–148. https://doi.org/10.1007/s10815-013-0128-5

    Article  PubMed  Google Scholar 

  975. Al-Mutawa J (2018) Interaction with angiotensin-converting enzyme-encoding gene in female infertility: insertion and deletion polymorphism studies. Saudi J Biol Sci 25(8):1617–1621. https://doi.org/10.1016/j.sjbs.2016.06.003

    Article  PubMed  CAS  Google Scholar 

  976. Rocha-Junior CV, Da Broi MG, Miranda-Furtado CL, Navarro PA, Ferriani RA, Meola J (2019) Progesterone receptor B (PGR-B) is partially methylated in eutopic endometrium from infertile women with endometriosis. Reprod Sci 26(12):1568–1574. https://doi.org/10.1177/1933719119828078

    Article  PubMed  CAS  Google Scholar 

  977. Rydze RT, Patton BK, Briley SM, Salazar Torralba H, Gipson G, James R, Rajkovic A, Thompson T, Pangas SA (2021) Deletion of Gremlin-2 alters estrous cyclicity and disrupts female fertility in mice†. Biol Reprod 105(5):1205–1220. https://doi.org/10.1093/biolre/ioab148

    Article  PubMed  PubMed Central  Google Scholar 

  978. Vatin M, Bouvier S, Bellazi L, Montagutelli X, Laissue P, Ziyyat A, Serres C, De Mazancourt P, Dieudonné MN, Mornet E et al (2014) Polymorphisms of human placental alkaline phosphatase are associated with in vitro fertilization success and recurrent pregnancy loss. Am J Pathol 184(2):362–368. https://doi.org/10.1016/j.ajpath.2013.10.024

    Article  PubMed  CAS  Google Scholar 

  979. Cardoso JV, Machado DE, da Silva MC, Berardo PT, Ferrari R, Abrão MS, Perini JA (2019) Matrix metalloproteinases 3 polymorphism increases the risk of developing advanced endometriosis and infertility: a case-control study. Eur J Obstet Gynecol Reprod Biol X 3:100041. https://doi.org/10.1016/j.eurox.2019.100041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  980. Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK (2019) Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 25(2):224–242. https://doi.org/10.1093/humupd/dmy047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  981. Filant J, DeMayo FJ, Pru JK, Lydon JP, Spencer TE (2014) Fibroblast growth factor receptor two (FGFR2) regulates uterine epithelial integrity and fertility in mice. Biol Reprod 90(1):7. https://doi.org/10.1095/biolreprod.113.114496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  982. He B, Teng XM, Hao F, Zhao M, Chen ZQ, Li KM, Yan Q (2022) Decreased intracellular IL-33 impairs endometrial receptivity in women with adenomyosis. Front Endocrinol (Lausanne) 13:928024. https://doi.org/10.3389/fendo.2022.928024

    Article  PubMed  Google Scholar 

  983. Palumbo MA, Giuffrida E, Gulino FA, Leonardi E, Cantarella G, Bernardini R (2013) Nerve growth factor (NGF) levels in follicular fluid of infertile patients undergoing to in vitro fertilization (IVF) cycle. Gynecol Endocrinol 29(11):1002–1004. https://doi.org/10.3109/09513590.2013.829450

    Article  PubMed  CAS  Google Scholar 

  984. Mu Y, Zhou DN, Yan NN, Ding JL, Yang J (2019) Upregulation of ADAMTS-7 and downregulation of COMP are associated with spontaneous abortion. Mol Med Rep 19(4):2620–2626. https://doi.org/10.3892/mmr.2019.9898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  985. Norton KA, Niri F, Weatherill CB, Williams CE, Duong K, McDermid HE (2021) Implantation failure and embryo loss contribute to subfertility in female mice mutant for chromatin remodeler Cecr2†. Biol Reprod 104(4):835–849. https://doi.org/10.1093/biolre/ioaa231

    Article  PubMed  Google Scholar 

  986. Lin SY, Craythorn RG, O’Connor AE, Matzuk MM, Girling JE, Morrison JR, de Kretser DM (2008) Female infertility and disrupted angiogenesis are actions of specific follistatin isoforms. Mol Endocrinol 22(2):415–429. https://doi.org/10.1210/me.2006-05

    Article  PubMed  CAS  Google Scholar 

  987. Bennett J, Wu YG, Gossen J, Zhou P, Stocco C (2012) Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility. Endocrinology 153(5):2474–2485. https://doi.org/10.1210/en.2011-1969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  988. Sadeu JC, Doedée AM, Neal MS, Hughes EG, Foster WG (2012) Neurotrophins (BDNF and NGF) in follicular fluid of women with different infertility diagnoses. Reprod Biomed Online 24(2):174–179. https://doi.org/10.1016/j.rbmo.2011.11.011

    Article  PubMed  CAS  Google Scholar 

  989. Salker MS, Christian M, Steel JH, Nautiyal J, Lavery S, Trew G, Webster Z, Al-Sabbagh M, Puchchakayala G, Föller M et al (2011) Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat Med 17(11):1509–1513. https://doi.org/10.1038/nm.2498

    Article  PubMed  CAS  Google Scholar 

  990. Li M, Hu J, Yao L, Gao M (2020) Decreased ANGPTL4 impairs endometrial angiogenesis during peri-implantation period in patients with recurrent implantation failure. J Cell Mol Med 24(18):10730–10743. https://doi.org/10.1111/jcmm.15696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  991. Bender HR, Campbell GE, Aytoda P, Mathiesen AH, Duffy DM (2019) Thrombospondin 1 (THBS1) promotes follicular angiogenesis, luteinization, and ovulation in primates. Front Endocrinol (Lausanne) 10:727. https://doi.org/10.3389/fendo.2019.00727

    Article  PubMed  Google Scholar 

  992. Ding JL, Diao LH, Yin TL, Huang CY, Yin B, Chen C, Zhang Y, Li J, Cheng YX, Zeng Y et al (2017) Aberrant expressions of endometrial Id3 and CTLA-4 are associated with unexplained repeated implantation failure and recurrent miscarriage. Am J Reprod Immunol. https://doi.org/10.1111/aji.12632

    Article  PubMed  Google Scholar 

  993. Maraldi T, Resca E, Nicoli A, Beretti F, Zavatti M, Capodanno F, Morini D, Palomba S, La Sala GB, De Pol A (2016) NADPH oxidase-4 and MATER expressions in granulosa cells: relationships with ovarian aging. Life Sci 162:108–114. https://doi.org/10.1016/j.lfs.2016.08.007

    Article  PubMed  CAS  Google Scholar 

  994. Mu H, Cai S, Wang X, Li H, Zhang L, Li H, Xiang W (2022) RNA binding protein IGF2BP1 meditates oxidative stress-induced granulosa cell dysfunction by regulating MDM2 mRNA stability in an m6A-dependent manner. Redox Biol 57:102492. https://doi.org/10.1016/j.redox.2022.102492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  995. Wang Q, Li D, Cai B, Chen Q, Li C, Wu Y, Jin L, Wang X, Zhang X, Zhang F (2019) Whole-exome sequencing reveals SALL4 variants in premature ovarian insufficiency: an update on genotype-phenotype correlations. Hum Genet 138(1):83–92. https://doi.org/10.1007/s00439-018-1962-4

    Article  PubMed  CAS  Google Scholar 

  996. Ashraf M, Khan HN, Ibrahim R, Shahid M, Khan S, Fatima A, Ullah S, Rehman R (2024) Genetic association of vitamin D receptor gene with female infertility. Nucleosides Nucleotides Nucleic Acids 43(2):116–133. https://doi.org/10.1080/15257770.2023.2236167

    Article  PubMed  CAS  Google Scholar 

  997. Taghizadeh E, Kalantar SM, Mahdian R, Sheikhha MH, Farashahi-Yazd E, Ghasemi S, Shahbazi Z (2015) SULF 1 gene polymorphism, rs6990375 is in significant association with fetus failure in IVF technique. Iran J Reprod Med 13(4):215–220

    PubMed  PubMed Central  Google Scholar 

  998. Koval H, Chopiak V, Kamyshnyi A (2015) mRNA tlr2 and tlr4 expression in the endometrium tissue in women with endometriosis assosiated with infertility. Georgian Med News 244–245:7–11

    Google Scholar 

  999. Incognito GG, Di Guardo F, Gulino FA, Genovese F, Benvenuto D, Lello C, Palumbo M (2023) Interleukin-6 as a useful predictor of endometriosis-associated infertility: a systematic review. Int J Fertil Steril 17(4):226–230. https://doi.org/10.22074/ijfs.2023.557683.1329

    Article  PubMed  CAS  Google Scholar 

  1000. Gokce S, Herkiloglu D, Cevik O, Turan V (2023) Evaluation of intrafollicular syndecan 1, glypican 3, and spermidine levels in women with diminished ovarian reserve. Reprod Sci 30(2):569–575. https://doi.org/10.1007/s43032-022-01085-9

    Article  PubMed  CAS  Google Scholar 

  1001. Núnez-Ollé M, Jung C, Terré B, Balsiger NA, Plata C, Roset R, Pardo-Pastor C, Garrido M, Rojas S, Alameda F et al (2017) Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget 8(59):99261–99273. https://doi.org/10.18632/oncotarget.21818

    Article  PubMed  PubMed Central  Google Scholar 

  1002. Yovich JL, Zaidi S, Nguyen MDK, Hinchliffe PM (2020) Measuring IGF-1 and IGFBP-3 profiles in women seeking assisted reproduction; relationship to clinical parameters (Study 1). J Pers Med 10(3):122. https://doi.org/10.3390/jpm10030122

    Article  PubMed  PubMed Central  Google Scholar 

  1003. Chen Y, Sun T, Niu Y, Wang D, Liu K, Wang T, Wang S, Xu H, Liu J (2021) Cell adhesion molecule L1 like plays a role in the pathogenesis of idiopathic hypogonadotropic hypogonadism. J Endocrinol Invest 44(8):1739–1751. https://doi.org/10.1007/s40618-020-01485-1

    Article  PubMed  CAS  Google Scholar 

  1004. Dorfman MD, Garcia-Rudaz C, Alderman Z, Kerr B, Lomniczi A, Dissen GA, Castellano JM, Garcia-Galiano D, Gaytan F, Xu B et al (2014) Loss of Ntrk2/Kiss1r signaling in oocytes causes premature ovarian failure. Endocrinology 155(8):3098–3111. https://doi.org/10.1210/en.2014-1111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1005. Wu J, Fang Z, Wang X, Zeng W, Zhao Y, Jiang F, Chen DN, Zheng R, Li J, Men M et al (2022) SLIT2 rare sequencing variants identified in idiopathic hypogonadotropic hypogonadism. Horm Res Paediatr 95(4):384–392. https://doi.org/10.1159/000525769

    Article  PubMed  CAS  Google Scholar 

  1006. Roche J, Ramé C, Reverchon M, Mellouk N, Cornuau M, Guerif F, Froment P, Dupont J (2016) Apelin (APLN) and apelin receptor (APLNR) in human ovary: expression, signaling, and regulation of steroidogenesis in primary human luteinized granulosa cells. Biol Reprod 95(5):104. https://doi.org/10.1095/biolreprod.116.141754

    Article  PubMed  CAS  Google Scholar 

  1007. Li L, Feng F, Zhao M, Li T, Yue W, Ma X, Wang B, Yin C (2020) NOTCH2 variant D1853H is mutated in two non-syndromic premature ovarian insufficiency patients from a Chinese pedigree. J Ovarian Res 13(1):41. https://doi.org/10.1186/s13048-020-00645-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1008. Bender HR, Trau HA, Duffy DM (2018) Placental growth factor is required for ovulation, luteinization, and angiogenesis in primate ovulatory follicles. Endocrinology 159(2):710–722. https://doi.org/10.1210/en.2017-00739

    Article  PubMed  CAS  Google Scholar 

  1009. Margioula-Siarkou C, Prapas Y, Petousis S, Milias S, Ravanos K, Dagklis T, Kalogiannidis I, Mavromatidis G, Haitoglou C, Prapas N et al (2017) LIF endometrial expression is impaired in women with unexplained infertility while LIF-R expression in all infertility sub-groups. Cytokine 96:166–172. https://doi.org/10.1016/j.cyto.2017.04.009

    Article  PubMed  CAS  Google Scholar 

  1010. Clark DA (2009) Cell-surface CD200 may predict efficacy of paternal mononuclear leukocyte immunotherapy in treatment of human recurrent pregnancy loss. Am J Reprod Immunol 61(1):75–84. https://doi.org/10.1111/j.1600-0897.2008.00665.x

    Article  PubMed  Google Scholar 

  1011. Altmäe S, Salumets A, Bjuresten K, Kallak TK, Wånggren K, Landgren BM, Hovatta O, Stavreus-Evers A (2011) Tissue factor and tissue factor pathway inhibitors TFPI and TFPI2 in human secretory endometrium–possible link to female infertility. Reprod Sci 18(7):666–678. https://doi.org/10.1177/1933719111400633

    Article  PubMed  CAS  Google Scholar 

  1012. Lee YJ, Kim CH, Kwack JY, Ahn JW, Kim SH, Chae HD, Kang BM (2014) Subclinical hypothyroidism diagnosed by thyrotropin-releasing hormone stimulation test in infertile women with basal thyroid-stimulating hormone levels of 2.5 to 5.0 mIU/L. Obstet Gynecol Sci 57(6):507–512. https://doi.org/10.5468/ogs.2014.57.6.507

    Article  PubMed  PubMed Central  Google Scholar 

  1013. Gokulakrishnan K, Pandey GK, Sathishkumar C, Sundararajan S, Durairaj P, Manickam N, Mohan V, Balasubramanyam M (2021) Augmentation of RBP4/STRA6 signaling leads to insulin resistance and inflammation and the plausible therapeutic role of vildagliptin and metformin. Mol Biol Rep 48(5):4093–4106. https://doi.org/10.1007/s11033-021-06420-y

    Article  PubMed  CAS  Google Scholar 

  1014. Rhyu HJ, Bae SH, Jung J, Hyun YM (2020) Cochlin-cleaved LCCL is a dual-armed regulator of the innate immune response in the cochlea during inflammation. BMB Rep 53(9):449–452. https://doi.org/10.5483/BMBRep.2020.53.9.104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1015. Petronilho F, Danielski LG, Roesler R, Schwartsmann G, Dal-Pizzol F (2013) Gastrin-releasing peptide as a molecular target for inflammatory diseases: an update. Inflamm Allergy Drug Targets 12(3):172–177. https://doi.org/10.2174/1871528111312030003

    Article  PubMed  CAS  Google Scholar 

  1016. Te Velde AA, Pronk I, de Kort F, Stokkers PC (2008) Glutathione peroxidase 2 and aquaporin 8 as new markers for colonic inflammation in experimental colitis and inflammatory bowel diseases: an important role for H2O2? Eur J Gastroenterol Hepatol 20(6):555–560. https://doi.org/10.1097/MEG.0b013e3282f45751

    Article  CAS  Google Scholar 

  1017. Mao H, Han B, Li H, Tao Y, Wu W (2021) FABP4 knockdown suppresses inflammation, apoptosis and extracellular matrix degradation in IL-1β-induced chondrocytes by activating PPARγ to regulate the NF-κB signaling pathway. Mol Med Rep 24(6):855. https://doi.org/10.3892/mmr.2021.12495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1018. Dai WJ, Qiu J, Sun J, Ma CL, Huang N, Jiang Y, Zeng J, Ren BC, Li WC, Li YH (2019) Downregulation of microRNA-9 reduces inflammatory response and fibroblast proliferation in mice with idiopathic pulmonary fibrosis through the ANO1-mediated TGF-β-Smad3 pathway. J Cell Physiol 234(3):2552–2565. https://doi.org/10.1002/jcp.26961

    Article  PubMed  CAS  Google Scholar 

  1019. Xu Y, Zhan X (2022) lncRNA KCNQ1OT1 regulated high glucose-induced proliferation, oxidative stress, extracellular matrix accumulation, and inflammation by miR-147a/SOX6 in diabetic nephropathy (DN). Endocr J 69(5):511–522. https://doi.org/10.1507/endocrj.EJ21-0514

    Article  PubMed  CAS  Google Scholar 

  1020. Zhang H, Ren C, Liu Q, Wang Q, Wang D (2023) TFAP2C exacerbates psoriasis-like inflammation by promoting Th17 and Th1 cells activation through regulating TEAD4 transcription. Allergol Immunopathol (Madr) 51(3):124–134. https://doi.org/10.15586/aei.v51i3.854

    Article  PubMed  Google Scholar 

  1021. Dong X, Tang Y (2022) Ntrk1 promotes mesangial cell proliferation and inflammation in rat glomerulonephritis model by activating the STAT3 and p38/ERK MAPK signaling pathways. BMC Nephrol 23(1):413. https://doi.org/10.1186/s12882-022-03001-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1022. Le Quintrec M, Teisseyre M, Bec N, Delmont E, Szwarc I, Perrochia H, Machet MC, Chauvin A, Mavroudakis N, Taieb G et al (2021) Contactin-1 is a novel target antigen in membranous nephropathy associated with chronic inflammatory demyelinating polyneuropathy. Kidney Int 100(6):1240–1249. https://doi.org/10.1016/j.kint.2021.08.014

    Article  PubMed  CAS  Google Scholar 

  1023. Peng W, Song Y, Zhu G, Zeng Y, Cai H, Lu C, Abuduxukuer Z, Song X, Gao X, Ye L et al (2024) FGF10 attenuates allergic airway inflammation in asthma by inhibiting PI3K/AKT/NF-κB pathway. Cell Signal 113:110964. https://doi.org/10.1016/j.cellsig.2023.110964

    Article  PubMed  CAS  Google Scholar 

  1024. Wolf M, Clay SM, Zheng S, Pan P, Chan MF (2019) MMP12 inhibits corneal neovascularization and inflammation through regulation of CCL2. Sci Rep 9(1):11579. https://doi.org/10.1038/s41598-019-47831-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1025. Fang L, Shen R, Lu Y, Xu X, Huang F (2024) Tetrandrine alleviates inflammation and promotes macrophage M2 polarization in gouty arthritis by NF-κB-mediated Lcp1. Cell Mol Biol (Noisy-le-grand) 70(2):205–211. https://doi.org/10.14715/cmb/2024.70.2.29

    Article  PubMed  Google Scholar 

  1026. Forloni G (2023) Alpha synuclein: neurodegeneration and inflammation. Int J Mol Sci 24(6):5914. https://doi.org/10.3390/ijms24065914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1027. Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C (2023) Apolipoprotein D in oxidative stress and inflammation. Antioxidants (Basel) 12(5):1027. https://doi.org/10.3390/antiox12051027

    Article  PubMed  CAS  Google Scholar 

  1028. Mair MJ, Kiesel B, Feldmann K, Widhalm G, Dieckmann K, Wöhrer A, Müllauer L, Preusser M, Berghoff AS et al (2021) LAG-3 expression in the inflammatory microenvironment of glioma. J Neurooncol 152(3):533–539. https://doi.org/10.1007/s11060-021-03721-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1029. Berahovich RD, Miao Z, Wang Y, Premack B, Howard MC, Schall TJ (2005) Proteolytic activation of alternative CCR1 ligands in inflammation. J Immunol 174(11):7341–7351. https://doi.org/10.4049/jimmunol.174.11.7341

    Article  PubMed  CAS  Google Scholar 

  1030. Du L, Xu C, Tang K, Shi J, Tang L, Lisha X, Lei C, Liu H, Liang Y, Guo Y (2023) Epithelial CST1 promotes airway eosinophilic inflammation in asthma via the AKT signaling pathway. Allergy Asthma Immunol Res 15(3):374–394. https://doi.org/10.4168/aair.2023.15.3.374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1031. Zhang X, Yang Z, Pan T, Long X, Sun Q, Wang PH, Li X, Kuang E (2022) SARS-CoV-2 ORF3a induces RETREG1/FAM134B-dependent reticulophagy and triggers sequential ER stress and inflammatory responses during SARS-CoV-2 infection. Autophagy 18(11):2576–2592. https://doi.org/10.1080/15548627.2022.2039992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1032. Xu F, Ren ZX, Zhong XM, Zhang Q, Zhang JY, Yang J (2019) Intrauterine inflammation damages placental angiogenesis via Wnt5a-Flt1 activation. Inflammation 42(3):818–825. https://doi.org/10.1007/s10753-018-0936-y

    Article  PubMed  CAS  Google Scholar 

  1033. Hou Y, Wei D, Bossila EA, Zhang Z, Li S, Bao J, Xu H, Zhang L, Zhao Y (2022) FABP5 deficiency impaired macrophage inflammation by regulating AMPK/NF-κB signaling pathway. J Immunol 209(11):2181–2191. https://doi.org/10.4049/jimmunol.2200182

    Article  PubMed  CAS  Google Scholar 

  1034. Zhao Q, Xia N, Xu J, Wang Y, Feng L, Su D, Cheng Z (2023) Pro-Inflammatory of PRDM1/SIRT2/NLRP3 axis in monosodium urate-induced acute gouty arthritis. J Innate Immun 15(1):614–628. https://doi.org/10.1159/000530966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1035. Nishiyama K, Toyama C, Kato Y, Tanaka T, Nishimura A, Nagata R, Mori Y, Nishida M (2021) Deletion of TRPC3 or TRPC6 fails to attenuate the formation of inflammation and fibrosis in non-alcoholic steatohepatitis. Biol Pharm Bull 44(3):431–436. https://doi.org/10.1248/bpb.b20-00903

    Article  PubMed  CAS  Google Scholar 

  1036. Gorowiec MR, Catalano RD, Norman JE, Denison FC, Jabbour HN (2011) Prokineticin 1 induces inflammatory response in human myometrium: a potential role in initiating term and preterm parturition. Am J Pathol 179(6):2709–2719. https://doi.org/10.1016/j.ajpath.2011.08.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1037. Liu X, Li X, Hua B, Yang X, Zheng J, Liu S (2021) WNT16 is upregulated early in mouse TMJ osteoarthritis and protects fibrochondrocytes against IL-1β induced inflammatory response by regulation of RUNX2/MMP13 cascade. Bone 143:115793. https://doi.org/10.1016/j.bone.2020.115793

    Article  PubMed  CAS  Google Scholar 

  1038. Kaartinen MT, Arora M, Heinonen S, Hang A, Barry A, Lundbom J, Hakkarainen A, Lundholm N, Rissanen A, Kaprio J et al (2021) F13A1 transglutaminase expression in human adipose tissue increases in acquired excess weight and associates with inflammatory status of adipocytes. Int J Obes (Lond) 45(3):577–587. https://doi.org/10.1038/s41366-020-00722-0

    Article  PubMed  CAS  Google Scholar 

  1039. Zhou E, Ge X, Nakashima H, Li R, van der Zande HJP, Liu C, Li Z, Müller C, Bracher F, Mohammed Y et al (2023) Inhibition of DHCR24 activates LXRα to ameliorate hepatic steatosis and inflammation. EMBO Mol Med 15(8):e16845. https://doi.org/10.15252/emmm.202216845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1040. Zuo Y, Xu H, Li Y, Zhang Z, Tao R, Wang M (2023) Hsa_circ_0007707 participates in PDE3B-mediated apoptosis inhibition and inflammation promotion in fibroblast-like synoviocytes. Int Immunopharmacol 119:110157. https://doi.org/10.1016/j.intimp.2023.110157

    Article  PubMed  CAS  Google Scholar 

  1041. Yu GI, Song DK, Shin DH (2020) Associations of IL1RAP and IL1RL1 gene polymorphisms with obesity and inflammation mediators. Inflamm Res 69(2):191–202. https://doi.org/10.1007/s00011-019-01307-y

    Article  PubMed  CAS  Google Scholar 

  1042. Tsai AP, Dong C, Lin PB, Messenger EJ, Casali BT, Moutinho M, Liu Y, Oblak AL, Lamb BT, Landreth GE et al (2022) PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer’s disease. Genome Med 14(1):17. https://doi.org/10.1186/s13073-022-01022-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1043. Ramos-Martinez E, Ramos-Martínez I, Molina-Salinas G, Zepeda-Ruiz WA, Cerbon M (2021) The role of prolactin in central nervous system inflammation. Rev Neurosci 32(3):323–340. https://doi.org/10.1515/revneuro-2020-0082

    Article  PubMed  CAS  Google Scholar 

  1044. Zhuang J, Chen Z, Cai P, Wang R, Yang Q, Li L, Yang H, Zhu R (2020) Targeting MicroRNA-125b promotes neurite outgrowth but represses cell apoptosis and inflammation via blocking PTGS2 and CDK5 in a FOXQ1-dependent way in alzheimer disease. Front Cell Neurosci 14:587747. https://doi.org/10.3389/fncel.2020.587747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1045. Hayashi T, Nukui T, Piao JL, Sugimoto T, Anada R, Matsuda N, Yamamoto M, Konishi H, Dougu N, Nakatsuji Y (2021) Serum neurofilament light chain in chronic inflammatory demyelinating polyneuropathy. Brain Behav 11(5):e02084. https://doi.org/10.1002/brb3.2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1046. Huang Y, Xue Q, Chang J, Wang X, Miao C (2023) Wnt5a: A promising therapeutic target for inflammation, especially rheumatoid arthritis. Cytokine 172:156381. https://doi.org/10.1016/j.cyto.2023.156381

    Article  PubMed  CAS  Google Scholar 

  1047. Li Y, Zhang T, Tian W, Hu H, Xin Z, Ma X, Ye C, HZhao J, ang K, Han X, et al (2020) Loss of TIMP3 expression induces inflammation, matrix degradation, and vascular ingrowth in nucleus pulposus: a new mechanism of intervertebral disc degeneration. FASEB J 34(4):5483–5498. https://doi.org/10.1096/fj.201902364RR

    Article  PubMed  CAS  Google Scholar 

  1048. Vaher H, Kivihall A, Runnel T, Raam L, Prans E, Maslovskaja J, Abram K, Kaldvee B, Mrowietz U, Weidinger S et al (2020) SERPINB2 and miR-146a/b are coordinately regulated and act in the suppression of psoriasis-associated inflammatory responses in keratinocytes. Exp Dermatol 29(1):51–60. https://doi.org/10.1111/exd.14049

    Article  PubMed  CAS  Google Scholar 

  1049. Huang X, Zhong L, van Helvoort E, Lafeber F, Mastbergen S, Hendriks J, Post JN, Karperien M (2021) The expressions of dickkopf-related protein 1 and frizzled-related protein are negatively correlated to local inflammation and osteoarthritis severity. Cartilage 12(4):496–504. https://doi.org/10.1177/1947603519841676

    Article  PubMed  CAS  Google Scholar 

  1050. Matsuoka Y, Yamashita A, Matsuda M, Kawai K, Sawa T, Amaya F (2019) NLRP2 inflammasome in dorsal root ganglion as a novel molecular platform that produces inflammatory pain hypersensitivity. Pain 160(9):2149–2160. https://doi.org/10.1097/j.pain.0000000000001611

    Article  PubMed  CAS  Google Scholar 

  1051. Dahm PH, Richards JB, Karmouty-Quintana H, Cromar KR, Sur S, Price RE, Malik F, Spencer CY, Barreno RX, Hashmi SS et al (2014) Effect of antigen sensitization and challenge on oscillatory mechanics of the lung and pulmonary inflammation in obese carboxypeptidase E-deficient mice. Am J Physiol Regul Integr Comp Physiol 307(6):R621–R633. https://doi.org/10.1152/ajpregu.00205.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1052. Yang S, Yin W, Ding Y, Liu F (2020) Lnc RNA ZFAS1 regulates the proliferation, apoptosis, inflammatory response and autophagy of fibroblast-like synoviocytes via miR-2682-5p/ADAMTS9 axis in rheumatoid arthritis. Biosci Rep 40(8):BSR20201273. https://doi.org/10.1042/BSR20201273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1053. Xing Y, Liu Y, Deng M, Wang HP, Abdul M, Zhang FF, Zhang Z, Cao JL (2021) The synergistic effects of opioid and neuropeptide B/W in rat acute inflammatory and neuropathic pain models. Eur J Pharmacol 898:173979. https://doi.org/10.1016/j.ejphar.2021.173979

    Article  PubMed  CAS  Google Scholar 

  1054. Harada M, Kamimura D, Arima Y, Kohsaka H, Nakatsuji Y, Nishida M, Atsumi T, Meng J, Bando H, Singh R et al (2015) Temporal expression of growth factors triggered by epiregulin regulates inflammation development. J Immunol 194(3):1039–1046. https://doi.org/10.4049/jimmunol.1400562

    Article  PubMed  CAS  Google Scholar 

  1055. Xu D, Lian D, Wu J, Liu Y, Zhu M, Sun J, He D, Li L (2017) Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. J Neuroinflamm 14(1):156. https://doi.org/10.1186/s12974-017-0930-6

    Article  CAS  Google Scholar 

  1056. Duan XL, Guo Z, He YT, Li YX, Liu YN, Bai HH, Li HL, Hu XD, Suo ZW (2020) SNAP25/syntaxin4/VAMP2/Munc18-1 complexes in spinal dorsal horn contributed to inflammatory pain. Neuroscience 429:203–212. https://doi.org/10.1016/j.neuroscience.2020.01.003

    Article  PubMed  CAS  Google Scholar 

  1057. Cortés J, Hidalgo J, Aguilera S, Castro I, Brito M, Urra H, Pérez P, Barrera MJ, Carvajal P, Urzúa U et al (2019) Synaptotagmin-1 overexpression under inflammatory conditions affects secretion in salivary glands from Sjögren’s syndrome patients. J Autoimmun 97:88–99. https://doi.org/10.1016/j.jaut.2018.10.019

    Article  PubMed  CAS  Google Scholar 

  1058. Sampath H, Ntambi JM (2011) The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Ann NY Acad Sci 1243:47–53. https://doi.org/10.1111/j.1749-6632.2011.06303.x

    Article  PubMed  CAS  Google Scholar 

  1059. Wang M, Wei J, Shang F, Zang K, Ji T (2019) Platelet-derived growth factor B attenuates lethal sepsis through inhibition of inflammatory responses. Int Immunopharmacol 75:105792. https://doi.org/10.1016/j.intimp.2019.105792

    Article  PubMed  CAS  Google Scholar 

  1060. Portugal LR, Fernandes LR, Pietra Pedroso VS, Santiago HC, Gazzinelli RT, Alvarez-Leite JI (2008) Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection. Microbes Infect 10(3):276–284. https://doi.org/10.1016/j.micinf.2007.12.001

    Article  PubMed  CAS  Google Scholar 

  1061. Williams GP, Schonhoff AM, Jurkuvenaite A, Gallups NJ, Standaert DG, Harms AS (2021) CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain 144(7):2047–2059. https://doi.org/10.1093/brain/awab103

    Article  PubMed  PubMed Central  Google Scholar 

  1062. Emgård J, Kammoun H, García-Cassani B, Chesné J, Parigi SM, Jacob JM, Cheng HW, Evren E, Das S, Czarnewski P et al (2018) Oxysterol sensing through the receptor GPR183 promotes the lymphoid-tissue-inducing function of innate lymphoid cells and colonic inflammation. Immunity 48(1):120-132.e8. https://doi.org/10.1016/j.immuni.2017.11.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1063. Na YR, Jung D, Stakenborg M, Jang H, Gu GJ, Jeong MR, Suh SY, Kim HJ, Kwon YH, Sung TS et al (2021) Prostaglandin E2 receptor PTGER4-expressing macrophages promote intestinal epithelial barrier regeneration upon inflammation. Gut 70(12):2249–2260. https://doi.org/10.1136/gutjnl-2020-322146

    Article  PubMed  CAS  Google Scholar 

  1064. Sharma N, Drobinski P, Kayed A, Chen Z, Kjelgaard-Petersen CF, Gantzel T, Karsdal MA, Michaelis M, Ladel C, Bay-Jensen AC et al (2020) Inflammation and joint destruction may be linked to the generation of cartilage metabolites of ADAMTS-5 through activation of toll-like receptors. Osteoarthritis Cartilage 28(5):658–668. https://doi.org/10.1016/j.joca.2019.11.002

    Article  PubMed  CAS  Google Scholar 

  1065. Wizenty J, Müllerke S, Kolesnichenko M, Heuberger J, Lin M, Fischer AS, Mollenkopf HJ, Berger H, Tacke F, Sigal M (2022) Gastric stem cells promote inflammation and gland remodeling in response to Helicobacter pylori via Rspo3-Lgr4 axis. EMBO J 41(13):e109996. https://doi.org/10.15252/embj.2021109996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1066. Wang X, Niu L, Kang A, Pang Y, Zhang Y, Wang W, Zhang Y, Huang X, Liu Q, Geng Z et al (2022) Effects of ambient PM2.5 on development of psoriasiform inflammation through KRT17-dependent activation of AKT/mTOR/HIF-1α pathway. Ecotoxicol Environ Saf 243:114008. https://doi.org/10.1016/j.ecoenv.2022.114008

    Article  PubMed  CAS  Google Scholar 

  1067. Ng YH, Zhu H, Pallen CJ, Leung PC, MacCalman CD (2006) Differential effects of interleukin-1beta and transforming growth factor-beta1 on the expression of the inflammation-associated protein, ADAMTS-1, in human decidual stromal cells in vitro. Hum Reprod 21(8):1990–1999. https://doi.org/10.1093/humrep/del108

    Article  PubMed  CAS  Google Scholar 

  1068. Su Y, Ding J, Yang F, He C, Xu Y, Zhu X, Zhou H, Li H (2022) The regulatory role of PDE4B in the progression of inflammatory function study. Front Pharmacol 13:982130. https://doi.org/10.3389/fphar.2022.982130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1069. Uncini A, Notturno F, Pace M, Caporale CM (2011) Polymorphism of CD1 and SH2D2A genes in inflammatory neuropathies. J Peripher Nerv Syst 16(Suppl 1):48–51. https://doi.org/10.1111/j.1529-8027.2011.00307.x

    Article  PubMed  Google Scholar 

  1070. Ong LK, Briggs GD, Guan L, Dunkley PR, Dickson PW (2021) Peripheral inflammation induces long-term changes in tyrosine hydroxylase activation in the substantia nigra. Neurochem Int 146:105022. https://doi.org/10.1016/j.neuint.2021.105022

    Article  PubMed  CAS  Google Scholar 

  1071. van Wageningen TA, Vlaar E, Kooij G, Jongenelen CAM, Geurts JJG, van Dam AM (2019) Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol Commun 7(1):206. https://doi.org/10.1186/s40478-019-0850-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1072. Sirniö P, Tuomisto A, Tervahartiala T, Sorsa T, Klintrup K, Karhu T, Herzig KH, Mäkelä J, Karttunen TJ, Salo T et al (2018) High-serum MMP-8 levels are associated with decreased survival and systemic inflammation in colorectal cancer. Br J Cancer 119(2):213–219. https://doi.org/10.1038/s41416-018-0136-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1073. Petkevicius K, Bidault G, Virtue S, Newland SA, Dale M, Dugourd A, Saez-Rodriguez J, Mallat Z, Vidal-Puig A (2021) Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Mol Metab 48:101220. https://doi.org/10.1016/j.molmet.2021.1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1074. Cebo M, Dittrich K, Fu X, Manke MC, Emschermann F, Rheinlaender J, von Eysmondt H, Ferreirós N, Sudman J, Witte A et al (2022) Platelet ACKR3/CXCR7 favors antiplatelet lipids over an atherothrombotic lipidome and regulates thromboinflammation. Blood 139(11):1722–1742. https://doi.org/10.1182/blood.2021013097

    Article  PubMed  CAS  Google Scholar 

  1075. Klasić M, Markulin D, Vojta A, Samaržija I, Biruš I, Dobrinić P, Ventham NT, Trbojević-Akmačić I, Šimurina M, Štambuk J et al (2018) Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clin Epigenetics 10:75. https://doi.org/10.1186/s13148-018-0507-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1076. Yu B, Zeng A, Liu H, Yang Z, Fu M (2022) MiR-654-3p, reduced by the excessive ALKBH5, alleviated the inflammation in OA by targeting TNFRSF9, the trigger of the NF-κB pathway. Biochem Biophys Res Commun 634:30–39. https://doi.org/10.1016/j.bbrc.2022.09.103

    Article  PubMed  CAS  Google Scholar 

  1077. Mihara S, Suzuki N (2007) Role of Txk, a member of the Tec family of tyrosine kinases, in immune-inflammatory diseases. Int Rev Immunol 26(5–6):333–348. https://doi.org/10.1080/08830180701690835

    Article  PubMed  CAS  Google Scholar 

  1078. Rasmussen LJH, Petersen JEV, Eugen-Olsen J (2021) Soluble urokinase plasminogen activator receptor (suPAR) as a biomarker of systemic chronic inflammation. Front Immunol 12:780641. https://doi.org/10.3389/fimmu.2021.780641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1079. Dong Y, Lan W, Wu W, Huang Z, Zhao J, Peng L, Wang J (2013) Increased expression of EphA7 in inflamed human dental pulp. J Endod 39(2):223–227. https://doi.org/10.1016/j.joen.2012.11.020

    Article  PubMed  Google Scholar 

  1080. Wu PB, Zhang Y, Nie G, Huang X, Yu YJ, Yin AN, Zhou R, He CP, Wang P (2021) Association between genetic variants in ZNF365 and inflammatory bowel disease risk in Caucasians: a meta-analysis and trial sequential analysis. Expert Rev Clin Immunol 17(8):915–921. https://doi.org/10.1080/1744666X.2021.1939012

    Article  PubMed  CAS  Google Scholar 

  1081. Huang S, Zhen Y, Yin X, Yang Z, Li X, Wang R, Wen H, Zhong H, Yan J, Sun Q (2023) KMT2C induced by FABP5P3 aggravates keratinocyte hyperproliferation and psoriasiform skin inflammation by upregulating the transcription of PIK3R3. J Invest Dermatol 143(1):37-47.e8. https://doi.org/10.1016/j.jid.2022.06.02

    Article  PubMed  CAS  Google Scholar 

  1082. Hu Y, Wu L, Jiang L, Liang N, Zhu X, He Q, Qin H, Chen W (2021) Notoginsenoside R2 reduces Aβ25-35-induced neuronal apoptosis and inflammation via miR-27a/SOX8/β-catenin axis. Hum Exp Toxicol 40:S347–S358. https://doi.org/10.1177/09603271211041996

    Article  PubMed  CAS  Google Scholar 

  1083. Zheng Z, Wang X, Zheng Y, Wu H (2024) Enhanced expression of miR-204 attenuates LPS stimulated inflammatory injury through inhibiting the Wnt/β-catenin pathway via targeting CCND2. Int Immunopharmacol 126:111334. https://doi.org/10.1016/j.intimp.2023.111334

    Article  PubMed  CAS  Google Scholar 

  1084. Plaza-Díaz J, Robles-Sánchez C, Abadía-Molina F, Morón-Calvente V, Sáez-Lara MJ, Ruiz-Bravo A, Jiménez-Valera M, Gil Á, Gómez-Llorente C, Fontana L (2017) Adamdec1, Ednrb and Ptgs1/Cox1, inflammation genes upregulated in the intestinal mucosa of obese rats, are downregulated by three probiotic strains. Sci Rep 7(1):1939. https://doi.org/10.1038/s41598-017-02203-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1085. Kayama H, Tani H, Kitada S, Opasawatchai A, Okumura R, Motooka D, Nakamura S, Takeda K (2019) BATF2 prevents T-cell-mediated intestinal inflammation through regulation of the IL-23/IL-17 pathway. Int Immunol 31(6):371–383. https://doi.org/10.1093/intimm/dxz014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1086. Yamawaki H, Futagami S, Sakasegawa N, Murakami M, Agawa S, Ikeda G, Noda H, Kirita K, Gudis K, Higuchi K et al (2020) Acotiamide attenuates central urocortin 2-induced intestinal inflammatory responses, and urocortin 2 treatment reduces TNF-α productions in LPS-stimulated macrophage cell lines. Neurogastroenterol Motil 32(8):e13813. https://doi.org/10.1111/nmo.13813

    Article  PubMed  CAS  Google Scholar 

  1087. Zhou C, Huang J, Chen J, Lai J, Zhu F, Xu X, Wang DW (2016) CYP2J2-derived EETs attenuated angiotensin II-induced adventitial remodeling via reduced inflammatory response. Cell Physiol Biochem 39(2):721–739. https://doi.org/10.1159/000445663

    Article  PubMed  CAS  Google Scholar 

  1088. Kim Y, Lee S, Zhang H, Lee S, Kim H, Kim Y, Won MH, Kim YM, Kwon YG (2020) CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J Neuroinflamm 17(1):48. https://doi.org/10.1186/s12974-020-1727-6

    Article  CAS  Google Scholar 

  1089. Kyoreva M, Li Y, Hoosenally M, Hardman-Smart J, Morrison K, Tosi I, Tolaini M, Barinaga G, Stockinger B, Mrowietz U et al (2021) CYP1A1 enzymatic activity influences skin inflammation via regulation of the AHR pathway. J Invest Dermatol 141(6):1553-1563.e3. https://doi.org/10.1016/j.jid.2020.11.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1090. Mentxaka A, Gómez-Ambrosi J, Ramírez B, Rodríguez A, Becerril S, Neira G, Valentí V, Moncada R, Silva C, Unamuno X et al (2022) Netrin-1 promotes visceral adipose tissue inflammation in obesity and is associated with insulin resistance. Nutrients 14(20):4372. https://doi.org/10.3390/nu14204372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1091. Verzola D, Milanesi S, Viazzi F, Ansaldo F, Saio M, Garibaldi S, Carta A, Costigliolo F, Salvidio G, Barisione C et al (2020) Enhanced myostatin expression and signalling promote tubulointerstitial inflammation in diabetic nephropathy. Sci Rep 10(1):6343. https://doi.org/10.1038/s41598-020-62875-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1092. Allbrand M, Eklund D, Cao Y, Nilsson K, Lodefalk M (2022) Gene expression of leptin, leptin receptor isoforms and inflammatory cytokines in placentas of obese women - Associations to birth weight and fetal sex. Placenta 117:64–71. https://doi.org/10.1016/j.placenta.2021.10.002

    Article  PubMed  CAS  Google Scholar 

  1093. Chang TY, Hong YK, Kuo YL, Wu HL, Shieh SJ (2024) CD248 regulates inflammation and encapsulation in silicone-related capsule formation. Plast Reconstr Surg 153(1):109–120. https://doi.org/10.1097/PRS.0000000000010464

    Article  PubMed  CAS  Google Scholar 

  1094. Kaito T, Morimoto T, Mori Y, Kanayama S, Makino T, Takenaka S, Sakai Y, Otsuru S, Yoshioka Y, Yoshikawa H (2018) BMP-2/7 heterodimer strongly induces bone regeneration in the absence of increased soft tissue inflammation. Spine J 18(1):139–146. https://doi.org/10.1016/j.spinee.2017.07.171

    Article  PubMed  Google Scholar 

  1095. Budylev A, Solar I, Kessner R, Aizic A (2022) ROS1-positive inflammatory myofibroblastic tumor of the small bowel causing obstruction: a case report. J Radiol Case Rep 16(1):14–21. https://doi.org/10.3941/jrcr.v16i1.3928

    Article  PubMed  PubMed Central  Google Scholar 

  1096. Wang X, Song R, Li Z (2023) Salviolone protects against high glucose-induced proliferation, oxidative stress, inflammation, and fibrosis of human renal mesangial cells by upregulating membrane metalloendopeptidase expression. Chem Biol Drug Des 101(4):819–828. https://doi.org/10.1111/cbdd.14183

    Article  PubMed  CAS  Google Scholar 

  1097. Li K, Ching D, Luk FS, Raffai RL (2015) Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis. Circ Res 117(1):e1–e11. https://doi.org/10.1161/CIRCRESAHA.117.305844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1098. Ji H, Zhang X, Du Y, Liu H, Li S, Li L (2012) Polydatin modulates inflammation by decreasing NF-κB activation and oxidative stress by increasing Gli1, Ptch1, SOD1 expression and ameliorates blood-brain barrier permeability for its neuroprotective effect in pMCAO rat brain. Brain Res Bull 87(1):50–59. https://doi.org/10.1016/j.brainresbull.2011.09.021

    Article  PubMed  CAS  Google Scholar 

  1099. Man SM, Karki R, Briard B, Burton A, Gingras S, Pelletier S, Kanneganti TD (2017) Differential roles of caspase-1 and caspase-11 in infection and inflammation. Sci Rep 7:45126. https://doi.org/10.1038/srep45126

    Article  PubMed  CAS  Google Scholar 

  1100. Guindon J, Guijarro A, Piomelli D, Hohmann AG (2011) Peripheral antinociceptive effects of inhibitors of monoacylglycerol lipase in a rat model of inflammatory pain. Br J Pharmacol 163(7):1464–1478. https://doi.org/10.1111/j.1476-5381.2010.01192.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1101. Zhao J, Yuan G, Cendan CM, Nassar MA, Lagerström MC, Kullander K, Gavazzi I, Wood JN (2010) Nociceptor-expressed ephrin-B2 regulates inflammatory and neuropathic pain. Mol Pain 6:77. https://doi.org/10.1186/1744-8069-6-77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1102. Zhang D, Ding Y, Wang X, Xin W, Du W, Chen W, Zhang X, Li P (2020) Effects of ABCG2 and SLCO1B1 gene variants on inflammation markers in patients with hypercholesterolemia and diabetes mellitus treated with rosuvastatin. Eur J Clin Pharmacol 76(7):939–946. https://doi.org/10.1007/s00228-020-02882-4

    Article  PubMed  CAS  Google Scholar 

  1103. Chen Y, Ku H, Zhao L, Wheeler DC, Li LC, Li Q, Varghese Z, Moorhead JF, Powis SH, Huang A et al (2014) Inflammatory stress induces statin resistance by disrupting 3-hydroxy-3-methylglutaryl-CoA reductase feedback regulation. Arterioscler Thromb Vasc Biol 34(2):365–376. https://doi.org/10.1161/ATVBAHA.113.301301

    Article  PubMed  CAS  Google Scholar 

  1104. Gaddam RR, Chambers S, Bhatia M (2014) ACE and ACE2 in inflammation: a tale of two enzymes. Inflamm Allergy Drug Targets 13(4):224–234. https://doi.org/10.2174/1871528113666140713164506

    Article  PubMed  CAS  Google Scholar 

  1105. Park CJ, Lin PC, Zhou S, Barakat R, Bashir ST, Choi JM, Cacioppo JA, Oakley OR, Duffy DM, Lydon JP et al (2020) Progesterone receptor serves the ovary as a trigger of ovulation and a terminator of inflammation. Cell Rep 31(2):107496. https://doi.org/10.1016/j.celrep.2020.03.060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1106. Basak M, Das K, Mahata T, Kumar D, Nagar N, Poluri KM, Kumar P, Das P, Stewart A, Maity B (2023) RGS7 balances acetylation/de-acetylation of p65 to control chemotherapy-dependent cardiac inflammation. Cell Mol Life Sci 80(9):255. https://doi.org/10.1007/s00018-023-04895-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1107. Kumagai T, Kiwamoto T, Brummet ME, Wu F, Aoki K, Zhu Z, Bochner BS, Tiemeyer M (2018) Airway glycomic and allergic inflammatory consequences resulting from keratan sulfate galactose 6-O-sulfotransferase (CHST1) deficiency. Glycobiology 28(6):406–417. https://doi.org/10.1093/glycob/cwy025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1108. Shinozaki T, Watanabe H, Takagishi K, Pritzker KP (1998) Allotype immunoglobulin enhances alkaline phosphatase activity: implications for the inflammatory response. J Lab Clin Med 132(4):320–328. https://doi.org/10.1016/s0022-2143(98)90046-4

    Article  PubMed  CAS  Google Scholar 

  1109. Liu L, Chen M, Lin K, Xiang X, Yang J, Zheng Y, Xiong X, Zhu S (2021) TRPC6 attenuates cortical astrocytic apoptosis and inflammation in cerebral ischemic/reperfusion injury. Front Cell Dev Biol 8:594283. https://doi.org/10.3389/fcell.2020.594283

    Article  PubMed  PubMed Central  Google Scholar 

  1110. Ashkar S, Mesentsev A, Zhang WX, Mastyugin V, Dunn MW, Laniado-Schwartzman M (2004) Retinoic acid induces corneal epithelial CYP4B1 gene expression and stimulates the synthesis of inflammatory 12-hydroxyeicosanoids. J Ocul Pharmacol Ther 20(1):65–74. https://doi.org/10.1089/108076804772745473

    Article  PubMed  CAS  Google Scholar 

  1111. Tocci S, Ibeawuchi SR, Das S, Sayed IM (2022) Role of ELMO1 in inflammation and cancer-clinical implications. Cell Oncol (Dordr) 45(4):505–525. https://doi.org/10.1007/s13402-022-00680-x

    Article  PubMed  CAS  Google Scholar 

  1112. Aslamy A, Oh E, Olson EM, Zhang J, Ahn M, Moin ASM, Tunduguru R, Salunkhe VA, Veluthakal R, Thurmond DC (2018) Doc2b protects β-cells against inflammatory damage and enhances function. Diabetes 67(7):1332–1344. https://doi.org/10.2337/db17-1352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1113. González-Domínguez É, Samaniego R, Flores-Sevilla JL, Campos-Campos SF, Gómez-Campos G, Salas A, Campos-Peña V, Corbí ÁL, Sánchez-Mateos P, Sánchez-Torres C (2015) CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. J Leukoc Biol 98(4):453–466. https://doi.org/10.1189/jlb.3HI1114-531R

    Article  PubMed  CAS  Google Scholar 

  1114. Nakanishi T, Sakiyama S, Takashima H, Honda R, Shumba MN, Nakamura Y, Kasahara K, Tamai I (2020) Toxicological implication of prostaglandin transporter SLCO2A1 inhibition by cigarette smoke in exacerbation of lung inflammation. Toxicol Appl Pharmacol 405:115201. https://doi.org/10.1016/j.taap.2020.115201

    Article  PubMed  CAS  Google Scholar 

  1115. Bouzid D, Amouri A, Fourati H, Marques I, Abida O, Tahri N, Goncalves CP, Masmoudi H (2013) Polymorphisms in the IL2RA and IL2RB genes in inflammatory bowel disease risk. Genet Test Mol Biomarkers 17(11):833–839. https://doi.org/10.1089/gtmb.2013.0291

    Article  PubMed  CAS  Google Scholar 

  1116. Xu R, Singhal N, Serinagaoglu Y, Chandrasekharan K, Joshi M, Bauer JA, Janssen PM, Martin PT (2015) Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice. Am J Pathol 185(10):2668–2684. https://doi.org/10.1016/j.ajpath.2015.06.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1117. Wang Z, Zhao Q, Nie Y, Yu Y, Misra BB, Zabalawi M, Chou JW, Key CC, Molina AJ, Quinn MA et al (2020) Solute carrier family 37 member 2 (SLC37A2) negatively regulates murine macrophage inflammation by controlling glycolysis. iScience 23(5):101125. https://doi.org/10.1016/j.isci.2020.101125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1118. Yuan S, Liu H, Yuan D, Xu J, Chen Y, Xu X, Xu F, Liang H (2020) PNPLA3 I148M mediates the regulatory effect of NF-kB on inflammation in PA-treated HepG2 cells. J Cell Mol Med 24(2):1541–1552. https://doi.org/10.1111/jcmm.14839

    Article  PubMed  CAS  Google Scholar 

  1119. Vaittinen M, Lankinen MA, Käkelä P, Ågren J, Wheelock CE, Laakso M, Schwab U, Pihlajamäki J (2022) The FADS1 genotypes modify the effect of linoleic acid-enriched diet on adipose tissue inflammation via pro-inflammatory eicosanoid metabolism. Eur J Nutr 61(7):3707–3718. https://doi.org/10.1007/s00394-022-02922-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1120. Castro-Santos P, Moro-García MA, Marcos-Fernández R, Alonso-Arias R, Díaz-Peña R (2017) ERAP1 and HLA-C interaction in inflammatory bowel disease in the Spanish population. Innate Immun 23(5):476–481. https://doi.org/10.1177/1753425917716527

    Article  PubMed  CAS  Google Scholar 

  1121. Strekalova T, Svirin E, Veniaminova E, Kopeikina E, Veremeyko T, Yung AWY, Proshin A, Walitza S, Anthony DC, Lim LW et al (2021) ASD-like behaviors, a dysregulated inflammatory response and decreased expression of PLP1 characterize mice deficient for sialyltransferase ST3GAL5. Brain Behav Immun Health 16:100306. https://doi.org/10.1016/j.bbih.2021.100306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1122. Ambartsumian N, Klingelhöfer J, Grigorian M (2019) The multifaceted S100A4 protein in cancer and inflammation. Methods Mol Biol 1929:339–365. https://doi.org/10.1007/978-1-4939-9030-6_22

    Article  PubMed  CAS  Google Scholar 

  1123. Kobelt D, Zhang C, Clayton-Lucey IA, Glauben R, Voss C, Siegmund B, Stein U (2020) Pro-inflammatory TNF-α and IFN-γ promote tumor growth and metastasis via induction of MACC1. Front Immunol 11:980. https://doi.org/10.3389/fimmu.2020.00980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1124. Barriga M, Benitez R, Ferraz-de-Paula V, Garcia-Frutos M, Caro M, Robledo G, O’Valle F, Campos-Salinas J, Delgado M (2021) Protective role of cortistatin in pulmonary inflammation and fibrosis. Br J Pharmacol 178(21):4368–4388. https://doi.org/10.1111/bph.15615

    Article  PubMed  CAS  Google Scholar 

  1125. Van Hove I, Lefevere E, De Groef L, Sergeys J, Salinas-Navarro M, Libert C, Vandenbroucke R, Moons L (2016) MMP-3 deficiency alleviates endotoxin-induced acute inflammation in the posterior eye segment. Int J Mol Sci 17(11):1825. https://doi.org/10.3390/ijms17111825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1126. Zhang DK, He FQ, Li TK, Pang XH, Cui DJ, Xie Q, Huang XL, Gan HT (2010) Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J Pathol 222(2):213–222. https://doi.org/10.1002/path.2749

    Article  PubMed  CAS  Google Scholar 

  1127. Olsavszky V, Ulbrich F, Singh S, Diett M, Sticht C, Schmid CD, Zierow J, Wohlfeil SA, Schledzewski K, Dooley S et al (2017) GATA4 and LMO3 balance angiocrine signaling and autocrine inflammatory activation by BMP2 in liver sinusoidal endothelial cells. Gene 627:491–499. https://doi.org/10.1016/j.gene.2017.06.051

    Article  PubMed  CAS  Google Scholar 

  1128. Delmont E, Manso C, Querol L, Cortese A, Berardinelli A, Lozza A, Belghazi M, Malissart P, Labauge P, Taieb G et al (2017) Autoantibodies to nodal isoforms of neurofascin in chronic inflammatory demyelinating polyneuropathy. Brain 140(7):1851–1858. https://doi.org/10.1093/brain/awx124

    Article  PubMed  Google Scholar 

  1129. Thakur M, Rho O, Khandelwal A, Nathan CO, DiGiovanni J (2024) Inducible keratinocyte specific FGFR2 deficiency inhibits UVB-induced signaling, proliferation, inflammation, and skin carcinogenesis. J Invest Dermatol 144(2):341-350.e7. https://doi.org/10.1016/j.jid.2023.08.013

    Article  PubMed  CAS  Google Scholar 

  1130. Chan BCL, Lam CWK, Tam LS, Wong CK (2019) IL33: roles in allergic inflammation and therapeutic perspectives. Front Immunol 10:364. https://doi.org/10.3389/fimmu.2019.00364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1131. Villoslada P, Genain CP (2004) Role of nerve growth factor and other trophic factors in brain inflammation. Prog Brain Res 146:403–414. https://doi.org/10.1016/S0079-6123(03)46025-1

    Article  PubMed  CAS  Google Scholar 

  1132. Chen Y, Wang B, Chen Y, Wu Q, Lai WF, Wei L, Nandakumar KS, Liu D (2022) HAPLN1 affects cell viability and promotes the pro-inflammatory phenotype of fibroblast-like synoviocytes. Front Immunol 13:888612. https://doi.org/10.3389/fimmu.2022.888612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1133. Cui H, Zhang J, Li Z, Chen F, Cui H, Du X, Liu H, Wang J, Diwan AD, Zheng Z (2021) Growth differentiation factor-6 attenuates inflammatory and pain-related factors and degenerated disc-induced pain behaviors in rat model. J Orthop Res 39(5):959–970. https://doi.org/10.1002/jor.24793

    Article  PubMed  CAS  Google Scholar 

  1134. Yang L, Li T, Zha L (2020) Foxc2 alleviates Ox-LDL-induced lipid accumulation, inflammation, and apoptosis of macrophage via regulating the expression of Angptl2. Inflammation 43(4):1397–1410. https://doi.org/10.1007/s10753-020-01217-w

    Article  PubMed  CAS  Google Scholar 

  1135. Zivanović S, Rackov LP, Zivanović A, Jevtić M, Nikolić S, Kocić S (2011) Cartilage oligomeric matrix protein - inflammation biomarker in knee osteoarthritis. Bosn J Basic Med Sci 11(1):27–32. https://doi.org/10.17305/bjbms.2011.2619

    Article  PubMed  PubMed Central  Google Scholar 

  1136. Tang R, Harasymowicz NS, Wu CL, Collins KH, Choi YR, Oswald SJ, Guilak F (2020) Gene therapy for follistatin mitigates systemic metabolic inflammation and post-traumatic arthritis in high-fat diet-induced obesity. Sci Adv 6(19):eaaz7492. https://doi.org/10.1126/sciadv.aaz749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1137. Ba MA, Aiyuk A, Hernández K, Evasovic JM, Wuebbles RD, Burkin DJ, Singer CA (2022) Transgenic overexpression of α7 integrin in smooth muscle attenuates allergen-induced airway inflammation in a murine model of asthma. FASEB Bioadv 4(11):724–740. https://doi.org/10.1096/fba.2022-00050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1138. Sosnovski KE, Braun T, Amir A, Moshel D, BenShoshan M, VanDussen KL, Levhar N, Abbas-Egbariya H, Beider K, Ben-Yishay R et al (2023) GATA6-AS1 regulates intestinal epithelial mitochondrial functions, and its reduced expression is linked to intestinal inflammation and less favourable disease course in ulcerative colitis. J Crohns Colitis 17(6):960–971. https://doi.org/10.1093/ecco-jcc/jjad006

    Article  PubMed  PubMed Central  Google Scholar 

  1139. Fraser A, Fearon U, Billinghurst RC, Ionescu M, Reece R, Barwick T, Emery P, Poole AR, Veale DJ (2003) Turnover of type II collagen and aggrecan in cartilage matrix at the onset of inflammatory arthritis in humans: relationship to mediators of systemic and local inflammation. Arthritis Rheum 48(11):3085–3095. https://doi.org/10.1002/art.11331

    Article  PubMed  CAS  Google Scholar 

  1140. Ouyang Y, Tang Y, Fu L, Peng S, Wu W, Tan D, Fu X (2020) Exosomes secreted by chronic hepatitis B patients with PNALT and liver inflammation grade ≥ A2 promoted the progression of liver cancer by transferring miR-25-3p to inhibit the co-expression of TCF21 and HHIP. Cell Prolif 53(7):e12833. https://doi.org/10.1111/cpr.12833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1141. Martín-Vázquez E, Cobo-Vuilleumier N, López-Noriega L, Lorenzo PI, Gauthier BR (2023) The PTGS2/COX2-PGE2 signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus. Int J Biol Sci 19(13):4157–4165. https://doi.org/10.7150/ijbs.86492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1142. Chen JX, Wang YP, Zhang X, Li GX, Zheng K, Duan CZ (2020) lncRNA Mtss1 promotes inflammatory responses and secondary brain injury after intracerebral hemorrhage by targeting miR-709 in mice. Brain Res Bull 162:20–29. https://doi.org/10.1016/j.brainresbull.2020.04.017

    Article  PubMed  CAS  Google Scholar 

  1143. Zolfaghari R, Chen Q, Ross AC (2012) DHRS3, a retinal reductase, is differentially regulated by retinoic acid and lipopolysaccharide-induced inflammation in THP-1 cells and rat liver. Am J Physiol Gastrointest Liver Physiol 303(5):G578–G588. https://doi.org/10.1152/ajpgi.00234.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1144. Le Magnen C, Virk RK, Dutta A, Kim JY, Panja S, Lopez-Bujanda ZA, Califano A, Drake CG, Mitrofanova A, Abate-Shen C (2018) Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation. Dis Model Mech 11(11):dmm035139. https://doi.org/10.1242/dmm.035139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1145. Burgaletto C, Platania CBM, Di Benedetto G, Munafò A, Giurdanella G, Federico C, Caltabiano R, Saccone S, Conti F, Bernardini R et al (2021) Targeting the miRNA-155/TNFSF10 network restrains inflammatory response in the retina in a mouse model of Alzheimer’s disease. Cell Death Dis 12(10):905. https://doi.org/10.1038/s41419-021-04165-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1146. Carniel BP, da Rocha NS (2021) Brain-derived neurotrophic factor (BDNF) and inflammatory markers: Perspectives for the management of depression. Prog Neuropsychopharmacol Biol Psych 108:110151. https://doi.org/10.1016/j.pnpbp.2020.110151

    Article  CAS  Google Scholar 

  1147. Xu J, Ji T, Li G, Zhang H, Zheng Y, Li M, Ma J, Li Y, Chi G (2022) Lactate attenuates astrocytic inflammation by inhibiting ubiquitination and degradation of NDRG2 under oxygen-glucose deprivation conditions. J Neuroinflamm 19(1):314. https://doi.org/10.1186/s12974-022-02678-6

    Article  CAS  Google Scholar 

  1148. Xu LJ, Wang HN, Zhou H, Li SY, Li F, Miao Y, Lei B, Sun XH, Gao F, Wang Z (2023) EphA4/ephrinA3 reverse signaling induced Müller cell gliosis and production of pro-inflammatory cytokines in experimental glaucoma. Brain Res 1801:148204. https://doi.org/10.1016/j.brainres.2022.148204

    Article  PubMed  CAS  Google Scholar 

  1149. Koganesawa M, Dwyer DF, Alhallak K, Nagai J, Zaleski K, Samuchiwal S, Hiroaki H, Nishida A, Hirsch TI, Brennan PJ et al (2024) Pla2g5 contributes to viral-like-induced lung inflammation through macrophage proliferation and LA/Ffar1 lung cell recruitment. Immunology 172(1):144–162. https://doi.org/10.1111/imm.13766

    Article  PubMed  CAS  Google Scholar 

  1150. Chen Y, Ying Y, Wang M, Ma C, Jia M, Shi L, Wang S, Zheng X, Chen W, Shu XS (2023) A distal super-enhancer activates oncogenic ETS2 via recruiting MECOM in inflammatory bowel disease and colorectal cancer. Cell Death Dis 14(1):8. https://doi.org/10.1038/s41419-022-05513-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1151. Yamamoto H, Yoshida N, Kihara S (2022) Esaxerenone blocks vascular endothelial inflammation through SGK1. J Cardiovasc Pharmacol 80(4):583–591. https://doi.org/10.1097/FJC.0000000000001316

    Article  PubMed  CAS  Google Scholar 

  1152. Wu Y, Quan Y, Liu Y, Liu K, Li H, Jiang Z, Zhang T, Lei H, Radek KA, Li D et al (2016) Hyperglycaemia inhibits REG3A expression to exacerbate TLR3-mediated skin inflammation in diabetes. Nat Commun 7:13393. https://doi.org/10.1038/ncomms13393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1153. Zuo Y, He Z, Chen Y, Dai L (2023) Dual role of ANGPTL4 in inflammation. Inflamm Res 72(6):1303–1313. https://doi.org/10.1007/s00011-023-01753-9

    Article  PubMed  CAS  Google Scholar 

  1154. Ernst AS, Böhler LI, Hagenston AM, Hoffmann A, Heiland S, Sticht C, Bendszus M, Hecker M, Bading H, Marti HH et al (2019) EphB2-dependent signaling promotes neuronal excitotoxicity and inflammation in the acute phase of ischemic stroke. Acta Neuropathol Commun 7(1):15. https://doi.org/10.1186/s40478-019-0669-7

    Article  PubMed  PubMed Central  Google Scholar 

  1155. Chen B, Sheng D, Wang C, Liu W, Hu A, Xiao X, Gajendran B, Gao J, Hu J, Sample KM et al (2022) FLI1 regulates inflammation-associated genes to accelerate leukemogenesis. Cell Signal 92:110269. https://doi.org/10.1016/j.cellsig.2022.110269

    Article  PubMed  CAS  Google Scholar 

  1156. Hassan HM, Liang X, Xin J, Lu Y, Cai Q, Shi D, Ren K, Li J, Chen Q, Li J et al (2024) Thrombospondin 1 enhances systemic inflammation and disease severity in acute-on-chronic liver failure. BMC Med 22(1):95. https://doi.org/10.1186/s12916-024-03318-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1157. D’Aversa TG, Eugenin EA, Lopez L, Berman JW (2013) Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood-brain barrier disruption: implications for the pathogenesis of multiple sclerosis. Neuropathol Appl Neurobiol 39(3):270–283. https://doi.org/10.1111/j.1365-2990.2012.01279.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1158. Misiou A, Garmey JC, Hensien JM, Harmon DB, Osinski V, McSkimming C, Marshall MA, Fischer JW, Grandoch M, McNamara CA (2021) Helix-loop-helix factor Id3 (inhibitor of differentiation 3): a novel regulator of hyaluronan-mediated adipose tissue inflammation. Arterioscler Thromb Vasc Biol 41(2):796–807. https://doi.org/10.1161/ATVBAHA.120.315588

    Article  PubMed  CAS  Google Scholar 

  1159. Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, El-Osta A, Calkin AC, Biessen EA, Touyz RM, Cooper ME et al (2016) Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler Thromb Vasc Biol 36(2):295–307. https://doi.org/10.1161/ATVBAHA.115.307012

    Article  PubMed  CAS  Google Scholar 

  1160. Taylor Meadows KR, Steinberg MW, Clemons B, Stokes ME, Opiteck GJ, Peach R, Scott FL (2018) Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus. PLoS ONE 13(4):e0193236. https://doi.org/10.1371/journal.pone.0193236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1161. Sun Y, Lin S, Wang H, Wang L, Qiu Y, Zhang F, Hao N, Wang F, Tan W (2024) Regulatory role of PI16 in autoimmune arthritis and intestinal inflammation: implications for Treg cell differentiation and function. J Transl Med 22(1):327. https://doi.org/10.1186/s12967-024-05082-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1162. Mao Y, Jiang F, Xu XJ, Zhou LB, Jin R, Zhuang LL, Juan CX, Zhou GP (2023) Inhibition of IGF2BP1 attenuates renal injury and inflammation by alleviating m6A modifications and E2F1/MIF pathway. Int J Biol Sci 19(2):593–609. https://doi.org/10.7150/ijbs.78348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1163. Zhao B, Wang Y, Tan X, Ke K, Zheng X, Wang F, Lan S, Liao N, Cai Z, Shi Y et al (2019) Inflammatory micro-environment contributes to stemness properties and metastatic potential of HCC via the NF-κB/miR-497/SALL4 axis. Mol Ther Oncolytics 15:79–90. https://doi.org/10.1016/j.omto.2019.08.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1164. Nguyen A, Tao H, Metrione M, Hajri T (2014) Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction. J Biol Chem 289(3):1688–1703. https://doi.org/10.1074/jbc.M113.515320

    Article  PubMed  CAS  Google Scholar 

  1165. Garg M, Royce SG, Tikellis C, Shallue C, Sluka P, Wardan H, Hosking P, Monagle S, Thomas M, Lubel JS et al (2019) The intestinal vitamin D receptor in inflammatory bowel disease: inverse correlation with inflammation but no relationship with circulating vitamin D status. Therap Adv Gastroenterol 12:1756284818822566. https://doi.org/10.1177/1756284818822566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1166. Sriwattanapong K, Theerapanon T, Khamwachirapitak C, Sae-Ear P, Sa-Ard-Iam N, Shotelersuk V, Porntaveetus T (2024) In-depth investigation of FAM20A insufficiency effects on deciduous dental pulp cells: Altered behaviours, osteogenic differentiation, and inflammatory gene expression. Int Endod J. https://doi.org/10.1111/iej.14056

    Article  PubMed  Google Scholar 

  1167. Kowalski EA, Chen J, Hazy A, Fritsch LE, Gudenschwager-Basso EK, Chen M, Wang X, Qian Y, Zhou M et al (2019) Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damage. J Neuroinflamm 16(1):210. https://doi.org/10.1186/s12974-019-1605-2

    Article  CAS  Google Scholar 

  1168. Liu XH, Bauman WA, Cardozo C (2015) ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity. Biochem Biophys Res Commun 464(1):208–213. https://doi.org/10.1016/j.bbrc.2015.06.118

    Article  PubMed  CAS  Google Scholar 

  1169. Raffaghello L, Principi E, Baratto S, Panicucci C, Pintus S, Antonini F, Del Zotto G, Benzi A, Bruzzone S, Scudieri P et al (2022) P2X7 receptor antagonist reduces fibrosis and inflammation in a mouse model of alpha-sarcoglycan muscular dystrophy. Pharmaceuticals (Basel) 15(1):89. https://doi.org/10.3390/ph15010089

    Article  PubMed  CAS  Google Scholar 

  1170. Scharf GM, Kilian K, Cordero J, Wang Y, Grund A, Hofmann M, Froese N, Wang X, Kispert A, Kist R et al (2019) Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight 5(15):e126721. https://doi.org/10.1172/jci.insight.12672

    Article  PubMed  Google Scholar 

  1171. Brnic D, Martinovic D, Zivkovic PM, Tokic D, Vilovic M, Rusic D, Tadin Hadjina I, Libers C, Glumac S, Supe-Domic D et al (2020) Inactive matrix Gla protein is elevated in patients with inflammatory bowel disease. World J Gastroenterol 26(32):4866–4877. https://doi.org/10.3748/wjg.v26.i32.486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1172. Chen XQ, Mao JY, Wang CS, Li WB, Han TT, Lv K, Li JN (2022) CYP24A1 involvement in inflammatory factor regulation occurs via the wnt signaling pathway. Curr Med Sci 42(5):1022–1032. https://doi.org/10.1007/s11596-022-2564-x

    Article  PubMed  CAS  Google Scholar 

  1173. Kim J, Durai P, Jeon D, Jung ID, Lee SJ, Park YM, Kim Y (2018) Phloretin as a potent natural TLR2/1 inhibitor suppresses TLR2-induced inflammation. Nutrients 10(7):868. https://doi.org/10.3390/nu1007086

    Article  PubMed  PubMed Central  Google Scholar 

  1174. Hirano T (2021) IL-6 in inflammation, autoimmunity and cancer. Int Immunol 33(3):127–148. https://doi.org/10.1093/intimm/dxaa078

    Article  PubMed  CAS  Google Scholar 

  1175. Owlett LD, Karaahmet B, Le L, Belcher EK, Dionisio-Santos D, Olschowka JA, Elliott MR, O’Banion MK (2022) Gas6 induces inflammation and reduces plaque burden but worsens behavior in a sex-dependent manner in the APP/PS1 model of Alzheimer’s disease. J Neuroinflamm 19(1):38. https://doi.org/10.1186/s12974-022-02397-y

    Article  CAS  Google Scholar 

  1176. Han Q, Zhang Z, He X, Chen M, Pang X, Chen C, Du T, Zhang H (2023) Primary inflammatory myofibroblastic tumour of the liver: a clinicopathological and genetic study including a subset with ETV6::NTRK3 fusion. Histopathology 82(6):925–936. https://doi.org/10.1111/his.14881

    Article  PubMed  Google Scholar 

  1177. Liu Y, Bockermann R, Hadi M, Safari I, Carrion B, Kveiborg M, Issazadeh-Navikas S (2021) ADAM12 is a costimulatory molecule that determines Th1 cell fate and mediates tissue inflammation. Cell Mol Immunol 18(8):1904–1919. https://doi.org/10.1038/s41423-020-0486-8

    Article  PubMed  CAS  Google Scholar 

  1178. Pansieri J, Ostojić L, Iashchishyn IA, Magzoub M, Wallin C, Wärmländer SKTS, Gräslund A, Nguyen Ngoc M, Smirnovas V, Svedružić Ž et al (2019) Pro-inflammatory S100A9 protein aggregation promoted by NCAM1 peptide constructs. ACS Chem Biol 14(7):1410–1417. https://doi.org/10.1021/acschembio.9b00394

    Article  PubMed  CAS  Google Scholar 

  1179. Itakura T, Peters DM, Fini ME (2015) Glaucomatous MYOC mutations activate the IL-1/NF-κB inflammatory stress response and the glaucoma marker SELE in trabecular meshwork cells. Mol Vis 21:1071–1084

    PubMed  PubMed Central  CAS  Google Scholar 

  1180. Liu X, Zhang G, Liu L, Xiong G, Liu J, Wei W (2024) USP2 promotes the proliferation and inflammation of fibroblast-like synovial cells in rheumatoid arthritis through deubiquitination of TRAF2. Biochem Genet. https://doi.org/10.1007/s10528-024-10737-1

    Article  PubMed  PubMed Central  Google Scholar 

  1181. Shi J, Zhou LR, Wang XS, Du JF, Jiang MM, Song Z, Han GC, Mai ZT (2018) KLF2 attenuates bleomycin-induced pulmonary fibrosis and inflammation with regulation of AP-1. Biochem Biophys Res Commun 495(1):20–26. https://doi.org/10.1016/j.bbrc.2017.10.114

    Article  PubMed  CAS  Google Scholar 

  1182. Babbe H, Sundberg TB, Tichenor M, Seierstad M, Bacani G, Berstler J, Chai W, Chang L, Chung M, Coe K et al (2024) Identification of highly selective SIK1/2 inhibitors that modulate innate immune activation and suppress intestinal inflammation. Proc Natl Acad Sci USA 121(1):e2307086120. https://doi.org/10.1073/pnas.2307086120

    Article  PubMed  CAS  Google Scholar 

  1183. Zhan H, Chen H, Tang Z, Liu S, Xie K, Wang H (2022) SIX1 attenuates inflammation and rheumatoid arthritis by silencing MyD88-dependent TLR1/2 signaling. Int Immunopharmacol 106:108613. https://doi.org/10.1016/j.intimp.2022.108613

    Article  PubMed  CAS  Google Scholar 

  1184. Moura J, Sørensen A, Leal EC, Svendsen R, Carvalho L, Willemoes RJ, Jørgensen PT, Jenssen H, Wengel J, Dalgaard LT et al (2019) microRNA-155 inhibition restores Fibroblast Growth Factor 7 expression in diabetic skin and decreases wound inflammation. Sci Rep 9(1):5836. https://doi.org/10.1038/s41598-019-42309-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1185. Rayego-Mateos S, Marquez-Exposito L, Basantes P, Tejedor-Santamaria L, Sanz AB, Nguyen TQ, Goldschmeding R, Ortiz A, Ruiz-Ortega M (2023) CCN2 activates RIPK3, NLRP3 inflammasome, and NRF2/oxidative pathways linked to kidney inflammation. Antioxidants (Basel) 12(8):1541. https://doi.org/10.3390/antiox12081541

    Article  PubMed  CAS  Google Scholar 

  1186. Lohr J, Grotevendt A, Nauck M, Völzke H, Wallaschofski H, Friedrich N (2014) Relation of insulin-like growth factor-I and IGF binding protein 3 with markers of inflammation: results of a population-based study. Clin Endocrinol (Oxf) 80(1):148–154. https://doi.org/10.1111/cen.12241

    Article  PubMed  CAS  Google Scholar 

  1187. Johnson LA, Prevo R, Clasper S, Jackson DG (2007) Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluronan receptor LYVE-1. J Biol Chem 282(46):33671–33680. https://doi.org/10.1074/jbc.M702889200

    Article  PubMed  CAS  Google Scholar 

  1188. Schönfelder J, Seibold T, Morawe M, Sroka R, Schneider N, Cai J, Golomejic J, Schütte L, Armacki M, Huber-Lang M et al (2023) Endothelial Protein kinase D1 is a major regulator of post-traumatic hyperinflammation. Front Immunol 14:1093022. https://doi.org/10.3389/fimmu.2023.1093022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1189. Vaxevanis CK, Bauer M, Subbarayan K, Friedrich M, Massa C, Biehl K, Al-Ali HK, Wickenhauser C, Seliger B (2022) Biglycan as a mediator of proinflammatory response and target for MDS and sAML therapy. Oncoimmunology 12(1):2152998. https://doi.org/10.1080/2162402X.2022.2152998

    Article  PubMed  PubMed Central  Google Scholar 

  1190. Wang L, Zheng J, Pathak JL, Chen Y, Liang D, Yang L, Sun H, Zhong M, Wu L, Li L et al (2020) SLIT2 overexpression in periodontitis intensifies inflammation and alveolar bone loss, possibly via the activation of MAPK pathway. Front Cell Dev Biol 8:593. https://doi.org/10.3389/fcell.2020.00593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1191. Yao J, Wu D, Zhang C, Yan T, Zhao Y, Shen H, Xue K, Huang X, Wang Z, Qiu Y (2021) Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation. Nat Immunol 22(10):1268–1279. https://doi.org/10.1038/s41590-021-01023-y

    Article  PubMed  CAS  Google Scholar 

  1192. Frade AF, Teixeira PC, Ianni BM, Pissetti CW, Saba B, Wang LH, Kuramoto A, Nogueira LG, Buck P, Dias F et al (2013) Polymorphism in the alpha cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy. PLoS ONE 8(12):e83446. https://doi.org/10.1371/journal.pone.0083446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1193. Mócsai G, Gáspár K, Nagy G, Irinyi B, Kapitány A, Bíró T, Gyimesi E, Tóth B, Maródi L, Szegedi A (2014) Severe skin inflammation and filaggrin mutation similarly alter the skin barrier in patients with atopic dermatitis. Br J Dermatol 170(3):617–624. https://doi.org/10.1111/bjd.12743

    Article  PubMed  CAS  Google Scholar 

  1194. Zhou W, Wang F, Qian X, Luo S, Wang Z, Gao X, Kong X, Zhang J, Chen S (2023) Quercetin protects endothelial function from inflammation induced by localized disturbed flow by inhibiting NRP2 -VEGFC complex. Int Immunopharmacol 116:109842. https://doi.org/10.1016/j.intimp.2023.109842

    Article  PubMed  CAS  Google Scholar 

  1195. Liu A, Guo M, He L, Martínez MA, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I (2022) Nicotinamide N-methyltransferase protects against deoxynivalenol-induced growth inhibition by suppressing pro-inflammatory cytokine expression. Food Chem Toxicol 163:112969. https://doi.org/10.1016/j.fct.2022.112969

    Article  PubMed  CAS  Google Scholar 

  1196. Song Y, Hao D, Jiang H, Huang M, Du Q, Lin Y, Liu F, Chen B (2021) Nrf2 regulates CHI3L1 to suppress inflammation and improve post-traumatic osteoarthritis. J Inflamm Res 14:4079–4088. https://doi.org/10.2147/JIR.S310831

    Article  PubMed  PubMed Central  Google Scholar 

  1197. Zezulin AU, Yen D, Ye D, Howell ED, Bresciani E, Diemer J, Ren JG, Ahmad MH, Castilla LH, Touw IP et al (2023) RUNX1 is required in granulocyte-monocyte progenitors to attenuate inflammatory cytokine production by neutrophils. Genes Dev 37(13–14):605–620. https://doi.org/10.1101/gad.350418.123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1198. Sun H, Li N, Tan J, Li H, Zhang J, Qu L, Lamont SJ (2022) Transcriptional regulation of RIP2 gene by NFIB is associated with cellular immune and inflammatory response to APEC infection. Int J Mol Sci 23(7):3814. https://doi.org/10.3390/ijms23073814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1199. Wang X, Zhang L, Li P, Zheng Y, Yang Y, Ji S (2022) Apelin/APJ system in inflammation. Int Immunopharmacol 109:108822. https://doi.org/10.1016/j.intimp.2022.108822

    Article  PubMed  CAS  Google Scholar 

  1200. Strekalova T, Svirin E, Veniaminova E, Kopeikina E, Veremeyko T, Yung AWY, Proshin A, Walitza S, Anthony DC, Lim LW et al (2021) ASD-like behaviors, a dysregulated inflammatory response and decreased expression of PLP1 characterize mice deficient for sialyltransferase ST3GAL5. Brain Behav Immun Health 16:100306. https://doi.org/10.1016/j.bbih.2021.100306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1201. Wang P, Wang Y, Ma B (2023) Long noncoding RNA NAV2-AS5 relieves chondrocyte inflammation by targeting miR-8082/TNIP2 in osteoarthritis. Cell Cycle 22(7):796–807. https://doi.org/10.1080/15384101.2022.2154554

    Article  PubMed  CAS  Google Scholar 

  1202. Canalis E, Yu J, Singh V, Mocarska M, Schilling L (2023) NOTCH2 sensitizes the chondrocyte to the inflammatory response of tumor necrosis factor α. J Biol Chem 299(12):105372. https://doi.org/10.1016/j.jbc.2023.105372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1203. Oura H, Bertoncini J, Velasco P, Brown LF, Carmeliet P, Detmar M (2003) A critical role of placental growth factor in the induction of inflammation and edema formation. Blood 101(2):560–567. https://doi.org/10.1182/blood-2002-05-1516

    Article  PubMed  CAS  Google Scholar 

  1204. Zhao F, Dong J, Guo J, Bi L (2020) Inhibiting role of long non-coding RNA LINC01197 in inflammation in rheumatoid arthritis through the microRNA-150/THBS2 axis. Exp Cell Res 394(2):112136. https://doi.org/10.1016/j.yexcr.2020.112136

    Article  PubMed  CAS  Google Scholar 

  1205. Gao YZ, Wu XM, Zhou ZQ, Liu PM, Yang JJ, Ji MH (2023) Dysfunction of NRG1/ErbB4 signaling in the hippocampus might mediate long-term memory decline after systemic inflammation. Mol Neurobiol 60(6):3210–3226. https://doi.org/10.1007/s12035-023-03278-y

    Article  PubMed  CAS  Google Scholar 

  1206. Nguyen HN, Noss EH, Mizoguchi F, Huppertz C, Wei KS, Watts GFM, Brenner MB (2017) Autocrine loop involving IL-6 family member LIF, LIF Receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators. Immunity 46(2):220–232. https://doi.org/10.1016/j.immuni.2017.01.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1207. Zou HH, Yang PP, Huang TL, Zheng XX, Xu GS (2017) PLK2 plays an essential role in high D-glucose-induced apoptosis, ROS generation and inflammation in podocytes. Sci Rep 7(1):4261. https://doi.org/10.1038/s41598-017-00686-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1208. Wang J, Yang Y, Liu J, Qiu J, Zhang D, Ou M, Kang Y, Zhu T, Zhou C (2023) Loss of sodium leak channel (NALCN) in the ventral dentate gyrus impairs neuronal activity of the glutamatergic neurons for inflammation-induced depression in male mice. Brain Behav Immun 110:13–29. https://doi.org/10.1016/j.bbi.2023.02.013

    Article  PubMed  CAS  Google Scholar 

  1209. Patoine D, Bouchard K, Lemay AM, Bissonnette EY, Lauzon-Joset JF (2022) Specificity of CD200/CD200R pathway in LPS-induced lung inflammation. Front Immunol 13:1092126. https://doi.org/10.3389/fimmu.2022.1092126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1210. Dolga AM, Letsche T, Gold M, Doti N, Bacher M, Chiamvimonvat N, Dodel R, Culmsee C (2012) Activation of KCNN3/SK3/K(Ca)2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia. Glia 60(12):2050–2064. https://doi.org/10.1002/glia.22419

    Article  PubMed  PubMed Central  Google Scholar 

  1211. Canham L, Sendac S, Diagbouga MR, Wolodimeroff E, Pirri D, Tardajos Ayllon B, Feng S, Souilhol C, Chico TJA, Evans PC et al (2023) EVA1A (Eva-1 Homolog A) promotes endothelial apoptosis and inflammatory activation under disturbed flow via regulation of autophagy. Arterioscler Thromb Vasc Biol 43(4):547–561. https://doi.org/10.1161/ATVBAHA.122.318110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1212. Gerecke C, Scholtka B, Löwenstein Y, Fait I, Gottschalk U, Rogoll D, Melcher R, Kleuser B (2015) Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer. J Cancer Res Clin Oncol 141(12):2097–2107. https://doi.org/10.1007/s00432-015-1972-8

    Article  PubMed  CAS  Google Scholar 

  1213. Tang J, Song X, Ji G, Wu H, Sun S, Lu S, Li Y, Zhang C, Zhang H (2018) A novel mutation in the DYSF gene in a patient with a presumed inflammatory myopathy. Neuropathology. https://doi.org/10.1111/neup.12474

    Article  PubMed  Google Scholar 

  1214. Xie X, Yuan Y, Huang Y, Hong X, Hong S, Chen G, Chen Y, Lin Y, Lu W, Fu W et al (2023) Effects of COL1A1 and SYTL2 on inflammatory cell infiltration and poor extracellular matrix remodeling of the vascular wall in thoracic aortic aneurysm. Chin Med J (Engl). https://doi.org/10.1097/CM9.0000000000002808

    Article  PubMed  Google Scholar 

  1215. Choteau L, Vancraeyneste H, Le Roy D, Dubuquoy L, Romani L, Jouault T, Poulain D, Sendid B, Calandra T, Roger T et al (2017) Role of TLR1, TLR2 and TLR6 in the modulation of intestinal inflammation and Candida albicans elimination. Gut Pathog 9:9. https://doi.org/10.1186/s13099-017-0158-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1216. Zhang X, Wang Y, Lv J (2024) STAT4 targets KISS1 to inhibit the oxidative damage, inflammation and neuronal apoptosis in experimental PD models by inactivating the MAPK pathway. Neurochem Int 175:105683. https://doi.org/10.1016/j.neuint.2024.105683

    Article  PubMed  CAS  Google Scholar 

  1217. Vanhove B, Hofer-Warbinek R, Kapetanopoulos A, Hofer E, Bach FH, de Martin R (1997) Gem, a GTP-binding protein from mitogen-stimulated T cells, is induced in endothelial cells upon activation by inflammatory cytokines. Endothelium 5(1):51–61. https://doi.org/10.3109/10623329709044158

    Article  PubMed  CAS  Google Scholar 

  1218. Lamichhane S, Mo JS, Sharma G, Choi TY, Chae SC (2021) MicroRNA 452 regulates IL20RA-mediated JAK1/STAT3 pathway in inflammatory colitis and colorectal cancer. Inflamm Res 70(8):903–914. https://doi.org/10.1007/s00011-021-01486-7

    Article  PubMed  CAS  Google Scholar 

  1219. Lee SN, Yoon SA, Song JM, Kim HC, Cho HJ, Choi AMK, Yoon JH (2022) Cell-type-specific expression of hyaluronan synthases HAS2 and HAS3 promotes goblet cell hyperplasia in allergic airway inflammation. Am J Respir Cell Mol Biol 67(3):360–374. https://doi.org/10.1165/rcmb.2021-0527OC

    Article  PubMed  CAS  Google Scholar 

  1220. Chan DD, Xiao WF, Li J, de la Motte CA, Sandy JD, Plaas A (2015) Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint cartilage damage. Osteoarthritis Cartilage 23(11):1879–1889. https://doi.org/10.1016/j.joca.2015.06.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1221. Xiang D, Li H, Pan J, Chen Y (2024) SLC4A4 moulds the inflammatory tumor microenvironment and predicts therapeutic expectations in colorectal cancer. Curr Med Chem. https://doi.org/10.2174/0109298673277357231218070812

    Article  PubMed  Google Scholar 

  1222. Geng R, Zhao Y, Xu W, Ma X, Jiang Y, Han X, Zhao L, Li Y (2024) SIRPB1 regulates inflammatory factor expression in the glioma microenvironment via SYK: functional and bioinformatics insights. J Transl Med 22(1):338. https://doi.org/10.1186/s12967-024-05149-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1223. Zou X, Liu C, Huang Z, Xiang S, Li K, Yuan Y, Hao Y, Zhou F (2023) Inhibition of STEAP1 ameliorates inflammation and ferroptosis of acute lung injury caused by sepsis in LPS-induced human pulmonary microvascular endothelial cells. Mol Biol Rep 50(7):5667–5674. https://doi.org/10.1007/s11033-023-08403-7

    Article  PubMed  CAS  Google Scholar 

  1224. Murcia JDG, Weinert A, Freitas CMT, Arens DK, Ferrel MN, Grose JH, Ridge PG, Wilson E, Kauwe JSK, Weber KS (2020) Atypical chemokine receptor ACKR2-V41A has decreased CCL2 binding, scavenging, and activation, supporting sustained inflammation and increased Alzheimer’s disease risk. Sci Rep 10(1):8019. https://doi.org/10.1038/s41598-020-64755-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1225. Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB (2024) The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 265:115989. https://doi.org/10.1016/j.ejmech.2023.115989

    Article  PubMed  CAS  Google Scholar 

  1226. Dull K, Fazekas F, Deák D, Kovács D, Póliska S, Szegedi A, Zouboulis CC, Törőcsik D (2021) miR-146a modulates TLR1/2 and 4 induced inflammation and links it with proliferation and lipid production via the indirect regulation of GNG7 in human SZ95 sebocytes. Sci Rep 11(1):21510. https://doi.org/10.1038/s41598-021-00907-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1227. Pan L, Cho KS, Wei X, Xu F, Lennikov A, Hu G, Tang J, Guo S, Chen J, Kriukov E et al (2023) IGFBPL1 is a master driver of microglia homeostasis and resolution of neuroinflammation in glaucoma and brain tauopathy. Cell Rep 42(8):112889. https://doi.org/10.1016/j.celrep.2023.112889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1228. Zhang A, Yan S, Cao M, Wu D, Zhou J, Yu Z, Wu M, Liu Y, Lu S, Hu G et al (2020) Abnormal methylation of PIK3AP1 was involved in regulating the immune inflammatory response of GES-1 cells induced by Helicobacter pylori. Biochem Biophys Res Commun 524(1):36–42. https://doi.org/10.1016/j.bbrc.2020.01.007

    Article  PubMed  CAS  Google Scholar 

  1229. Song F, Zhang Y, Pan Z, Hu X, Zhang Q, Huang F, Ye X, Huang P (2021) The role of alcohol dehydrogenase 1C in regulating inflammatory responses in ulcerative colitis. Biochem Pharmacol 192:114691. https://doi.org/10.1016/j.bcp.2021.114691

    Article  PubMed  CAS  Google Scholar 

  1230. Li Y, Huang B, Yang H, Kan S, Yao Y, Liu X, Pu S, He G, Khan TM, Qi G et al (2020) Latexin deficiency in mice up-regulates inflammation and aggravates colitis through HECTD1/Rps3/NF-κB pathway. Sci Rep 10(1):9868. https://doi.org/10.1038/s41598-020-66789-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1231. Kamath J (2012) Cancer-related fatigue, inflammation and thyrotropin-releasing hormone. Curr Aging Sci 5(3):195–202. https://doi.org/10.2174/1874609811205030005

    Article  PubMed  CAS  Google Scholar 

  1232. Kanmaz-Özer M, Vural P, Doğru-Abbasoğlu S, Gedikbaşı A, Çil E, Karadağ B, Uysal M (2012) Polymorphisms of vascular cell adhesion molecule1 (VCAM1) in polycystic ovary syndrome determined by quantitative real-time polymerase chain reaction and melting curve analysis. Eur J Obstet Gynecol Reprod Biol 160(2):174–178. https://doi.org/10.1016/j.ejogrb.2011.11.013

    Article  PubMed  CAS  Google Scholar 

  1233. Xiong Z, Li B, Wang L, Zeng X, Li B, Sha X, Liu H (2019) AQP8 and AQP9 expression in patients with polycystic ovary syndrome and its association with in vitro fertilization-embryo transfer outcomes. Exp Ther Med 18(1):755–760. https://doi.org/10.3892/etm.2019.7592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1234. Abali R, Temel Yuksel I, Yuksel MA, Bulut B, Imamoglu M, Emirdar V, Unal F, Guzel S, Celik C (2016) Implications of circulating irisin and Fabp4 levels in patients with polycystic ovary syndrome. J Obstet Gynaecol 36(7):897–901. https://doi.org/10.3109/01443615.2016.1174200

    Article  PubMed  CAS  Google Scholar 

  1235. Liu J, Li J, Wu X, Zhang M, Yan G, Sun H, Li D (2024) High levels of fatty acid-binding protein 5 excessively enhances fatty acid synthesis and proliferation of granulosa cells in polycystic ovary syndrome. J Ovarian Res 17(1):44. https://doi.org/10.1186/s13048-024-01368-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1236. Khalaf M, Morera J, Bourret A, Reznik Y, Denoual C, Herlicoviez M, Mittre H, Benhaim A (2013) BMP system expression in GCs from polycystic ovary syndrome women and the in vitro effects of BMP4, BMP6, and BMP7 on GC steroidogenesis. Eur J Endocrinol 168(3):437–444. https://doi.org/10.1530/EJE-12-0891

    Article  PubMed  CAS  Google Scholar 

  1237. Zhao Y, Zhang C, Huang Y, Yu Y, Li R, Li M, Liu N, Liu P, Qiao J (2015) Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients. J Clin Endocrinol Metab 100(1):201–211. https://doi.org/10.1210/jc.2014

    Article  PubMed  CAS  Google Scholar 

  1238. GohariTaban S, Amiri I, Soleimani Asl S, Saidijam M, Yavangi M, Khanlarzadeh E, Mohammadpour N, Shabab N, Artimani T (2019) Abnormal expressions of ADAMTS-1, ADAMTS-9 and progesterone receptors are associated with lower oocyte maturation in women with polycystic ovary syndrome. Arch Gynecol Obstet 299(1):277–286. https://doi.org/10.1007/s00404-018-4967-2

    Article  PubMed  CAS  Google Scholar 

  1239. Zhang Y, Chen D, Wang D, Wang L, Weng Y, Wang H, Wu X, Wang Y (2022) Moderate aerobic exercise regulates follicular dysfunction by initiating brain-derived neurotrophic factor (BDNF)-mediated anti-apoptotic signaling pathways in polycystic ovary syndrome. J Clin Med 11(19):5584. https://doi.org/10.3390/jcm11195584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1240. Makhdoomi MJ, Shah IA, Rashid R, Rashid A, Singh S, Shah ZA, Ganie MA (2023) Effect modification of LHCGR gene variant (rs2293275) on clinico-biochemical profile, and levels of luteinizing hormone in polycystic ovary syndrome patients. Biochem Genet 61(4):1418–1432. https://doi.org/10.1007/s10528-022-10327-z

    Article  PubMed  CAS  Google Scholar 

  1241. Yu L, Wang C, Zhang D, Liu M, Liu T, Pan B, Che Q, Liu S, Wang B, Dong X et al (2023) Exosomal circ_0008285 in follicle fluid regulates the lipid metabolism through the miR-4644/ LDLR axis in polycystic ovary syndrome. J Ovarian Res 16(1):113. https://doi.org/10.1186/s13048-023-01199-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1242. Nasri F, Doroudchi M, Namavar Jahromi B, Gharesi-Fard B (2018) T helper cells profile and CD4+CD25+Foxp3+regulatory T cells in polycystic ovary syndrome. Iran J Immunol 15(3):175–185. https://doi.org/10.22034/IJI.2018.39387

    Article  PubMed  Google Scholar 

  1243. Karakose M, Demircan K, Tutal E, Demirci T, Arslan MS, Sahin M, Celik HT, Kazanci F, Karakaya J, Cakal E et al (2016) Clinical significance of ADAMTS1, ADAMTS5, ADAMTS9 aggrecanases and IL-17A, IL-23, IL-33 cytokines in polycystic ovary syndrome. J Endocrinol Invest 39(11):1269–1275. https://doi.org/10.1007/s40618-016-0472-2

    Article  PubMed  CAS  Google Scholar 

  1244. Tu P, Yan S, Zhang F (2023) Circ_0005925 promotes granulosa cell growth by targeting MiR-324-3p to upregulate MAP2K6 in Polycystic ovary syndrome. Biochem Genet 61(1):21–34. https://doi.org/10.1007/s10528-022-10238-z

    Article  PubMed  CAS  Google Scholar 

  1245. Yang G, Yao G, Xu Z, Fan H, Liu X, He J, Kong Y, Kong D, Bai Y, He Q et al (2021) Expression level of ADAMTS1 in granulosa cells of PCOS patients is related to granulosa cell function, oocyte quality, and embryo development. Front Cell Dev Biol 9:647522. https://doi.org/10.3389/fcell.2021.647522

    Article  PubMed  PubMed Central  Google Scholar 

  1246. Jin LY, Yu JE, Xu HY, Chen B, Yang Q, Liu Y, Guo MX, Zhou CL, Cheng Y, Pang HY et al (2024) Overexpression of Pde4d in rat granulosa cells inhibits maturation and atresia of antral follicles to induce polycystic ovary. Biochim Biophys Acta Mol Basis Dis 1870(1):166869. https://doi.org/10.1016/j.bbadis.2023.166869

    Article  PubMed  CAS  Google Scholar 

  1247. Manni L, Holmäng A, Cajander S, Lundeberg T, Aloe L, Stener-Victorin E (2006) Effect of anti-NGF on ovarian expression of alpha1- and beta2-adrenoceptors, TrkA, p75NTR, and tyrosine hydroxylase in rats with steroid-induced polycystic ovaries. Am J Physiol Regul Integr Comp Physiol 290(3):R826–R835. https://doi.org/10.1152/ajpregu.00078.2005

    Article  PubMed  CAS  Google Scholar 

  1248. Akcalı A, Bostanci N, Özçaka Ö, Öztürk-Ceyhan B, Gümüş P, Tervahartiala T, Husu H, Buduneli N, Sorsa T, Belibasakis GN (2015) levated matrix metalloproteinase-8 in saliva and serum in polycystic ovary syndrome and association with gingival inflammation. Innate Immun 21(6):619–625. https://doi.org/10.1177/1753425915572172

    Article  PubMed  CAS  Google Scholar 

  1249. Biyik I, Erten O, Isiklar OO, Ince O, Soysal C, Berikten D, Mammadli S, Oztas E (2021) Comparison of serum human Klotho levels and thiol/disulfide homeostasis in women with polycystic ovary syndrome and in healthy women. Taiwan J Obstet Gynecol 60(3):487–491. https://doi.org/10.1016/j.tjog.2021.03.017

    Article  PubMed  Google Scholar 

  1250. Li S, Zhai J, Liu J, Di F, Sun Y, Li W, Chen ZJ, Du Y (2018) Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome. EBioMedicine 36:539–552. https://doi.org/10.1016/j.ebiom.2018.09.046

    Article  PubMed  PubMed Central  Google Scholar 

  1251. Temur M, Yılmaz Ö, Aksun S, Calan M, Özün Özbay P, Kumbasar S, Sever E (2017) The relationship of urocortin-2 with insulin resistance patients having PCOS. Gynecol Endocrinol 33(2):124–127. https://doi.org/10.1080/09513590.2016.1240772

    Article  PubMed  CAS  Google Scholar 

  1252. Dallel M, Douma Z, Finan RR, Hachani F, Letaifa DB, Mahjoub T, Almawi WY (2021) Contrasting association of Leptin receptor polymorphisms and haplotypes with polycystic ovary syndrome in Bahraini and Tunisian women: a case-control study. Biosci Rep 41(1):BSR20202726. https://doi.org/10.1042/BSR20202726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1253. Liu Y, Li Z, Wang Y, Cai Q, Liu H, Xu C, Zhang F (2022) IL-15 participates in the pathogenesis of polycystic ovary syndrome by affecting the activity of granulosa cells. Front Endocrinol (Lausanne) 13:787876. https://doi.org/10.3389/fendo.2022.7878766

    Article  PubMed  Google Scholar 

  1254. Chugh RM, Park HS, Esfandyari S, Elsharoud A, Ulin M, Al-Hendy A (2021) Mesenchymal stem cell-conditioned media regulate steroidogenesis and inhibit androgen secretion in a PCOS cell model via BMP-2. Int J Mol Sci 22(17):9184. https://doi.org/10.3390/ijms22179184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1255. Liu HW, Zhang F, Fan P, Bai H, Zhang JX, Wang Y (2013) Effects of apolipoprotein E genotypes on metabolic profile and oxidative stress in southwest Chinese women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 170(1):146–151. https://doi.org/10.1016/j.ejogrb.2013.04.016

    Article  PubMed  CAS  Google Scholar 

  1256. Cabus U, Kabukcu C, Fenkci S, Caner V, Oztekin O, Fenkci V, Enli Y (2020) Serum Caspase-1 levels in women with polycystic ovary syndrome. Taiwan J Obstet Gynecol 59(2):207–210. https://doi.org/10.1016/j.tjog.2020.01.007

    Article  PubMed  Google Scholar 

  1257. Li J, Lin Z, Wang S, Shi Q (2023) Angiotensin converting enzyme (ACE) gene I/D polymorphism is significantly associated with insulin resistance and polycystic ovary syndrome: a meta-analysis. Gynecol Obstet Invest 88(3):174–184. https://doi.org/10.1159/000530089

    Article  PubMed  CAS  Google Scholar 

  1258. Hu M, Li J, Zhang Y et al (2018) Endometrial progesterone receptor isoforms in women with polycystic ovary syndrome. Am J Transl Res 10(8):2696–2705

    PubMed  PubMed Central  CAS  Google Scholar 

  1259. Koroglu N, Aydogan Mathyk B, Tola EN, Aslan Cetin B, Temel Yuksel I, Dag I, Yetkin YG (2019) Gremlin-1 and gremlin-2 levels in polycystic ovary syndrome and their clinical correlations. Gynecol Endocrinol 35(7):604–607. https://doi.org/10.1080/09513590.2019.1566452

    Article  PubMed  CAS  Google Scholar 

  1260. Hrovat A, Kravos NA, Goričar K, Jensterle Sever M, Janež A, Dolžan V (2016) SORCS1 polymorphism and insulin secretion in obese women with polycystic ovary syndrome. Gynecol Endocrinol 32(5):395–398. https://doi.org/10.3109/09513590.2015.1126818

    Article  PubMed  CAS  Google Scholar 

  1261. Cong P, Shang B, Zhang L, Wu Z, Wang Y, Li J, Zhang L (2024) New insights into the treatment of polycystic ovary syndrome: HKDC1 promotes the growth of ovarian granulocyte cells by regulating mitochondrial function and glycolysis. J Mol Histol 55(2):187–199. https://doi.org/10.1007/s10735-024-10183-8

    Article  PubMed  CAS  Google Scholar 

  1262. Tian Y, Zhang W, Zhao S, Sun Y, Bian Y, Chen T, Du Y, Zhang J, Wang Z, Huang T et al (2016) FADS1-FADS2 gene cluster confers risk to polycystic ovary syndrome. Sci Rep 6:21195. https://doi.org/10.1038/srep21195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1263. Malpique R, Sánchez-Infantes D, Garcia-Beltran C, Taxerås SD, López-Bermejo A, de Zegher F, Ibáñez L (2019) Towards a circulating marker of hepato-visceral fat excess: S100A4 in adolescent girls with polycystic ovary syndrome - Evidence from randomized clinical trials. Pediatr Obes 14(5):e12500. https://doi.org/10.1111/ijpo.12500

    Article  PubMed  Google Scholar 

  1264. Zangeneh FZ, Naghizadeh MM, Bagheri M, Jafarabadi M (2017) Are CRH & NGF as psychoneuroimmune regulators in women with polycystic ovary syndrome? Gynecol Endocrinol 33(3):227–233. https://doi.org/10.1080/09513590.2016.1250152

    Article  PubMed  CAS  Google Scholar 

  1265. Kabakchieva P, Georgiev T, Gateva A, Hristova J, Kamenov Z (2021) Polycystic ovary syndrome and (pre)osteoarthritis: assessing the link between hyperandrogenism in young women and cartilage oligomeric matrix protein as a marker of cartilage breakdown. Clin Rheumatol 40(10):4217–4223. https://doi.org/10.1007/s10067-021-05753-0

    Article  PubMed  Google Scholar 

  1266. Sang Q, Zhang S, Zou S, Wang H, Feng R, Li Q, Jin L, He L, Xing Q, Wang L (2013) Quantitative analysis of follistatin (FST) promoter methylation in peripheral blood of patients with polycystic ovary syndrome. Reprod Biomed Online 26(2):157–163. https://doi.org/10.1016/j.rbmo.2012.10.011

    Article  PubMed  CAS  Google Scholar 

  1267. Ho CK, Wood JR, Stewart DR, Ewens K, Ankener W, Wickenheisser J, Nelson-Degrave V, Zhang Z, Legro RS, Dunaif A et al (2005) Increased transcription and increased messenger ribonucleic acid (mRNA) stability contribute to increased GATA6 mRNA abundance in polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 90(12):6596–6602. https://doi.org/10.1210/jc.2005-0890

    Article  PubMed  CAS  Google Scholar 

  1268. Tola EN, Koroglu ND, Yalcin SE, Oral HB (2018) The role of serum ADAMTS-1 and aggrecan on polycystic ovary syndrome in adolescents and younger-aged females. Arch Gynecol Obstet 297(2):487–493. https://doi.org/10.1007/s00404-017-4578-3

    Article  PubMed  CAS  Google Scholar 

  1269. Paulukinas RD, Mesaros CA, Penning TM (2022) Conversion of classical and 11-oxygenated androgens by insulin-induced AKR1C3 in a model of human PCOS adipocytes. Endocrinology 163(7):bqac068. https://doi.org/10.1210/endocr/bqac068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1270. Russo N, Russo M, Daino D, Bucci F, Pluchino N, Casarosa E, Artini PG, Cela V, Luisi M, Genazzani AR (2012) Polycystic ovary syndrome: brain-derived neurotrophic factor (BDNF) plasma and follicular fluid levels. Gynecol Endocrinol 28(4):241–244. https://doi.org/10.3109/09513590.2011.613969

    Article  PubMed  CAS  Google Scholar 

  1271. Jiang Q, Miao R, Wang Y, Wang W, Zhao D, Niu Y, Ding Q, Li Y, Leung PCK, Wei D et al (2023) ANGPTL4 inhibits granulosa cell proliferation in polycystic ovary syndrome by EGFR/JAK1/STAT3-mediated induction of p21. FASEB J 37(2):e22693. https://doi.org/10.1096/fj.202201246RR

    Article  PubMed  CAS  Google Scholar 

  1272. Li Y, Xu J, Li L, Bai L, Wang Y, Zhang J, Wang H (2022) Inhibition of Nicotinamide adenine dinucleotide phosphate oxidase 4 attenuates cell apoptosis and oxidative stress in a rat model of polycystic ovary syndrome through the activation of Nrf-2/HO-1 signaling pathway. Mol Cell Endocrinol 550:111645. https://doi.org/10.1016/j.mce.2022.111645

    Article  PubMed  CAS  Google Scholar 

  1273. Albahlol IA, Neamatallah M, Serria MS, El-Gilany AH, Setate YA, Alkasaby NM, Mostafa SA, Abdelaziz M, Elazab H, Ammar OA (2023) Vitamin D receptor gene polymorphism and polycystic ovary syndrome susceptibility. BMC Med Genom 16(1):108. https://doi.org/10.1186/s12920-023-01541-8

    Article  CAS  Google Scholar 

  1274. Chen Z, Zeng H, Huang Q, Lin C, Li X, Sun S, Liu JP (2024) Increased GPC4 and clusterin associated with insulin resistance in patients with PCOS. Endocr Connect 13(3):e230428. https://doi.org/10.1530/EC-23-0428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1275. Alshammary AF, Alshammari AM, Farzan R, Alsobaie SF, Alageel AA, Ali KI (2023) A study on the immunological vitality of an inflammatory biomarker explored with rs5743708 polymorphism in TLR2 gene among Saudi women confirmed with polycystic ovarian syndrome. Saudi J Biol Sci 30(7):103687. https://doi.org/10.1016/j.sjbs.2023.103687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1276. Borthakur A, Prabhu D (2020) Role of IL-6 signalling in polycystic ovarian syndrome associated inflammation. J Reprod Immunol 141:103155. https://doi.org/10.1016/j.jri.2020.103155

    Article  PubMed  CAS  Google Scholar 

  1277. Govahi Kakhki F, Sargazi S, Montazerifar F, Majidpour M, Karajibani A, Karajibani M, Ghasemi M et al (2024) IGF2BP2 and IGFBP3 genotypes, haplotypes, and genetic models studies in polycystic ovary syndrome. J Clin Lab Anal 38(5):e25021. https://doi.org/10.1002/jcla.25021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1278. Li D, Jiao J, Zhou YM, Wang XX (2015) Epigenetic regulation of traf2- and Nck-interacting kinase (TNIK) in polycystic ovary syndrome. Am J Transl Res 7(6):1152–1160

    PubMed  PubMed Central  Google Scholar 

  1279. Liu Q, Jiang J, Shi Y, Mo Z, Li M (2020) Apelin/apelin receptor: a new therapeutic target in polycystic ovary syndrome. Life Sci 260:118310. https://doi.org/10.1016/j.lfs.2020.118310

    Article  PubMed  CAS  Google Scholar 

  1280. Tal R, Seifer DB, Grazi RV, Malter HE (2014) Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation. Reprod Biol Endocrinol 12:82. https://doi.org/10.1186/1477-7827-12-82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1281. Arpacı H (2019) Circulating neuregulin-1 levels in polycystic ovary syndrome. J Obstet Gynaecol 39(4):504–509. https://doi.org/10.1080/01443615.2018.1519530

    Article  PubMed  CAS  Google Scholar 

  1282. Javidan M, Changaei M, Ramezani Tehrani F, Mosaffa N, Noroozzadeh M, Hosseinzadeh R, Rajaei S (2022) Altered expression of leukemia inhibitory factor (LIF), LIFR, gp130, and IL11 in the embryo implantation site of rat model with prenatal androgen-induced polycystic ovary syndrome. Biochem Biophys Res Commun 605:24–30. https://doi.org/10.1016/j.bbrc.2022.03.053

    Article  PubMed  CAS  Google Scholar 

  1283. Liu Z, Liu C, Hao C, Xue Q, Huang X, Zhang N, Bao H, Qu Q (2016) Aberrant expression of angiopoietin-like proteins 1 and 2 in cumulus cells is potentially associated with impaired oocyte developmental competence in polycystic ovary syndrome. Gynecol Endocrinol 32(7):557–561. https://doi.org/10.3109/09513590.2016.1138463

    Article  PubMed  CAS  Google Scholar 

  1284. McCarthy EA, Dischino D, Maguire C, Leon S, Talbi R, Cheung E, Schteingart CD, Rivière PJM, Reed SD, Steiner RA et al (2022) Inhibiting kiss1 neurons with kappa opioid receptor agonists to treat polycystic ovary syndrome and vasomotor symptoms. J Clin Endocrinol Metab 107(1):e328–e347. https://doi.org/10.1210/clinem/dgab602

    Article  PubMed  Google Scholar 

  1285. Park JM, Gu BH, Lee EJ, Kim JY, Choi SW, Baek KH (2008) A single nucleotide polymorphism in exon 7 of sorbin and SH3-domain-containing-1 (SORBS1) in Korean PCOS patients. Mol Med Rep 1(1):93–97

    PubMed  CAS  Google Scholar 

  1286. Kaltsas T, Pontikides N, Krassas GE, Seferiadis K, Lolis D, Messinis IE (1999) Growth hormone response to thyrotrophin releasing hormone in women with polycystic ovarian syndrome. Hum Reprod 14(11):2704–2708. https://doi.org/10.1093/humrep/14.11.2704

    Article  PubMed  CAS  Google Scholar 

  1287. Yu GI, Jun SE, Shin DH (2017) Associations of VCAM-1 gene polymorphisms with obesity and inflammation markers. Inflamm Res 66(3):217–225. https://doi.org/10.1007/s00011-016-1006-2

    Article  PubMed  CAS  Google Scholar 

  1288. Boaghi A, Pop RM, Vasilache SL, Banescu C, Hutanu A, Marginean OC, Pascanu IM (2020) Plasma RBP4 level in association with body composition, metabolic profile, STRA6 and RBP4 gene polymorphisms in obese romanian children. Diabetes Metab Syndr Obes 13:4643–4650. https://doi.org/10.2147/DMSO.S273146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1289. Xiang M, Qian X, Han L, Wang H, Wang J, Liu W, Gu Y, Yao S, Yang J, Zhang Y et al (2023) Aquaporin-8 ameliorates hepatic steatosis through farnesoid X receptor in obese mice. iScience 26(4):106561. https://doi.org/10.1016/j.isci.2023.106561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1290. Osorio-Conles Ó, Ibarzabal A, Balibrea JM, Vidal J, Ortega E, de Hollanda A (2023) FABP4 expression in subcutaneous adipose tissue is independently associated with circulating triglycerides in obesity. J Clin Med 12(3):1013. https://doi.org/10.3390/jcm12031013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1291. Correa-Rodríguez M, Schmidt-RioValle J, Rueda-Medina B (2018) SOX6 rs7117858 polymorphism is associated with osteoporosis and obesity-related phenotypes. Eur J Clin Invest 48(10):e13011. https://doi.org/10.1111/eci.13011

    Article  PubMed  CAS  Google Scholar 

  1292. Liu T, Kamiyoshi A, Tanaka M, Iida S, Sakurai T, Ichikawa-Shindo Y, Kawate H, Hirabayashi K, Dai K, Cui N et al (2018) RAMP3 deficiency enhances postmenopausal obesity and metabolic disorders. Peptides 110:10–18. https://doi.org/10.1016/j.peptides.2018.10.006

    Article  PubMed  CAS  Google Scholar 

  1293. Wang CY, Zhang CP, Li BJ, Jiang SS, He WH, Long SY, Tian Y (2020) MMP-12 as a potential biomarker to forecast ischemic stroke in obese patients. Med Hypotheses 136:109524. https://doi.org/10.1016/j.mehy.2019.109524

    Article  PubMed  CAS  Google Scholar 

  1294. Conroy MJ, Galvin KC, Kavanagh ME, Mongan AM, Doyle SL, Gilmartin N, O’Farrelly C, Reynolds JV, Lysaght J (2016) CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer. Immunol Cell Biol 94(6):531–537. https://doi.org/10.1038/icb.2016.26

    Article  PubMed  CAS  Google Scholar 

  1295. Lopez-Yus M, Casamayor C, Soriano-Godes JJ, Borlan S, Gonzalez-Irazabal Y, Garcia-Sobreviela MP, Garcia-Rodriguez B, Del Moral-Bergos R, Calmarza P, Artigas JM et al (2023) Isthmin-1 (ISM1), a novel adipokine that reflects abdominal adipose tissue distribution in individuals with obesity. Cardiovasc Diabetol 22(1):335. https://doi.org/10.1186/s12933-023-02075-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1296. Makey KL, Patterson SG, Robinson J, Loftin M, Waddell DE, Miele L, Chinchar E, Huang M, Smith AD, Weber M et al (2013) Increased plasma levels of soluble vascular endothelial growth factor receptor 1 (sFlt-1) in women by moderate exercise and increased plasma levels of vascular endothelial growth factor in overweight/obese women. Eur J Cancer Prev 22(1):83–89. https://doi.org/10.1097/CEJ.0b013e328353ed81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1297. Shibue K, Yamane S, Harada N, Hamasaki A, Suzuki K, Joo E, Iwasaki K, Nasteska D, Harada T, Hayashi Y et al (2015) atty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion. Am J Physiol Endocrinol Metab 308(7):E583–E591. https://doi.org/10.1152/ajpendo.00543.2014

    Article  PubMed  CAS  Google Scholar 

  1298. Nizamuddin S, Govindaraj P, Saxena S, Kashyap M, Mishra A, Singh S, Rotti H, Raval R, Nayak J, Bhat BK et al (2016) Reply to “Lack of replication of association of THSD7A with obesity.” Int J Obes (Lond) 40(4):727–728. https://doi.org/10.1038/ijo.2016.16

    Article  PubMed  CAS  Google Scholar 

  1299. Sekar R, Chow BK (2014) Secretin receptor-knockout mice are resistant to high-fat diet-induced obesity and exhibit impaired intestinal lipid absorption. FASEB J 28(8):3494–3505. https://doi.org/10.1096/fj.13-247536

    Article  PubMed  CAS  Google Scholar 

  1300. Zhu J, Qiu J, Magrane G, Abedalthagafi M, Zanko A, Golabi M, Chehab FF (2012) Duplication of C7orf58, WNT16 and FAM3C in an obese female with a t(7;22)(q32.1;q11.2) chromosomal translocation and clinical features resembling coffin-siris syndrome. PLoS ONE 7(12):e52353. https://doi.org/10.1371/journal.pone.0052353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1301. Shu Y, Gumma N, Hassan F, Branch DA, Baer LA, Ostrowski MC, Stanford KI, Baskin KK, Mehta KD (2023) Hepatic protein kinase Cbeta deficiency mitigates late-onset obesity. J Biol Chem 299(8):104917. https://doi.org/10.1016/j.jbc.2023.104917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1302. Mowers J, Uhm M, Reilly SM, Simon J, Leto D, Chiang SH, Chang L, Saltiel AR (2013) Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKε and TBK1. Elife 2:e01119. https://doi.org/10.7554/eLife.01119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1303. Liu J, Wang Q, Zhang L, Fu J, An Y, Meng H, Wang G (2021) Increased prolactin is an adaptive response to protect against metabolic disorders in obesity. Endocr Pract 27(7):728–735. https://doi.org/10.1016/j.eprac.2021.01.002

    Article  PubMed  Google Scholar 

  1304. Koutaki D, Michos A, Bacopoulou F, Charmandari E (2021) The emerging role of Sfrp5 and Wnt5a in the pathogenesis of obesity: implications for a healthy diet and lifestyle. Nutrients 13(7):2459. https://doi.org/10.3390/nu13072459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1305. Edwards TL, Velez Edwards DR, Villegas R, Cohen SS, Buchowski MS, Fowke JH, Schlundt D, Long J, Cai Q, Zheng W et al (2012) HTR1B, ADIPOR1, PPARGC1A, and CYP19A1 and obesity in a cohort of Caucasians and African Americans: an evaluation of gene-environment interactions and candidate genes. Am J Epidemiol 175(1):11–21. https://doi.org/10.1093/aje/kwr272

    Article  PubMed  Google Scholar 

  1306. Monroy A, Kamath S, Chavez AO, Centonze VE, Veerasamy M, Barrentine A, Wewer JJ, Coletta DK, Jenkinson C, Jhingan RM et al (2009) Impaired regulation of the TNF-alpha converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: a new mechanism of insulin resistance in humans. Diabetologia 52(10):2169–2181. https://doi.org/10.1007/s00125-009-1451-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1307. Song NJ, Lee A, Yasmeen R, Shen Q, Yang K, Kumar SB, Muhanna D, Arnipalli S, Noria SF, Needleman BJ et al (2022) Epiregulin as an alternative ligand for leptin receptor alleviates glucose intolerance without change in obesity. Cells 11(3):425. https://doi.org/10.3390/cells11030425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1308. Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS (2018) Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: systematic review of literature and meta-analysis. Int J Mol Sci 19(8):2281. https://doi.org/10.3390/ijms19082281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1309. Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y et al (2023) Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 133(19):e160617. https://doi.org/10.1172/JCI160617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1310. Shapira S, Kazanov D, Dankner R, Fishman S, Stern N, Arber N (2021) High expression level of PPARγ in CD24 knockout mice and gender-specific metabolic changes: a model of insulin-sensitive obesity. J Pers Med 11(1):50. https://doi.org/10.3390/jpm11010050

    Article  PubMed  PubMed Central  Google Scholar 

  1311. Onogi Y, Wada T, Okekawa A, Matsuzawa T, Watanabe E, Ikeda K, Nakano M, Kitada M, Koya D, Tsuneki H et al (2020) Pro-inflammatory macrophages coupled with glycolysis remodel adipose vasculature by producing platelet-derived growth factor-B in obesity. Sci Rep 10(1):670. https://doi.org/10.1038/s41598-019-57368-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1312. Du Y, Li S, Cui CJ, Zhang Y, Yang SH, Li JJ (2016) Leptin decreases the expression of low-density lipoprotein receptor via PCSK9 pathway: linking dyslipidemia with obesity. J Transl Med 14(1):276. https://doi.org/10.1186/s12967-016-1032-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1313. Shirakawa K, Sano M (2023) Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol 13:1044737. https://doi.org/10.3389/fimmu.2022.1044737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1314. Mahajan N, Khare P, Kondepudi KK, Bishnoi M (2021) TRPA1: Pharmacology, natural activators and role in obesity prevention. Eur J Pharmacol 912:174553. https://doi.org/10.1016/j.ejphar.2021.174553

    Article  PubMed  CAS  Google Scholar 

  1315. Lee M, Lee Y, Kang I, Shin J, Sorn SR (2021) RMR-related MAP2K6 gene variation on the risk of overweight/obesity in children: a 3-year panel study. J Pers Med 11(2):91. https://doi.org/10.3390/jpm11020091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1316. Clapcote SJ (2017) Phosphodiesterase-4B as a therapeutic target for cognitive impairment and obesity-related metabolic diseases. Adv Neurobiol 17:103–131. https://doi.org/10.1007/978-3-319-58811-7_5

    Article  PubMed  Google Scholar 

  1317. Bittencourt A, Brum PO, Ribeiro CT, Gasparotto J, Bortolin RC, de Vargas AR, Heimfarth L, de Almeida RF, Moreira JCF, de Oliveira J et al (2022) High fat diet-induced obesity causes a reduction in brain tyrosine hydroxylase levels and non-motor features in rats through metabolic dysfunction, neuroinflammation and oxidative stress. Nutr Neurosci 25(5):1026–1040. https://doi.org/10.1080/1028415X.2020.1831261

    Article  PubMed  CAS  Google Scholar 

  1318. Lauhio A, Färkkilä E, Pietiläinen KH, Åström P, Winkelmann A, Tervahartiala T, Pirilä E, Rissanen A, Kaprio J, Sorsa TA et al (2016) Association of MMP-8 with obesity, smoking and insulin resistance. Eur J Clin Invest 46(9):757–765. https://doi.org/10.1111/eci.12649

    Article  PubMed  CAS  Google Scholar 

  1319. Mitra SR, Tan PY, Amini F (2019) Association of ADRB2 rs1042713 with obesity and obesity-related phenotypes and its interaction with dietary fat in modulating glycaemic indices in Malaysian adults. J Nutr Metab 2019:8718795. https://doi.org/10.1155/2019/8718795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1320. Carreras-Badosa G, Puerto-Carranza E, Mas-Parés B, Gómez-Vilarrubla A, Gómez-Herrera B, Díaz-Roldán F, Riera-Pérez E, de Zegher F, Ibañez L, Bassols J et al (2023) Higher levels of serum α-Klotho are longitudinally associated with less central obesity in girls experiencing weight gain. Front Endocrinol (Lausanne) 14:1218949. https://doi.org/10.3389/fendo.2023.1218949

    Article  PubMed  Google Scholar 

  1321. Kostopoulou E, Kalavrizioti D, Davoulou P, Sinopidis X, Papachristou E, Goumenos DS, Dimitriou G, Spiliotis BE, Papasotiriou M (2024) Soluble urokinase plasminogen activator receptor (suPAR) in children with obesity or type 1 diabetes as a marker of endothelial dysfunction: a cross-sectional study. Eur J Pediatr. https://doi.org/10.1007/s00431-024-05496-5

    Article  PubMed  Google Scholar 

  1322. Carobbio S, Hagen RM, Lelliott CJ, Slawik M, Medina-Gomez G, Tan CY, Sicard A, Atherton HJ, Barbarroja N, Bjursell M et al (2013) Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes 62(11):3697–3708. https://doi.org/10.2337/db12-1748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1323. Zhong S, Chen L, Li X, Wang X, Ji G, Sun C, Liu Z (2023) Bmp8a deletion leads to obesity through regulation of lipid metabolism and adipocyte differentiation. Commun Biol 6(1):824. https://doi.org/10.1038/s42003-023-05194-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1324. Borg ML, Massart J, De Castro BT, Archilla-Ortega A, Smith JAB, Lanner JT, Alsina-Fernandez J, Yaden B, Culver AE, Karlsson HKR et al (2021) Modified UCN2 peptide treatment improves skeletal muscle mass and function in mouse models of obesity-induced insulin resistance. J Cachexia Sarcopenia Muscle 12(5):1232–1248. https://doi.org/10.1002/jcsm.12746

    Article  PubMed  PubMed Central  Google Scholar 

  1325. Zhang ZB, Ruan CC, Lin JR, Xu L, Chen XH, Du YN, Fu MX, Kong LR, Zhu DL, Gao PJ (2018) Perivascular adipose tissue-derived PDGF-D contributes to aortic aneurysm formation during obesity. Diabetes 67(8):1549–1560. https://doi.org/10.2337/db18-0098

    Article  PubMed  CAS  Google Scholar 

  1326. Amor M, Itariu BK, Moreno-Viedma V, Keindl M, Jürets A, Prager G, Langer F, Grablowitz V, Zeyda M, Stulnig TM (2019) Serum myostatin is upregulated in obesity and correlates with insulin resistance in humans. Exp Clin Endocrinol Diabetes 127(8):550–556. https://doi.org/10.1055/a-0641-5546

    Article  PubMed  CAS  Google Scholar 

  1327. Pérez-López A, Valadés D, Vázquez Martínez C, de Cos Blanco AI, Bujan J, García-Honduvilla N (2018) Serum IL-15 and IL-15Rα levels are decreased in lean and obese physically active humans. Scand J Med Sci Sports 28(3):1113–1120. https://doi.org/10.1111/sms.12983

    Article  PubMed  Google Scholar 

  1328. Ribeiro SMTL, Lopes LR, Paula Costa G, Figueiredo VP, Shrestha D, Batista AP, Nicolato RLC, Oliveira FLP, Gomes JAS, Talvani A (2017) CXCL-16, IL-17, and bone morphogenetic protein 2 (BMP-2) are associated with overweight and obesity conditions in middle-aged and elderly women. Immun Ageing 14:6. https://doi.org/10.1186/s12979-017-0089-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1329. Farup PG, Rootwelt H, Hestad K (2020) APOE - a genetic marker of comorbidity in subjects with morbid obesity. BMC Med Genet 21(1):146. https://doi.org/10.1186/s12881-020-01082-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1330. Kimura H, Karasawa T, Usui F, Kawashima A, Endo Y, Kobayashi M, Sadatomo A, Nakamura J, Iwasaki Y, Yada T et al (2016) Caspase-1 deficiency promotes high-fat diet-induced adipose tissue inflammation and the development of obesity. Am J Physiol Endocrinol Metab 311(5):E881–E890. https://doi.org/10.1152/ajpendo.00174.2016

    Article  PubMed  Google Scholar 

  1331. Matheson J, Zhou XMM, Bourgault Z, Le Foll B (2021) Potential of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and diacylglycerol lipase (DAGL) enzymes as targets for obesity treatment: a narrative review. Pharmaceuticals (Basel) 14(12):1316. https://doi.org/10.3390/ph14121316

    Article  PubMed  CAS  Google Scholar 

  1332. Pérez-Díaz S, Koumaiha Z, Borok MJ, Aurade F, Pini M, Periou B, Rouault C, Baba-Amer Y, Clément K, Derumeaux G et al (2022) Obesity impairs skeletal muscle repair through NID-1 mediated extracellular matrix remodeling by mesenchymal progenitors. Matrix Biol 112:90–115. https://doi.org/10.1016/j.matbio.2022.08.006

    Article  PubMed  CAS  Google Scholar 

  1333. Cheng ST, Wu S, Su CW, Teng MS, Hsu LA, Ko YL (2017) Association of ABCG2 rs2231142-A allele and serum uric acid levels in male and obese individuals in a Han Taiwanese population. J Formos Med Assoc 116(1):18–23. https://doi.org/10.1016/j.jfma.2015.12.002

    Article  PubMed  CAS  Google Scholar 

  1334. Khamlaoui W, Mehri S, Hammami S, Elosua R, Hammami M (2020) Association of angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensinogen (AGT M235T) polymorphisms with the risk of obesity in a Tunisian population. J Renin Angiotensin Aldosterone Syst 21(2):1470320320907820. https://doi.org/10.1177/1470320320907820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1335. Maehle BO, Tretli S, Thorsen T (2004) The associations of obesity, lymph node status and prognosis in breast cancer patients: dependence on estrogen and progesterone receptor status. APMIS 112(6):349–357. https://doi.org/10.1111/j.1600-0463.2004.apm1120605.x

    Article  PubMed  CAS  Google Scholar 

  1336. Liu W, Li D, Yang M, Wang L, Xu Y, Chen N, Zhang Z, Shi J, Li W, Zhao S et al (2022) GREM2 is associated with human central obesity and inhibits visceral preadipocyte browning. EBioMedicine 78:103969. https://doi.org/10.1016/j.ebiom.2022.103969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1337. Lee S (2019) The genetic and epigenetic association of LDL Receptor Related Protein 1B (LRP1B) gene with childhood obesity. Sci Rep 9(1):1815. https://doi.org/10.1038/s41598-019-38538-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1338. Aqeel Rashid F, Mahdi S, Abd-Alkader Mahdy S, Thamer SA (2021) Effect of obesity on plasma alkaline phosphatase activity in breast cancer. Rep Biochem Mol Biol 10(2):307–313. https://doi.org/10.52547/rbmb.10.2.307

    Article  PubMed  PubMed Central  Google Scholar 

  1339. Wang Z, Fu Y (2022) Transient receptor potential cation channel 6 contributes to kidney injury induced by diabetes and hypertension. Am J Physiol Renal Physiol 322(1):F76–F88. https://doi.org/10.1152/ajprenal.00296.2021

    Article  PubMed  CAS  Google Scholar 

  1340. Landgraf K, Kühnapfel A, Schlanstein M, Biemann R, Isermann B, Kempf E, Kirsten H, Scholz M, Körner A (2022) Transcriptome analyses of adipose tissue samples identify EGFL6 as a candidate gene involved in obesity-related adipose tissue dysfunction in children. Int J Mol Sci 23(8):4349. https://doi.org/10.3390/ijms23084349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1341. Vassileva G, Hu W, Hoos L, Tetzloff G, Yang S, Liu L, Kang L, Davis HR, Hedrick JA, Lan H et al (2010) Gender-dependent effect of Gpbar1 genetic deletion on the metabolic profiles of diet-induced obese mice. J Endocrinol 205(3):225–232. https://doi.org/10.1677/JOE-10-0009

    Article  PubMed  CAS  Google Scholar 

  1342. Parikh D, Jayakumar S, Oliveira-Paula GH, Almonte V, Riascos-Bernal DF, Sibinga NES (2022) Allograft inflammatory factor-1-like is a situational regulator of leptin levels, hyperphagia, and obesity. iScience 25(10):105058. https://doi.org/10.1016/j.isci.2022.105058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1343. Cao J, Perez S, Goodwin B, Lin Q, Peng H, Qadri A, Zhou Y, Clark RW, Perreault M, Tobin JF et al (2014) Mice deleted for GPAT3 have reduced GPAT activity in white adipose tissue and altered energy and cholesterol homeostasis in diet-induced obesity. Am J Physiol Endocrinol Metab 306(10):E1176–E1187. https://doi.org/10.1152/ajpendo.00666.2013

    Article  PubMed  CAS  Google Scholar 

  1344. Kim JY, Tillison K, Zhou S, Wu Y, Smas CM (2007) The major facilitator superfamily member Slc37a2 is a novel macrophage- specific gene selectively expressed in obese white adipose tissue. Am J Physiol Endocrinol Metab 293(1):E110–E120. https://doi.org/10.1152/ajpendo.00404.2006

    Article  PubMed  CAS  Google Scholar 

  1345. Khamlaoui W, Mehri S, Hammami S, Hammouda S, Chraeif I, Elosua R, Hammami M (2020) Association between genetic variants in FADS1-FADS2 and ELOVL2 and obesity, lipid traits, and fatty acids in Tunisian population. Clin Appl Thromb Hemost 26:1076029620915286. https://doi.org/10.1177/1076029620915286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1346. Griffin JD, Zhu Y, Reeves A, Buhman KK, Greenberg AS (2024) Intestinal Acyl-CoA synthetase 5 (ACSL5) deficiency potentiates postprandial GLP-1 & PYY secretion, reduces food intake, and protects against diet-induced obesity. Mol Metab. https://doi.org/10.1016/j.molmet.2024.101918

    Article  PubMed  PubMed Central  Google Scholar 

  1347. Lee S (2019) The association of genetically controlled CpG methylation (cg158269415) of protein tyrosine phosphatase, receptor type N2 (PTPRN2) with childhood obesity. Sci Rep 9(1):4855. https://doi.org/10.1038/s41598-019-40486-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1348. Xi P, Zhu W, Zhang Y, Wang M, Liang H, Wang H, Tian D (2024) Upregulation of hypothalamic TRPV4 via S100a4/AMPKα signaling pathway promotes the development of diet-induced obesity. Biochim Biophys Acta Mol Basis Dis 1870(1):166883. https://doi.org/10.1016/j.bbadis.2023.166883

    Article  PubMed  CAS  Google Scholar 

  1349. Bähr I, Jaeschke L, Nimptsch K, Janke J, Herrmann P, Kobelt D, Kielstein H, Pischon T, Stein U (2022) Obesity, colorectal cancer and MACC1 expression: a possible novel molecular association. Int J Oncol 60(2):17. https://doi.org/10.3892/ijo.2022.5307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1350. Villa-Osaba A, Gahete MD, Córdoba-Chacón J, de Lecea L, Pozo-Salas AI, Delgado-Lista FJ, Álvarez-Benito M, López-Miranda J, Luque RM, Castaño JP (2015) Obesity alters gene expression for GH/IGF-I axis in mouse mammary fat pads: differential role of cortistatin and somatostatin. PLoS ONE 10(3):e0120955. https://doi.org/10.1371/journal.pone.0120955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1351. Boumiza S, Bchir S, Ben Nasr H, Abbassi A, Jacob MP, Norel X, Tabka Z, Chahed K (2017) Role of MMP-1 (-519A/G, -1607 1G/2G), MMP-3 (Lys45Glu), MMP-7 (-181A/G), and MMP-12 (-82A/G) variants and plasma MMP levels on obesity-related phenotypes and microvascular reactivity in a tunisian population. Dis Markers 2017:6198526. https://doi.org/10.1155/2017/6198526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1352. Mwangi SM, Nezami BG, Obukwelu B, Anitha M, Marri S, Fu P, Epperson MF, Le NA, Shanmugam M, Sitaraman SV et al (2014) Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity. Am J Physiol Gastrointest Liver Physiol 306(6):G515–G525. https://doi.org/10.1152/ajpgi.00364.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1353. Wagner G, Fenzl A, Lindroos-Christensen J, Einwallner E, Husa J, Witzeneder N, Rauscher S, Gröger M, Derdak S, Mohr T et al (2021) LMO3 reprograms visceral adipocyte metabolism during obesity. J Mol Med (Berl) 99(8):1151–1171. https://doi.org/10.1007/s00109-021-02089-9

    Article  PubMed  CAS  Google Scholar 

  1354. Hetty S, Vranic M, Kamble PG, Lundqvist MH, Pereira MJ, Eriksson JW (2023) CABLES1 expression is reduced in human subcutaneous adipose tissue in obesity and type 2 diabetes but may not directly impact adipocyte glucose and lipid metabolism. Adipocyte 12(1):2242997. https://doi.org/10.1080/21623945.2023.2242997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1355. Dai JZ, Yang CC, Shueng PW, Wang YJ, Huang CS, Chao YC, Chen CH, Lin CW (2023) Obesity-mediated upregulation of the YAP/IL33 signaling axis promotes aggressiveness and induces an immunosuppressive tumor microenvironment in breast cancer. J Cell Physiol 238(5):992–1005. https://doi.org/10.1002/jcp.30985

    Article  PubMed  CAS  Google Scholar 

  1356. Bulló M, Peeraully MR, Trayhurn P, Folch J, Salas-Salvadó J (2007) Circulating nerve growth factor levels in relation to obesity and the metabolic syndrome in women. Eur J Endocrinol 157(3):303–310. https://doi.org/10.1530/EJE-06-0716

    Article  PubMed  CAS  Google Scholar 

  1357. Zhang J, Zhang Y, Sun T, Guo F, Huang S, Chandalia M, Abate N, Fan D, Xin HB, Chen YE et al (2013) Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2. Sci Rep 3:1476. https://doi.org/10.1038/srep01476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1358. Gamu D, Juracic ES, Fajardo VA, Rietze BA, Tran K, Bombardier E, Tupling AR (2019) Phospholamban deficiency does not alter skeletal muscle SERCA pumping efficiency or predispose mice to diet-induced obesity. Am J Physiol Endocrinol Metab 316(3):E432–E442. https://doi.org/10.1152/ajpendo.00288.2018

    Article  PubMed  CAS  Google Scholar 

  1359. Cong L, Zhu Y, Pang H, Guanjun TU (2014) The interaction between aggrecan gene VNTR polymorphism and obesity in predicting incident symptomatic lumbar disc herniation. Connect Tissue Res 55(5–6):384–390. https://doi.org/10.3109/03008207.2014.959117

    Article  PubMed  CAS  Google Scholar 

  1360. Freitas-Alves DR, Vieira-Monteiro HA, Piranda DN, Sobral-Leite M, da Silva TSL, Bergmann A, Valença SS, Perini JA, Vianna-Jorge R (2018) PTGS2 polymorphism rs689466 favors breast cancer recurrence in obese patients. Endocr Relat Cancer 25(3):351–365. https://doi.org/10.1530/ERC-17-0374

    Article  PubMed  CAS  Google Scholar 

  1361. Yousof TR, Mejia-Benitez A, Morrison KM, Austin RC (2024) Reduced plasma GDF10 levels are positively associated with cholesterol impairment and childhood obesity. Sci Rep 14(1):1805. https://doi.org/10.1038/s41598-024-51635-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1362. Wang KS, Zuo L, Pan Y, Xie C, Luo X (2015) Genetic variants in the CPNE5 gene are associated with alcohol dependence and obesity in Caucasian populations. J Psychiatr Res 71:1–7. https://doi.org/10.1016/j.jpsychires.2015.09.008

    Article  PubMed  Google Scholar 

  1363. Ning T, Zou Y, Yang M, Lu Q, Chen M, Liu W, Zhao S, Sun Y, Shi J, Ma Q et al (2017) Genetic interaction of DGAT2 and FAAH in the development of human obesity. Endocrine 56(2):366–378. https://doi.org/10.1007/s12020-017-1261-1

    Article  PubMed  CAS  Google Scholar 

  1364. Leung WK, Yau SY, Yang Y, Kwok AW, Wong EM, Cheung JK, Shum EW, Lam SC, Suen LK (2024) Effects of exercise interventions on brain-derived neurotrophic factor levels in overweight and obesity: a systematic review and meta-analysis. J Exerc Sci Fit 22(4):278–287. https://doi.org/10.1016/j.jesf.2024.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  1365. Michaelides M, Miller ML, Egervari G, Primeaux SD, Gomez JL, Ellis RJ, Landry JA, Szutorisz H, Hoffman AF, Lupica CR et al (2020) Striatal Rgs4 regulates feeding and susceptibility to diet-induced obesity. Mol Psychiatry 25(9):2058–2069. https://doi.org/10.1038/s41380-018-0120-7

    Article  PubMed  CAS  Google Scholar 

  1366. Zhang J, Chen Y, Yan L, Zhang X, Zheng X, Qi J, Yang F, Li J (2022) EphA3 deficiency in the hypothalamus promotes high-fat diet-induced obesity in mice. J Biomed Res 37(3):179–193. https://doi.org/10.7555/JBR.36.20220168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1367. Sato H, Taketomi Y, Ushida A, Isogai Y, Kojima T, Hirabayashi T, Miki Y, Yamamoto K, Nishito Y, Kobayashi T et al (2014) The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity. Cell Metab 20(1):119–132. https://doi.org/10.1016/j.cmet.2014.05.0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1368. Zhang G, Li R, Li W, Yang S, Sun Q, Yin H, Wang C, Hou B, Wang H, Yu L et al (2021) Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J Nutr Biochem 95:108761. https://doi.org/10.1016/j.jnutbio.2021.108761

    Article  PubMed  CAS  Google Scholar 

  1369. Schinzari F, Vizioli G, Campia U, Tesauro M, Cardillo C (2021) Variable changes of circulating ANGPTL3 and ANGPTL4 in different obese phenotypes: relationship with vasodilator dysfunction. Biomedicines 9(8):1037. https://doi.org/10.3390/biomedicines9081037

    Article  PubMed  PubMed Central  Google Scholar 

  1370. Suzuki Y, Okabayashi K, Hasegawa H, Tsuruta M, Seishima R, Tokuda T, Kitagawa Y (2022) Role of EphB2/ephrin-B1 signalling in the development and progression of obesity-associated colorectal cancer. Oncol Lett 24(3):316. https://doi.org/10.3892/ol.2022.13436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1371. Li M, Liu L, Kang Y, Huang S, Xiao Y (2023) Circulating THBS1: a risk factor for nonalcoholic fatty liver disease in obese children. Ann Nutr Metab 79(1):16–28. https://doi.org/10.1159/000527780

    Article  PubMed  CAS  Google Scholar 

  1372. Doke M, Avecilla V, Felty Q (2018) Inhibitor of differentiation-3 and estrogenic endocrine disruptors: implications for susceptibility to obesity and metabolic disorders. Biomed Res Int 2018:6821601. https://doi.org/10.1155/2018/6821601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1373. Greatorex S, Kaur S, Xirouchaki CE, Goh PK, Wiede F, Genders AJ, Tran M, Jia Y, Raajendiran A, Brown WA et al (2023) Mitochondria- and NOX4-dependent antioxidant defense mitigates progression to nonalcoholic steatohepatitis in obesity. J Clin Invest 134(3):e162533. https://doi.org/10.1172/JCI162533

    Article  PubMed  Google Scholar 

  1374. Muhsin NIA, Bentley L, Bai Y, Goldsworthy M, Cox RD (2020) A novel mutation in the mouse Pcsk1 gene showing obesity and diabetes. Mamm Genome 31(1–2):17–29. https://doi.org/10.1007/s00335-020-09826-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1375. Takahashi D, Mori T, Sohara E, Tanaka M, Chiga M, Inoue Y, Nomura N, Zeniya M, Ochi H, Takeda S et al (2017) WNK4 is an adipogenic factor and its deletion reduces diet-induced obesity in mice. EBioMedicine 18:118–127. https://doi.org/10.1016/j.ebiom.2017.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  1376. Kim OY, Lee SM, Chung JH, Do HJ, Moon J, Shin MJ (2012) Arginase I and the very low-density lipoprotein receptor are associated with phenotypic biomarkers for obesity. Nutrition 28(6):635–639. https://doi.org/10.1016/j.nut.2011.09.012

    Article  PubMed  CAS  Google Scholar 

  1377. Akter R, Afrose A, Sharmin S, Rezwan R, Rahman MR, Neelotpol S (2022) A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed Pharmacother 153:113285. https://doi.org/10.1016/j.biopha.2022.113285

    Article  PubMed  CAS  Google Scholar 

  1378. Zhang K, Zhu H, Wang L, Yang H, Pan H, Gong F (2021) Serum glypican4 and glycosylphosphatidylinositol-specific phospholipase D levels are associated with adipose tissue insulin resistance in obese subjects with different glucose metabolism status. J Endocrinol Invest 44(4):781–790. https://doi.org/10.1007/s40618-020-01372-9

    Article  PubMed  CAS  Google Scholar 

  1379. Pomar CA, Bonet ML, Ferre-Beltrán A, Fraile-Ribot PA, García-Gasalla M, Riera M, Picó C, Palou A (2022) Increased mRNA levels of ADAM17, IFITM3, and IFNE in peripheral blood cells are present in patients with obesity and may predict severe COVID-19 evolution. Biomedicines 10(8):2007. https://doi.org/10.3390/biomedicines10082007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1380. Klarin D, Emdin CA, Natarajan P, Conrad MF, Kathiresan S (2017) Genetic analysis of venous thromboembolism in UK biobank identifies the ZFPM2 locus and implicates obesity as a causal risk factor. Circulat: Cardiovasc Gene 10(2):e001643

    CAS  Google Scholar 

  1381. Cuesta N, Fernández-Veledo S, Punzón C, Moreno C, Barrocal B, Sreeramkumar V, Desco M, Fresno M (2022) Opposing actions of TLR2 and TLR4 in adipocyte differentiation and mature-onset obesity. Int J Mol Sci 23(24):15682. https://doi.org/10.3390/ijms232415682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1382. Gholami M, Sharifi F, Shahriari S, Khoshnevisan K, Larijani B, Amoli MM (2019) Association of interleukin-6 polymorphisms with obesity: a systematic review and meta-analysis. Cytokine 123:154769. https://doi.org/10.1016/j.cyto.2019.154769

    Article  PubMed  CAS  Google Scholar 

  1383. Abass MK, Al Shamsi A, Jan I, Masalawala MSY, Deeb A (2022) Combined SPINK1 mutations induce early-onset severe chronic pancreatitis in a child with severe obesity. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/EDM-22-0273

    Article  PubMed  PubMed Central  Google Scholar 

  1384. Yao Z, Qi W, Zhang H, Zhang Z, Liu L, Shao Y, Zeng H, Yin J, Pan H, Guo X et al (2023) Down-regulated GAS6 impairs synovial macrophage efferocytosis and promotes obesity-associated osteoarthritis. Elife 12:e83069. https://doi.org/10.7554/eLife.83069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1385. Ong KL, Leung RY, Wong LY, Cherny SS, Sham PC, Lam TH, Lam KS, Cheung BM (2008) Association of F11 receptor gene polymorphisms with central obesity and blood pressure. J Intern Med 263(3):322–332. https://doi.org/10.1111/j.1365-2796.2007.01886.x

    Article  PubMed  CAS  Google Scholar 

  1386. Zhang C, Zhou L, Li S, Zhao J, Meng X, Ma L, Wang Y, Li C, Zheng L, Ming L (2022) Obesity accelerates immune evasion of non-small cell lung carcinoma via TFEB-dependent upregulation of Siglec-15 and glycolytic reprogramming. Cancer Lett 550:215918. https://doi.org/10.1016/j.canlet.2022.215918

    Article  PubMed  CAS  Google Scholar 

  1387. Masaki M, Kurisaki T, Shirakawa K, Sehara-Fujisawa A (2005) Role of meltrin alpha (ADAM12) in obesity induced by high- fat diet. Endocrinology 146(4):1752–1763. https://doi.org/10.1210/en.2004-1082

    Article  PubMed  CAS  Google Scholar 

  1388. Abdul Majeed S, Dunzendorfer H, Weiner J, Heiker JT, Kiess W, Körner A, Landgraf K (2023) COBL, MKX and MYOC are potential regulators of brown adipose tissue development associated with obesity-related metabolic dysfunction in children. Int J Mol Sci 24(4):3085. https://doi.org/10.3390/ijms24043085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1389. Yang H, Seo SG, Shin SH, Min S, Kang MJ, Yoo R, Kwon JY, Yue S, Kim KH, Cheng JX et al (2017) 3′-Diindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700119

    Article  PubMed  PubMed Central  Google Scholar 

  1390. Nixon M, Stewart-Fitzgibbon R, Fu J, Akhmedov D, Rajendran K, Mendoza-Rodriguez MG, Rivera-Molina YA, Gibson M, Berglund ED et al (2015) Skeletal muscle salt inducible kinase 1 promotes insulin resistance in obesity. Mol Metab 5(1):34–46. https://doi.org/10.1016/j.molmet.2015.10.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1391. Tan JT, McLennan SV, Williams PF, Rezaeizadeh A, Lo LW, Bonner JG, Twigg SM (2013) Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am J Physiol Endocrinol Metab 304(12):E1291–E1302. https://doi.org/10.1152/ajpendo.00654.2012

    Article  PubMed  CAS  Google Scholar 

  1392. Al-Daghri NM, Manousopoulou A, Alokail MS, Yakout S, Alenad A, Garay-Baquero DJ, Fotopoulos M, Teng J, Al-Attas O, Al-Saleh Y et al (2018) Sex-specific correlation of IGFBP-2 and IGFBP-3 with vitamin D status in adults with obesity: a cross-sectional serum proteomics study. Nutr Diabetes 8(1):54. https://doi.org/10.1038/s41387-018-0063-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1393. Michurina SV, Ishchenko IY, Arkhipov SA, Klimontov VV, Rachkovskaya LN, Konenkov VI, Zavyalov EL (2016) Effects of melatonin, aluminum oxide, and polymethylsiloxane complex on the expression of LYVE-1 in the liver of mice with obesity and type 2 diabetes mellitus. Bull Exp Biol Med 162(2):269–272. https://doi.org/10.1007/s10517-016-3592-y

    Article  PubMed  CAS  Google Scholar 

  1394. Han CY, Kang I, Harten IA, Gebe JA, Chan CK, Omer M, Alonge KM, den Hartigh LJ, Gomes Kjerulf D, Goodspeed L et al (2020) Adipocyte-derived versican and macrophage-derived biglycan control adipose tissue inflammation in obesity. Cell Rep 31(13):107818. https://doi.org/10.1016/j.celrep.2020.107818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1395. Awazawa M, Gabel P, Tsaousidou E, Nolte H, Krüger M, Schmitz J, Ackermann PJ, Brandt C, Altmüller J, Motameny S et al (2017) A microRNA screen reveals that elevated hepatic ectodysplasin a expression contributes to obesity-induced insulin resistance in skeletal muscle. Nat Med 23(12):1466–1473. https://doi.org/10.1038/nm.4420

    Article  PubMed  CAS  Google Scholar 

  1396. Rask-Andersen M, Almén MS, Olausen HR, Olszewski PK, Eriksson J, Chavan RA, Levine AS, Fredriksson R, Schiöth HB (2011) Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway. BMC Neurosci 12:117. https://doi.org/10.1186/1471-2202-12-117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1397. Hunyenyiwa T, Hendee K, Matus K, Kyi P, Mammoto T, Mammoto A (2021) Obesity inhibits angiogenesis through TWIST1-SLIT2 signaling. Front Cell Dev Biol 9:693410. https://doi.org/10.3389/fcell.2021.693410

    Article  PubMed  PubMed Central  Google Scholar 

  1398. Liu JR, Deng ZH, Zhu XJ, Zeng YR, Guan XX, Li JH (2021) Roles of nicotinamide N-methyltransferase in obesity and type 2 diabetes. Biomed Res Int 2021:9924314. https://doi.org/10.1155/2021/9924314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1399. Teitsdottir UD, Arnardottir ES, Bjornsdottir E, Gislason T, Petersen PH (2018) Obesity modulates the association between sleep apnea treatment and CHI3L1 levels but not CHIT1 activity in moderate to severe OSA: an observational study. Sleep Breath 22(4):1101–1109. https://doi.org/10.1007/s11325-018-1731-6

    Article  PubMed  PubMed Central  Google Scholar 

  1400. Zhang X, Hou X, Xu C, Cheng S, Ni X, Shi Y, Yao Y, Chen L, Hu MG, Xia D (2023) Kaempferol regulates the thermogenic function of adipocytes in high-fat-diet-induced obesity via the CDK6/RUNX1/UCP1 signaling pathway. Food Funct 14(18):8201–8216. https://doi.org/10.1039/d3fo00613a

    Article  PubMed  CAS  Google Scholar 

  1401. De Los SS, Reyes-Castro LA, Coral-Vázquez RM, Mendez JP, Zambrano E, Canto P (2023) (-)-Epicatechin increases apelin/APLNR expression and modifies proteins involved in lipid metabolism of offspring descendants of maternal obesity. J Nutr Biochem 117:109350. https://doi.org/10.1016/j.jnutbio.2023.109350

    Article  CAS  Google Scholar 

  1402. Pervanidou P, Chouliaras G, Akalestos A, Bastaki D, Apostolakou F, Papassotiriou I, Chrousos GP (2014) Increased placental growth factor (PlGF) concentrations in children and adolescents with obesity and the metabolic syndrome. Hormones (Athens) 13(3):369–374. https://doi.org/10.14310/horm.2002.1491

    Article  PubMed  Google Scholar 

  1403. Abdelaziz HA, Abdelbaki TN, Dean YE, Assem S (2023) Is neuregulin-1 (NRG-1) a potential blood biomarker linking depression to obesity? A case-control study. BMC Psychiatry 23(1):670. https://doi.org/10.1186/s12888-023-05160-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1404. Aerts E, Beckers S, Zegers D, Van Hoorenbeeck K, Massa G, Verrijken A, Verhulst SL, Van Gaal LF, Van Hul W (2016) CNV analysis and mutation screening indicate an important role for the NPY4R gene in human obesity. Obesity (Silver Spring) 24(4):970–976. https://doi.org/10.1002/oby.21435

    Article  PubMed  CAS  Google Scholar 

  1405. Osorio-Conles O, Guitart M, Moreno-Navarrete JM, Escoté X, Duran X, Fernandez-Real JM, Gomez-Foix AM, Fernández-Veledo S, Vendrell J (2017) Adipose tissue and serum CCDC80 in obesity and its association with related metabolic disease. Mol Med 23:225–234. https://doi.org/10.2119/molmed.2017.00067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1406. Abdel-Fadeil MR, Abd Allah ESH, Iraqy HM, Elgamal DA, Abdel-Ghani MA (2019) Experimental obesity and diabetes reduce male fertility: Potential involvement of hypothalamic Kiss-1, pituitary nitric oxide, serum vaspin and visfatin. Pathophysiology 26(3–4):181–189. https://doi.org/10.1016/j.pathophys.2019.02.001

    Article  PubMed  CAS  Google Scholar 

  1407. Drgonova J, Jacobsson JA, Han JC, Yanovski JA, Fredriksson R, Marcus C, Schiöth HB, Uhl GR (2013) Involvement of the neutral amino acid transporter SLC6A15 and leucine in obesity-related phenotypes. PLoS ONE 8(9):e68245. https://doi.org/10.1371/journal.pone.0068245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1408. Zhang Y, Guan Y, Pan S, Yan L, Wang P, Chen Z, Shen Q, Zhao F, Zhang X, Li J et al (2020) Hypothalamic extended synaptotagmin-3 contributes to the development of dietary obesity and related metabolic disorders. Proc Natl Acad Sci USA 117(33):20149–20158. https://doi.org/10.1073/pnas.2004392117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1409. Lin WH, Chiu KC, Chang HM, Lee KC, Tai TY, Chuang LM (2001) Molecular scanning of the human sorbin and SH3-domain-containing-1 (SORBS1) gene: positive association of the T228A polymorphism with obesity and type 2 diabetes. Hum Mol Genet 10(17):1753–1760. https://doi.org/10.1093/hmg/10.17.1753

    Article  PubMed  CAS  Google Scholar 

  1410. Bhutia YD, Mathew M, Sivaprakasam S, Ramachandran S, Ganapathy V (2022) Unconventional functions of amino acid transporters: role in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules 12(2):235. https://doi.org/10.3390/biom12020235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1411. Kan S, Li R, Tan Y, Yang F, Xu S, Wang L, Zhang L, Sun X, Chen X, Yang Y et al (2022) Latexin deficiency attenuates adipocyte differentiation and protects mice against obesity and metabolic disorders induced by high-fat diet. Cell Death Dis 13(2):175. https://doi.org/10.1038/s41419-022-04636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1412. Rijks J, Penders B, Dorenbos E, Straetemans S, Gerver WJ, Vreugdenhil A (2016) Pituitary response to thyrotropin releasing hormone in children with overweight and obesity. Sci Rep 6:31032. https://doi.org/10.1038/srep31032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1413. Siddiqui K, George TP, Nawaz SS, Joy SS (2019) VCAM-1, ICAM-1 and selectins in gestational diabetes mellitus and the risk for vascular disorders. Future Cardiol 15(5):339–346. https://doi.org/10.2217/fca-2018-0042

    Article  PubMed  CAS  Google Scholar 

  1414. Fruscalzo A, Viola L, Orsaria M, Marzinotto S, Bulfoni M, Driul L, Londero AP, Mariuzzi L (2021) STRA6 and placental retinoid metabolism in gestational diabetes mellitus. J Pers Med 11(12):1301. https://doi.org/10.3390/jpm11121301

    Article  PubMed  PubMed Central  Google Scholar 

  1415. Shan Y, Cui J, Kang X, Tang W, Lu Y, Gao Y, Chen L (2022) Aquaporin-8 overexpression is involved in vascular structure and function changes in placentas of gestational diabetes mellitus patients. Open Life Sci 17(1):1473–1486. https://doi.org/10.1515/biol-2022-0522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1416. Ron I, Mdah R, Zemet R, Ulman RY, Rathaus M, Brandt B, Mazaki-Tovi S, Hemi R, Barhod E, Tirosh A (2023) Adipose tissue-derived FABP4 mediates glucagon-stimulated hepatic glucose production in gestational diabetes. Diabetes Obes Metab 25(11):3192–3201. https://doi.org/10.1111/dom.15214

    Article  PubMed  CAS  Google Scholar 

  1417. Nuzzo AM, Giuffrida D, Moretti L, Re P, Grassi G, Menato G, Rolfo A (2021) Placental and maternal sFlt1/PlGF expression in gestational diabetes mellitus. Sci Rep 11(1):2312. https://doi.org/10.1038/s41598-021-81785-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1418. Rassie K, Giri R, Joham AE, Mousa A, Teede H (2022) Prolactin in relation to gestational diabetes and metabolic risk in pregnancy and postpartum: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 13:1069625. https://doi.org/10.3389/fendo.2022.1069625

    Article  PubMed  Google Scholar 

  1419. Artunc-Ulkumen B, Ulucay S, Pala HG, Cam S (2017) Maternal serum ADAMTS-9 levels in gestational diabetes: a pilot study. J Matern Fetal Neonatal Med 30(12):1442–1445. https://doi.org/10.1080/14767058.2016.1219717

    Article  PubMed  CAS  Google Scholar 

  1420. Bayman MG, Inal ZO, Hayiroglu F, Ozturk ENY, Gezginc K (2022) Foetal umbilical cord brain-derived neurotrophic factor (BDNF) levels in pregnancy with gestational diabetes mellitus. J Obstet Gynaecol 42(5):1097–1102. https://doi.org/10.1080/01443615.2021.2006159

    Article  PubMed  CAS  Google Scholar 

  1421. Cao X, Lu B, Gu Y, Li X, Guo D, Xia F (2022) miR-210-3p impairs pancreatic β-cell function by targeting Dtx1 in gestational diabetes mellitus. J Environ Pathol Toxicol Oncol 41(4):11–23. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2022041670

    Article  PubMed  Google Scholar 

  1422. Sheu A, Chan Y, Ferguson A, Bakhtyari MB, Hawke W, White C, Chan YF, Bertolino PJ, Woon HG, Palendira U et al (2018) A proinflammatory CD4+ T cell phenotype in gestational diabetes mellitus. Diabetologia 61(7):1633–1643. https://doi.org/10.1007/s00125-018-4615-1

    Article  PubMed  CAS  Google Scholar 

  1423. Ozler S, Oztas E, Gumus Guler B, Erel O, Turhan Caglar A, Ergin M, Uygur D, Danisman N (2020) Are serum levels of ADAMTS5, TAS and TOS at 24–28 gestational weeks associated with adverse perinatal outcomes in gestational diabetic women? J Obstet Gynaecol 40(5):619–625. https://doi.org/10.1080/01443615.2019.1634025

    Article  PubMed  CAS  Google Scholar 

  1424. Chaparro A, Realini O, Hernández M, Albers D, Weber L, Ramírez V, Param F, Kusanovic JP, Sorsa T, Rice GE et al (2021) Early pregnancy levels of gingival crevicular fluid matrix metalloproteinases-8 and -9 are associated with the severity of periodontitis and the development of gestational diabetes mellitus. J Periodontol 92(2):205–215. https://doi.org/10.1002/JPER.19-0743

    Article  PubMed  CAS  Google Scholar 

  1425. Santos KD, Rosado EL, da Fonseca ACP, Belfort GP, da Silva LBG, Ribeiro-Alves M, Zembrzuski VM, Martínez JA, Saunders C (2022) FTO and ADRB2 genetic polymorphisms are risk factors for earlier excessive gestational weight gain in pregnant women with pregestational diabetes mellitus: results of a randomized nutrigenetic trial. Nutrients 14(5):1050. https://doi.org/10.3390/nu14051050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1426. Kang Y, Huang H, Li H, Sun W, Zhang C (2021) Functional genetic variants in the 3’UTR of PTPRD associated with the risk of gestational diabetes mellitus. Exp Ther Med 21(6):562. https://doi.org/10.3892/etm.2021.9994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1427. Li J, Qian G, Zhong X, Yu T (2018) Insulin treatment cannot promote lipogenesis in rat fetal lung in gestational diabetes mellitus because of failure to redress the imbalance among SREBP-1, SCAP, and INSIG-1. DNA Cell Biol 37(3):264–270. https://doi.org/10.1089/dna.2017.3906

    Article  PubMed  CAS  Google Scholar 

  1428. Mosavat M, Omar SZ, Tan PC, Razif MFM, Sthaneshwar P (2018) Leptin and soluble leptin receptor in association with gestational diabetes: a prospective case-control study. Arch Gynecol Obstet 297(3):797–803. https://doi.org/10.1007/s00404-017-4617-0

    Article  PubMed  CAS  Google Scholar 

  1429. Keckstein S, Pritz S, Amann N, Meister S, Beyer S, Jegen M, Kuhn C, Hutter S, Knabl J, Mahner S et al (2020) Sex specific expression of interleukin 7, 8 and 15 in placentas of women with gestational diabetes. Int J Mol Sci 21(21):8026. https://doi.org/10.3390/ijms21218026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1430. Ramanjaneya M, Butler AE, Bashir M, Bettahi I, Moin ASM, Ahmed L, Elrayess MA, Hunt SC, Atkin SL, Abou-Samra AB (2021) apoA2 correlates to gestational age with decreased apolipoproteins A2, C1, C3 and E in gestational diabetes. BMJ Open Diabetes Res Care 9(1):e001925. https://doi.org/10.1136/bmjdrc-2020-001925

    Article  PubMed  PubMed Central  Google Scholar 

  1431. Dmitrenko OP, Karpova NS, Nurbekov MK, Papysheva OV (2020) I/D polymorphism gene ACE and risk of preeclampsia in women with gestational diabetes mellitus. Dis Markers 2020:8875230. https://doi.org/10.1155/2020/8875230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1432. Houde AA, Ruchat SM, Allard C, Baillargeon JP, St-Pierre J, Perron P, Gaudet D, Brisson D, Hivert MF, Bouchard L (2015) LRP1B, BRD2 and CACNA1D: new candidate genes in fetal metabolic programming of newborns exposed to maternal hyperglycemia. Epigenomics 7(7):1111–1122. https://doi.org/10.2217/epi.15.72

    Article  PubMed  CAS  Google Scholar 

  1433. Xiong T, Zhong C, Sun G, Zhou X, Chen R, Li Q, Wu Y, Gao Q, Huang L, Hu X et al (2019) Early maternal circulating alkaline phosphatase with subsequent gestational diabetes mellitus and glucose regulation: a prospective cohort study in China. Endocrine 65(2):295–303. https://doi.org/10.1007/s12020-019-01954-5

    Article  PubMed  CAS  Google Scholar 

  1434. Tan YX, Hu SM, You YP, Yang GL, Wang W (2019) Replication of previous genome-wide association studies of HKDC1, BACE2, SLC16A11 and TMEM163 SNPs in a gestational diabetes mellitus case-control sample from Han Chinese population. Diabetes Metab Syndr Obes 12:983–989. https://doi.org/10.2147/DMSO.S207019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1435. Bo S, Gambino R, Menato G, Canil S, Ponzo V, Pinach S, Durazzo M, Ghigo E, Cassader M, Musso G (2015) Isoleucine-to-methionine substitution at residue 148 variant of PNPLA3 gene and metabolic outcomes in gestational diabetes. Am J Clin Nutr 101(2):310–318. https://doi.org/10.3945/ajcn.114.095125

    Article  PubMed  CAS  Google Scholar 

  1436. Tarnowski M, Malinowski D, Pawlak K, Dziedziejko V, Safranow K, Pawlik A (2017) GCK, GCKR, FADS1, DGKB/TMEM195 and CDKAL1 gene polymorphisms in women with gestational diabetes. Can J Diabetes 41(4):372–379. https://doi.org/10.1016/j.jcjd.2016.11.009

    Article  PubMed  Google Scholar 

  1437. Coban U, Celik ZB (2023) The promoter methylations of the autoimmune regulator (AIRE) gene and matrix metalloproteinase-3 (MMP-3) gene may have a role in gestational diabetes mellitus. Eur Rev Med Pharmacol Sci 27(3):1051–1057. https://doi.org/10.26355/eurrev_202302_31201

    Article  PubMed  CAS  Google Scholar 

  1438. Yilmaz F, Micili SC, Erbil G (2022) The role of FGF-4 and FGFR-2 on preimplantation embryo development in experimental maternal diabetes. Gynecol Endocrinol 38(3):248–252. https://doi.org/10.1080/09513590.2021.2005782

    Article  PubMed  CAS  Google Scholar 

  1439. Fan W, Kang W, Li T, Luo D, Huang L, Yang Y, Sun Y (2021) Interleukin-33 and its receptor soluble suppression of tumorigenicity 2 in the diagnosis of gestational diabetes mellitus. Int J Clin Pract 75(12):e14944. https://doi.org/10.1111/ijcp.14944

    Article  PubMed  CAS  Google Scholar 

  1440. Yang J, Liu F, Li Y, Wu D, Zhang Z, Chen S, Deng M, Yang C, Yang J (2022) Forkhead box C2 is associated with insulin resistance in gestational diabetes mellitus. Gynecol Endocrinol 38(6):499–502. https://doi.org/10.1080/09513590.2022.2072485

    Article  PubMed  CAS  Google Scholar 

  1441. Näf S, Escote X, Ballesteros M, Yañez RE, Simón-Muela I, Gil P, Albaiges G, Vendrell J, Megia A (2014) Serum activin A and follistatin levels in gestational diabetes and the association of the Activin A-Follistatin system with anthropometric parameters in offspring. PLoS ONE 9(4):e92175. https://doi.org/10.1371/journal.pone.0092175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1442. Xu D, Gao C, Cao Y, Xiao B (2023) HOXC8 alleviates high glucose-triggered damage of trophoblast cells during gestational diabetes mellitus via activating TGFβ1-mediated Notch1 pathway. Hum Cell 36(1):195–208. https://doi.org/10.1007/s13577-022-00816-z

    Article  PubMed  CAS  Google Scholar 

  1443. Jaskolski MR, Diedrich AK, Odainic A, Schmidt SV, Schmitz MT, Strizek B, Gembruch U, Merz WM, Flöck A (2022) Brain-derived neurotrophic factor in gestational diabetes: analysis of maternal serum and cord blood pairs and comparison of dietary- and insulin-dependent GDM. Metabolites 12(6):482. https://doi.org/10.3390/metabo12060482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1444. Xu Y, Kang X, Liu H, Jiang H, Wang W (2023) LncRNA XIST promotes insulin resistance in gestational diabetes mellitus via the microRNA-181b-5p/NDRG2 axis. Gen Physiol Biophys 42(5):443–455. https://doi.org/10.4149/gpb_2023019

    Article  PubMed  CAS  Google Scholar 

  1445. Popova P, Vasilyeva L, Tkachuck A, Puzanov M, Golovkin A, Bolotko Y, Pustozerov E, Vasilyeva E, Li O, Zazerskaya I et al (2018) A randomised, controlled study of different glycaemic targets during gestational diabetes treatment: effect on the level of adipokines in cord blood and ANGPTL4 expression in human umbilical vein endothelial cells. Int J Endocrinol 2018:6481658. https://doi.org/10.1155/2018/6481658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1446. Zhou H, Chen P, Dai F, Wang J (2022) Up-regulation of TGFBI and TGFB2 in the plasma of gestational diabetes mellitus patients and its clinical significance. Ir J Med Sci 191(5):2029–2033. https://doi.org/10.1007/s11845-021-02838-2

    Article  PubMed  CAS  Google Scholar 

  1447. Liu J, Dai Q, Li W, Guo Y, Dai A, Wang Y, Deng M, Tang Z, She L, Chen X et al (2021) Association of vitamin D receptor gene polymorphisms with gestational diabetes mellitus-a case control study in Wuhan, China. BMC Pregnancy Childbirth 21(1):142. https://doi.org/10.1186/s12884-021-03621-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1448. Deischinger C, Harreiter J, Leitner K, Wattar L, Baumgartner-Parzer S, Kautzky-Willer A (2021) Glypican-4 in pregnancy and its relation to glucose metabolism, insulin resistance and gestational diabetes mellitus status. Sci Rep 11(1):23898. https://doi.org/10.1038/s41598-021-03454-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1449. Milan KL, Jayasuriya R, Harithpriya K, Anuradha M, Ramkumar KM (2024) MicroRNA-125b regulates vitamin D resistance by targeting CYP24A1 in the progression of gestational diabetes mellitus. J Steroid Biochem Mol Biol 239:106475. https://doi.org/10.1016/j.jsbmb.2024.106475

    Article  PubMed  CAS  Google Scholar 

  1450. Li Q, Pereira TJ, Moyce BL, Mahood TH, Doucette CA, Rempel J, Dolinsky VW (2016) In utero exposure to gestational diabetes mellitus conditions TLR4 and TLR2 activated IL-1beta responses in spleen cells from rat offspring. Biochim Biophys Acta 1862(11):2137–2146. https://doi.org/10.1016/j.bbadis.2016.08.004

    Article  PubMed  CAS  Google Scholar 

  1451. Zhang J, Chi H, Xiao H, Tian X, Wang Y, Yun X, Xu Y (2017) Interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) single nucleotide polymorphisms (SNPs), inflammation and metabolism in gestational diabetes mellitus in inner Mongolia. Med Sci Monit 23:4149–4157. https://doi.org/10.12659/msm.903565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1452. Zhang H, Chen Z, Wang X (2022) Differentiated serum levels of Krüppel-like factors 2 and 4, sP-selectin, and sE-selectin in patients with gestational diabetes mellitus. Gynecol Endocrinol 38(12):1121–1124. https://doi.org/10.1080/09513590.2022.2164762

    Article  PubMed  CAS  Google Scholar 

  1453. Gęca T, Kwaśniewska A (2020) The influence of gestational diabetes mellitus upon the selected parameters of the maternal and fetal system of insulin-like growth factors (IGF-1, IGF-2, IGFBP1-3)-a review and a clinical study. J Clin Med 9(10):3256. https://doi.org/10.3390/jcm9103256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1454. Wang Y, Zhao S, Peng W, Chen Y, Chi J, Che K, Wang Y (2022) The role of Slit-2 in gestational diabetes mellitus and its effect on pregnancy outcome. Front Endocrinol (Lausanne) 13:889505. https://doi.org/10.3389/fendo.2022.889505

    Article  PubMed  Google Scholar 

  1455. Guo YY, Li T, Liu H, Tang L, Li YC, Hu HT, Su YF, Lin Y, Wang YY, Li C et al (2020) Circulating levels of Elabela and Apelin in the second and third trimesters of pregnancies with gestational diabetes mellitus. Gynecol Endocrinol 36(10):890–894. https://doi.org/10.1080/09513590.2020.1739264

    Article  PubMed  CAS  Google Scholar 

  1456. Tarnowski M, Malinowski D, Safranow K, Dziedziejko V, Pawlik A (2018) HNF1B, TSPAN8 and NOTCH2 gene polymorphisms in women with gestational diabetes. J Matern Fetal Neonatal Med 31(7):837–842. https://doi.org/10.1080/14767058.2017.1297793

    Article  PubMed  CAS  Google Scholar 

  1457. Gorkem U, Togrul C, Arslan E (2020) Relationship between elevated serum level of placental growth factor and status of gestational diabetes mellitus. J Matern Fetal Neonatal Med 33(24):4159–4163. https://doi.org/10.1080/14767058.2019.1598361

    Article  PubMed  Google Scholar 

  1458. Zhang L, Lu B, Wang W, Miao S, Zhou S, Cheng X, Zhu J, Liu C (2021) Alteration of serum neuregulin 4 and neuregulin 1 in gestational diabetes mellitus. Ther Adv Endocrinol Metab 12:20420188211049616. https://doi.org/10.1177/20420188211049614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1459. Yanai S, Tokuhara D, Tachibana D, Saito M, Sakashita Y, Shintaku H, Koyama M (2016) Diabetic pregnancy activates the innate immune response through TLR5 or TLR1/2 on neonatal monocyte. J Reprod Immunol 117:17–23. https://doi.org/10.1016/j.jri.2016.06.007

    Article  PubMed  CAS  Google Scholar 

  1460. Liu L, Hu J, Wang N, Liu Y, Wei X, Gao M, Ma Y, Wen D (2020) A novel association of CCDC80 with gestational diabetes mellitus in pregnant women: a propensity score analysis from a case-control study. BMC Pregnancy Childbirth 20(1):53. https://doi.org/10.1186/s12884-020-2743-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1461. Kapustin RV, Drobintseva AO, Alekseenkova EN, Onopriychuk AR, Arzhanova ON, Polyakova VO, Kvetnoy IM (2020) Placental protein expression of kisspeptin-1 (KISS1) and the kisspeptin-1 receptor (KISS1R) in pregnancy complicated by diabetes mellitus or preeclampsia. Arch Gynecol Obstet 301(2):437–445. https://doi.org/10.1007/s00404-019-05408-1

    Article  PubMed  CAS  Google Scholar 

  1462. Fadel MM, Abdel Ghaffar FR, Zwain SK, Ibrahim HM, Badr EA (2021) Serum netrin and VCAM-1 as biomarker for Egyptian patients with type IΙ diabetes mellitus. Biochem Biophys Rep 27:101045. https://doi.org/10.1016/j.bbrep.2021.101045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1463. He QJ, Wang P, Liu QQ, Wu QG, Li YF, Wang J, Lee SC (2020) Secreted Wnt6 mediates diabetes-associated centrosome amplification via its receptor FZD4. Am J Physiol Cell Physiol 318(1):C48–C62. https://doi.org/10.1152/ajpcell.00091.2019

    Article  PubMed  CAS  Google Scholar 

  1464. Furuhashi M, Sakuma I, Morimoto T, Higashiura Y, Sakai A, Matsumoto M, Sakuma M, Shimabukuro M, Nomiyama T, Arasaki O et al (2020) Independent and distinct associations of FABP4 and FABP5 With metabolic parameters in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 11:575557. https://doi.org/10.3389/fendo.2020.575557

    Article  PubMed  Google Scholar 

  1465. Qi H, Yao L, Liu Q (2019) MicroRNA-96 regulates pancreatic β cell function under the pathological condition of diabetes mellitus through targeting Foxo1 and Sox6. Biochem Biophys Res Commun 519(2):294–301. https://doi.org/10.1016/j.bbrc.2019.09.001

    Article  PubMed  CAS  Google Scholar 

  1466. Wootton PT, Stephens JW, Hurel SJ, Durand H, Cooper J, Ninio E, Humphries SE, Talmud PJ (2006) Lp-PLA2 activity and PLA2G7 A379V genotype in patients with diabetes mellitus. Atherosclerosis 189(1):149–156. https://doi.org/10.1016/j.atherosclerosis.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  1467. Goncalves I, Bengtsson E, Colhoun HM, Shore AC, Palombo C, Natali A, Edsfeldt A, Dunér P, Fredrikson GN, Björkbacka H et al (2015) Elevated plasma levels of MMP-12 are associated with atherosclerotic burden and symptomatic cardiovascular disease in subjects with type 2 diabetes. Arterioscler Thromb Vasc Biol 35(7):1723–1731. https://doi.org/10.1161/ATVBAHA.115.305631

    Article  PubMed  CAS  Google Scholar 

  1468. Melnik BC (2021) Synergistic effects of milk-derived exosomes and galactose on α-synuclein pathology in parkinson’s disease and type 2 diabetes mellitus. Int J Mol Sci 22(3):1059. https://doi.org/10.3390/ijms22031059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1469. Overgaard M, Ravnsborg T, Lohse Z, Bytoft B, Clausen TD, Jensen RB, Damm P, Højlund K, Gravholt CH, Knorr S et al (2022) Apolipoprotein D and transthyretin are reduced in female adolescent offspring of women with type 1 diabetes: the EPICOM study. Diabet Med 39(7):e14776. https://doi.org/10.1111/dme.14776

    Article  PubMed  CAS  Google Scholar 

  1470. Mallardo D, Cortellini A, Capone M, Madonna G, Pinato DJ, Warren S, Simeone E, Ascierto PA (2022) Concomitant type 2 diabetes mellitus (T2DM) in metastatic melanoma patients could be related to lower level of LAG-3: a transcriptomic analysis of a retrospective cohort. Ann Oncol 33(4):445–447. https://doi.org/10.1016/j.annonc.2022.01.007

    Article  PubMed  CAS  Google Scholar 

  1471. Lewis JP, Palmer ND, Ellington JB, Divers J, Ng MC, Lu L, Langefeld CD, Freedman BI, Bowden DW (2010) Analysis of candidate genes on chromosome 20q12-13.1 reveals evidence for BMI mediated association of PREX1 with type 2 diabetes in European Americans. Genomics 96(4):211–219. https://doi.org/10.1016/j.ygeno.2010.07.006

    Article  PubMed  CAS  Google Scholar 

  1472. Bayat M, Chien S, Chehelcheraghi F (2021) Co- localization of Flt1 and tryptase of mast cells in skin wound of rats with type I diabetes: initial studies. Acta Histochem 123(2):151680. https://doi.org/10.1016/j.acthis.2021.15168

    Article  PubMed  CAS  Google Scholar 

  1473. Furuhashi M, Sakuma I, Morimoto T, Higashiura Y, Sakai A, Matsumoto M, Sakuma M, Shimabukuro M, Nomiyama T, Arasaki O et al (2020) Independent and distinct associations of FABP4 and FABP5 with metabolic parameters in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 11:575557. https://doi.org/10.3389/fendo.2020.575557

    Article  PubMed  Google Scholar 

  1474. Zbidi H, López JJ, Amor NB, Bartegi A, Salido GM, Rosado JA (2009) Enhanced expression of STIM1/Orai1 and TRPC3 in platelets from patients with type 2 diabetes mellitus. Blood Cells Mol Dis 43(2):211–213. https://doi.org/10.1016/j.bcmd.2009.04.005

    Article  PubMed  CAS  Google Scholar 

  1475. Reinhard L, Thomas C, Machalitza M, Lattwein E, Weiss LS, Vitu J, Wiech T, Stahl RAK, Hoxha E (2021) Characterization of THSD7A-antibodies not binding to glomerular THSD7A in a patient with diabetes mellitus but no membranous nephropathy. Sci Rep 11(1):16188. https://doi.org/10.1038/s41598-021-94921-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1476. Freedman BI, Bowden DW, Murea M (2011) Protein kinase C-β gene variants and type 2 diabetes-associated kidney failure: what can we learn from gene association studies in diabetic nephropathy? Am J Kidney Dis 57(2):194–197. https://doi.org/10.1053/j.ajkd.2010.10.042

    Article  PubMed  CAS  Google Scholar 

  1477. Sano R, Miki T, Suzuki Y, Shimada F, Taira M, Kanatsuka A, Makino H, Hashimoto N, Saito Y (2001) Analysis of the insulin-sensitive phosphodiesterase 3B gene in type 2 diabetes. Diabetes Res Clin Pract 54(2):79–88. https://doi.org/10.1016/s0168-8227(01)00287-x

    Article  PubMed  CAS  Google Scholar 

  1478. Liang C, Sun R, Xu Y, Geng W, Li J (2020) Effect of the abnormal expression of BMP-4 in the blood of diabetic patients on the osteogenic differentiation potential of alveolar bmscs and the rescue effect of metformin: a bioinformatics-based study. Biomed Res Int 2020:7626215. https://doi.org/10.1155/2020/7626215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1479. Scairati R, Auriemma RS, Del Vecchio G, Di Meglio S, Pivonello R, Colao A (2024) Prolactin effects on the pathogenesis of diabetes mellitus. Eur J Clin Invest. https://doi.org/10.1111/eci.14190

    Article  PubMed  Google Scholar 

  1480. Korley FK, Goldstick J, Mastali M, Van Eyk JE, Barsan W, Meurer WJ, Sussman J, Falk H, Levine D (2019) Serum NfL (neurofilament light chain) levels and incident stroke in adults with diabetes mellitus. Stroke 50(7):1669–1675. https://doi.org/10.1161/STROKEAHA.119.024941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1481. Xu W, Sang YQ, Liu XK, Geng HF, Wang B, Shi L, Qiu QQ, Yu TP, Zhang Y, Zhang X et al (2023) Effect of glucagon-like peptide-1 receptor agonist on insulin secretion index and serum Wnt5a protein in patients with new-onset type 2 diabetes mellitus. J Diabetes Metab Disord 22(1):539–545. https://doi.org/10.1007/s40200-022-01175-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1482. Alsters SI, Goldstone AP, Buxton JL, Zekavati A, Sosinsky A, Yiorkas AM, Holder S, Klaber RE, Bridges N, van Haelst MM et al (2015) Truncating homozygous mutation of carboxypeptidase E (CPE) in a morbidly obese female with type 2 diabetes mellitus, intellectual disability and hypogonadotrophic hypogonadism. PLoS ONE 10(6):e0131417. https://doi.org/10.1371/journal.pone.0131417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1483. Boesgaard TW, Gjesing AP, Grarup N, Rutanen J, Jansson PA, Hribal ML, Sesti G, Fritsche A, Stefan N, Staiger H et al (2009) Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients–EUGENE2 study. PLoS ONE 4(9):e7236. https://doi.org/10.1371/journal.pone.0007236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1484. Moosaie F, Mohammadi S, Saghazadeh A, Dehghani Firouzabadi F, Rezaei N (2023) Brain-derived neurotrophic factor in diabetes mellitus: a systematic review and meta-analysis. PLoS ONE 18(2):e0268816. https://doi.org/10.1371/journal.pone.0268816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1485. Al-Daghri NM, Costa AS, Alokail MS, Zanzottera M, Alenad AM, Mohammed AK, Clerici M, Guerini FR (2016) Synaptosomal protein of 25 kDa (Snap25) polymorphisms associated with glycemic parameters in type 2 diabetes patients. J Diabetes Res 2016:8943092. https://doi.org/10.1155/2016/8943092

    Article  PubMed  CAS  Google Scholar 

  1486. Willecke F, Yuan C, Oka K, Chan L, Hu Y, Barnhart S, Bornfeldt KE, Goldberg IJ, Fisher EA (2015) Effects of high fat feeding and diabetes on regression of atherosclerosis induced by low-density lipoprotein receptor gene therapy in LDL receptor-deficient mice. PLoS ONE 10(6):e0128996. https://doi.org/10.1371/journal.pone.0128996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1487. Haskins K, Cooke A (2011) CD4 T cells and their antigens in the pathogenesis of autoimmune diabetes. Curr Opin Immunol 23(6):739–745. https://doi.org/10.1016/j.coi.2011.08.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1488. Derbenev AV, Zsombok A (2016) Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity. Semin Immunopathol 38(3):397–406. https://doi.org/10.1007/s00281-015-0529-x

    Article  PubMed  CAS  Google Scholar 

  1489. Shan TD, Yue H, Sun XG, Jiang YP, Chen L (2021) Rspo3 regulates the abnormal differentiation of small intestinal epithelial cells in diabetic state. Stem Cell Res Ther 12(1):330. https://doi.org/10.1186/s13287-021-02385-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1490. Raza W, Guo J, Qadir MI, Bai B, Muhammad SA (2022) qPCR analysis reveals association of differential expression of SRR, NFKB1, and PDE4B genes with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 12:774696. https://doi.org/10.3389/fendo.2021.774696

    Article  PubMed  Google Scholar 

  1491. Aliev G, Shahida K, Gan SH, Firoz C, Khan A, Abuzenadah AM, Kamal W, Kamal MA, Tan Y, Qu X et al (2014) Alzheimer disease and type 2 diabetes mellitus: the link to tyrosine hydroxylase and probable nutritional strategies. CNS Neurol Disord Drug Targets 13(3):467–477. https://doi.org/10.2174/18715273113126660153

    Article  PubMed  CAS  Google Scholar 

  1492. Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B, Lyssenko V, Renström E (2013) The human L-type calcium channel Cav13 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 56(2):340–349. https://doi.org/10.1007/s00125-012-2758-z

    Article  PubMed  CAS  Google Scholar 

  1493. Merlo S, Starčević JN, Mankoč S, Šantl Letonja M, Cokan Vujkovac A, Zorc M, Petrovič D (2016) Vascular Endothelial growth factor gene polymorphism (rs2010963) and its receptor, kinase insert domain-containing receptor gene polymorphism (rs2071559), and markers of carotid atherosclerosis in patients with type 2 diabetes mellitus. J Diabetes Res 2016:1482194. https://doi.org/10.1155/2016/1482194

    Article  PubMed  CAS  Google Scholar 

  1494. Gu H, Jiang W, You N, Huang X, Li Y, Peng X, Dong R, Wang Z, Zhu Y, Wu K et al (2020) Soluble klotho improves hepatic glucose and lipid homeostasis in type 2 diabetes. Mol Ther Methods Clin Dev 18:811–823. https://doi.org/10.1016/j.omtm.2020.08.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1495. Yaghootkar H, Stancáková A, Freathy RM, Vangipurapu J, Weedon MN, Xie W, Wood AR, Ferrannini E, Mari A, Ring SM et al (2015) Association analysis of 29,956 individuals confirms that a low-frequency variant at CCND2 halves the risk of type 2 diabetes by enhancing insulin secretion. Diabetes 64(6):2279–2285. https://doi.org/10.2337/db14-1456

    Article  PubMed  CAS  Google Scholar 

  1496. Saif-Ali R, Al-Hamodi Z, Salem SD, Al-Habori M, Al-Dubai SA, Ismail IS (2024) Association of protein tyrosine phosphatase receptor type D and serine racemase genetic variants with type 2 diabetes in Malaysian Indians. Indian J Endocrinol Metab 28(1):55–59. https://doi.org/10.4103/ijem.ijem_209_23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1497. Guo M, Guo H, Zhu J, Wang F, Chen J, Wan C, Deng Y, Wang F, Xu L, Chen Y et al (2024) A novel subpopulation of monocytes with a strong interferon signature indicated by SIGLEC-1 is present in patients with in recent-onset type 1 diabetes. Diabetologia 67(4):623–640. https://doi.org/10.1007/s00125-024-06098-4

    Article  PubMed  CAS  Google Scholar 

  1498. Habieb MS, Dawood AA, Emara MM, Elhelbawy MG, Elhelbawy NG (2020) The human genetic variants CYP2J2 rs2280275 and EPHX2 rs751141 and risk of diabetic nephropathy in egyptian type 2 diabetic patients. Appl Clin Genet 13:165–178. https://doi.org/10.2147/TACG.S281502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1499. Wang XL, Greco M, Sim AS, Duarte N, Wang J, Wilcken DE (2002) Effect of CYP1A1 MspI polymorphism on cigarette smoking related coronary artery disease and diabetes. Atherosclerosis 162(2):391–397. https://doi.org/10.1016/s0021-9150(01)00723-7

    Article  PubMed  CAS  Google Scholar 

  1500. Adiga U, Banawalikar N, Mayur S, Bansal R, Ameera N, Rao S (2021) Association of insulin resistance and leptin receptor gene polymorphism in type 2 diabetes mellitus. J Chin Med Assoc 84(4):383–388. https://doi.org/10.1097/JCMA.0000000000000507

    Article  PubMed  CAS  Google Scholar 

  1501. Siewko K, Maciulewski R, Zielinska-Maciulewska A, Poplawska-Kita A, Szumowski P, Wawrusiewicz-Kurylonek N, Lipinska D, Milewski R, Gorska M, Kretowski A et al (2019) Interleukin-6 and interleukin-15 as possible biomarkers of the risk of autoimmune diabetes development. Biomed Res Int 2019:4734063. https://doi.org/10.1155/2019/473406

    Article  PubMed  PubMed Central  Google Scholar 

  1502. Zhang JM, Yu RQ, Wu FZ, Qiao L, Wu XR, Fu YJ, Liang YF, Pang Y, Xie CY (2021) BMP-2 alleviates heart failure with type 2 diabetes mellitus and doxorubicin-induced AC16 cell injury by inhibiting NLRP3 inflammasome-mediated pyroptosis. Exp Ther Med 22(2):897. https://doi.org/10.3892/etm.2021.10329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1503. El-Lebedy D, Raslan HM, Mohammed AM (2016) Apolipoprotein E gene polymorphism and risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol 15:12. https://doi.org/10.1186/s12933-016-0329-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1504. Tsekmekidou X, Tsetsos F, Koufakis T, Karras SN, Georgitsi M, Papanas N, Papazoglou D, Roumeliotis A, Panagoutsos S, Thodis E et al (2020) Association between CUBN gene variants, type 2 diabetes and vitamin D concentrations in an elderly Greek population. J Steroid Biochem Mol Biol 198:105549. https://doi.org/10.1016/j.jsbmb.2019.105549

    Article  PubMed  CAS  Google Scholar 

  1505. Vincent JA, Mohr S (2007) Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 56(1):224–230. https://doi.org/10.2337/db06-0427

    Article  PubMed  CAS  Google Scholar 

  1506. Taschler U, Radner FP, Heier C, Schreiber R, Schweiger M, Schoiswohl G, Preiss-Landl K, Jaeger D, Reiter B, Koefeler HC et al (2011) Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem 286(20):17467–17477. https://doi.org/10.1074/jbc.M110.215434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1507. Broquères-You D, Leré-Déan C, Merkulova-Rainon T, Mantsounga CS, Allanic D, Hainaud P, Contrères JO, Wang Y, Vilar J, Virally M et al (2012) Ephrin-B2-activated peripheral blood mononuclear cells from diabetic patients restore diabetes-induced impairment of postischemic neovascularization. Diabetes 61(10):2621–2632. https://doi.org/10.2337/db11-1768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1508. Khattab A, Torkamani A (2022) Nidogen-1 could play a role in diabetic kidney disease development in type 2 diabetes: a genome-wide association meta-analysis. Hum Genom 16(1):47. https://doi.org/10.1186/s40246-022-00422-y

    Article  CAS  Google Scholar 

  1509. Pedersen-Bjergaard U, Agerholm-Larsen B, Pramming S, Hougaard P, Thorsteinsson B (2001) Activity of angiotensin-converting enzyme and risk of severe hypoglycaemia in type 1 diabetes mellitus. Lancet 357(9264):1248–1253. https://doi.org/10.1016/S0140-6736(00)04405-6

    Article  PubMed  CAS  Google Scholar 

  1510. Demir I, Yilmaz I, Horoz E, Bozkaya G, Bilgir O (2024) The relationship between stathmin-2 level and metabolic parameters in newly diagnosed type 2 diabetes mellitus patients. Am J Med Sci. https://doi.org/10.1016/j.amjms.2024.03.023

    Article  PubMed  Google Scholar 

  1511. Bonner SM, Pietropaolo SL, Fan Y, Chang Y, Sethupathy P, Morran MP, Beems M, Giannoukakis N, Trucco G, Palumbo MO et al (2012) Sequence variation in promoter of Ica1 gene, which encodes protein implicated in type 1 diabetes, causes transcription factor autoimmune regulator (AIRE) to increase its binding and down-regulate expression. J Biol Chem 287(21):17882–17893. https://doi.org/10.1074/jbc.M111.319020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1512. Graham S, Gorin Y, Abboud HE, Ding M, Lee DY, Shi H, Ding Y, Ma R (2011) Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. Am J Physiol Cell Physiol 301(2):C304–C315. https://doi.org/10.1152/ajpcell.00014.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1513. Müssig K, Staiger H, Machicao F, Machann J, Schick F, Schäfer SA, Claussen CD, Holst JJ, Gallwitz B, Stefan N et al (2009) Preliminary report: genetic variation within the GPBAR1 gene is not associated with metabolic traits in white subjects at an increased risk for type 2 diabetes mellitus. Metabolism 58(12):1809–1811. https://doi.org/10.1016/j.metabol.2009.06.012

    Article  PubMed  CAS  Google Scholar 

  1514. Bayoumy NMK, El-Shabrawi MM, Leheta OF, Abo El-Ela AEM, Omar HH (2020) Association of ELMO1 gene polymorphism and diabetic nephropathy among Egyptian patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 36(5):e3299. https://doi.org/10.1002/dmrr.3299

    Article  PubMed  CAS  Google Scholar 

  1515. Aslamy A, Oh E, Ahn M, Moin ASM, Chang M, Duncan M, Hacker-Stratton J, El-Shahawy M, Kandeel F, DiMeglio LA et al (2018) Exocytosis protein DOC2B as a biomarker of type 1 diabetes. J Clin Endocrinol Metab 103(5):1966–1976. https://doi.org/10.1210/jc.2017-02492

    Article  PubMed  PubMed Central  Google Scholar 

  1516. Sun L, Zhang X, Wang T, Chen M, Qiao H (2017) Association of ANK1 variants with new-onset type 2 diabetes in a Han Chinese population from northeast China. Exp Ther Med 14(4):3184–3190. https://doi.org/10.3892/etm.2017.4866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1517. Goodarzi MO, Lehman DM, Taylor KD, Guo X, Cui J, Quiñones MJ, Clee SM, Yandell BS, Blangero J, Hsueh WA et al (2007) SORCS1: a novel human type 2 diabetes susceptibility gene suggested by the mouse. Diabetes 56(7):1922–1929. https://doi.org/10.2337/db06-1677

    Article  PubMed  CAS  Google Scholar 

  1518. Jiang H, Yao Q, An Y, Fan L, Wang J, Li H (2022) Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m6A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway. Phytomedicine 94:153823. https://doi.org/10.1016/j.phymed.2021.153823

    Article  PubMed  CAS  Google Scholar 

  1519. Moon S, Chung GE, Joo SK, Park JH, Chang MS, Yoon JW, Koo BK, Kim W (2022) A PNPLA3 polymorphism confers lower susceptibility to incident diabetes mellitus in subjects with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 20(3):682-691.e8. https://doi.org/10.1016/j.cgh.2021.04.038

    Article  PubMed  CAS  Google Scholar 

  1520. Li SW, Wang J, Yang Y, Liu ZJ, Cheng L, Liu HY, Ma P, Luo W, Liu SM (2016) Polymorphisms in FADS1 and FADS2 alter plasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease. J Transl Med 14:79. https://doi.org/10.1186/s12967-016-0834-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1521. Xia Q, Chesi A, Manduchi E, Johnston BT, Lu S, Leonard ME, Parlin UW, Rappaport EF, Huang P, Wells AD et al (2016) The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia 59(11):2360–2368. https://doi.org/10.1007/s00125-016-4077-2

    Article  PubMed  CAS  Google Scholar 

  1522. Smigoc Schweiger D, Mendez A, Kunilo Jamnik S, Bratanic N, Bratina N, Battelino T, Brecelj J, Vidan-Jeras B (2014) Genetic risk for co-occurrence of type 1 diabetes and celiac disease is modified by HLA-C and killer immunoglobulin-like receptors. Tissue Antigens 84(5):471–478. https://doi.org/10.1111/tan.12450

    Article  PubMed  CAS  Google Scholar 

  1523. Arner P, Petrus P, Esteve D, Boulomié A, Näslund E, Thorell A, Gao H, Dahlman I, Rydén M (2018) Screening of potential adipokines identifies S100A4 as a marker of pernicious adipose tissue and insulin resistance. Int J Obes (Lond) 42(12):2047–2056. https://doi.org/10.1038/s41366-018-0018-0

    Article  PubMed  CAS  Google Scholar 

  1524. Sun T, Wang C, Huo L, Wang Y, Liu K, Wei C, Zhao H, Chen S, Ren L (2023) Serum cortistatin level in type 2 diabetes mellitus and its relationship with nonalcoholic fatty liver disease. Int J Gen Med 16:631–639. https://doi.org/10.2147/IJGM.S396315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1525. Pleskovič A, Letonja MŠ, Vujkovac AC, Starčević JN, Caprnda M, Curilla E, Mozos I, Kruzliak P, Prosecky R, Petrovič D (2017) Matrix metalloproteinase-3 gene polymorphism (rs3025058) affects markers atherosclerosis in type 2 diabetes mellitus. Vasa 46(5):363–369. https://doi.org/10.1024/0301-1526/a000637

    Article  PubMed  Google Scholar 

  1526. Yang Y, Xie B, Ju C, Jin H, Ye X, Yao L, Jia M, Sun Z, Yuan Y (2019) The association of decreased serum gdnf level with hyperglycemia and depression in type 2 diabetes mellitus. Endocr Pract 25(9):951–965. https://doi.org/10.4158/EP-2018-0492

    Article  PubMed  Google Scholar 

  1527. Shruthi S, Mohan V, Amutha A, Aravindhan V (2016) Increased serum levels of novel T cell cytokines IL-33, IL-9 and IL-17 in subjects with type-1 diabetes. Cytokine 86:6–9. https://doi.org/10.1016/j.cyto.2016.07.007

    Article  PubMed  CAS  Google Scholar 

  1528. Hellweg R, Wöhrle M, Hartung HD, Stracke H, Hock C, Federlin K (1991) Diabetes mellitus-associated decrease in nerve growth factor levels is reversed by allogeneic pancreatic islet transplantation. Neurosci Lett 125(1):1–4. https://doi.org/10.1016/0304-3940(91)90114-9

    Article  PubMed  CAS  Google Scholar 

  1529. Håkansson J, Eliasson B, Smith U, Enerbäck S (2011) Adipocyte mitochondrial genes and the forkhead factor FOXC2 are decreased in type 2 diabetes patients and normalized in response to rosiglitazone. Diabetol Metab Syndr 3:32. https://doi.org/10.1186/1758-5996-3-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1530. Arellano Perez Vertti RD, Aguilar Muñiz LS, Morán Martínez J, González Galarza FF, Arguello AR (2019) Cartilage oligomeric matrix protein levels in type 2 diabetes associated with primary knee osteoarthritis patients. Genet Test Mol Biomarkers 23(1):16–22. https://doi.org/10.1089/gtmb.2018.0184

    Article  PubMed  CAS  Google Scholar 

  1531. Motahari Rad M, Bijeh N, Attarzadeh Hosseini SR, Raouf SA (2023) The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch Physiol Biochem 129(2):424–433. https://doi.org/10.1080/13813455.2020.1829649

    Article  PubMed  CAS  Google Scholar 

  1532. Sun X, Lee HC, Lu T (2024) Sorbs2 deficiency and vascular BK channelopathy in diabetes. Circ Res 134(7):858–871. https://doi.org/10.1161/CIRCRESAHA.123.323538

    Article  PubMed  CAS  Google Scholar 

  1533. Yasuhara J, Manivannan SN, Majumdar U, Gordon DM, Lawrence PJ, Aljuhani M, Myers K, Stiver C, Bigelow AM, Galantowicz M et al (2024) Novel pathogenic GATA6 variant associated with congenital heart disease, diabetes mellitus and necrotizing enterocolitis. Pediatr Res 95(1):146–155. https://doi.org/10.1038/s41390-023-02811-y

    Article  PubMed  CAS  Google Scholar 

  1534. Yu CY, Yang CY, Rui ZL (2019) MicroRNA-125b-5p improves pancreatic β-cell function through inhibiting JNK signaling pathway by targeting DACT1 in mice with type 2 diabetes mellitus. Life Sci 224:67–75. https://doi.org/10.1016/j.lfs.2019.01.031

    Article  PubMed  CAS  Google Scholar 

  1535. Zhang Q, Huang Y, Li X, Liu H, He B, Wang B, Ma Y, Zhou X, Liu Y, Wu S (2019) Tangduqing granules attenuate insulin resistance and abnormal lipid metabolism through the coordinated regulation of PPARγ and DGAT2 in type 2 diabetic rats. J Diabetes Res 2019:7403978. https://doi.org/10.1155/2019/7403978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1536. Jiang T, Li Y, He S, Huang N, Du M, Zhai Q, Pu K, Wu M, Yan C, Ma Z et al (2023) Reprogramming astrocytic NDRG2/NF-κB/C3 signaling restores the diabetes-associated cognitive dysfunction. EBioMedicine 93:104653. https://doi.org/10.1016/j.ebiom.2023.104653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1537. Poetsch F, Henze LA, Estepa M, Moser B, Pieske B, Lang F, Eckardt KU, Alesutan I, Voelkl J (2020) Role of SGK1 in the osteogenic transdifferentiation and calcification of vascular smooth muscle cells promoted by hyperglycemic conditions. Int J Mol Sci 21(19):7207. https://doi.org/10.3390/ijms21197207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1538. Gusarova V, O’Dushlaine C, Teslovich TM, Benotti PN, Mirshahi T, Gottesman O, Van Hout CV, Murray MF, Mahajan A, Nielsen JB et al (2018) Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nat Commun 9(1):2252. https://doi.org/10.1038/s41467-018-04611-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1539. Broquères-You D, Leré-Déan C, Merkulova-Rainon T, Mantsounga CS, Allanic D, Hainaud P, Contrères JO, Wang Y, Vilar J, Virally M et al (2012) Ephrin-B2-activated peripheral blood mononuclear cells from diabetic patients restore diabetes-induced impairment of postischemic neovascularization. Diabetes 61(10):2621–2632. https://doi.org/10.2337/db11-1768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1540. Zhu ML, Fan JX, Guo YQ, Guo LJ, Que HD, Cui BY, Li YL, Guo S, Zhang MX, Yin YL et al (2024) Protective effect of alizarin on vascular endothelial dysfunction via inhibiting the type 2 diabetes-induced synthesis of THBS1 and activating the AMPK signaling pathway. Phytomedicine. https://doi.org/10.1016/j.phymed.2024.155557

    Article  PubMed  Google Scholar 

  1541. Nam SM, Kwon HJ, Kim W, Kim JW, Hahn KR, Jung HY, Kim DW, Yoo DY, Seong JK, Hwang IK et al (2018) Changes of myelin basic protein in the hippocampus of an animal model of type 2 diabetes. Lab Anim Res 34(4):176–184. https://doi.org/10.5625/lar.2018.34.4.176

    Article  PubMed  PubMed Central  Google Scholar 

  1542. Papadimitriou A, Peixoto EB, Silva KC, Lopes de Faria JM, Lopes de Faria JB (2014) Increase in AMPK brought about by cocoa is renoprotective in experimental diabetes mellitus by reducing NOX4/TGFβ-1 signaling. J Nutr Biochem 25(7):773–784. https://doi.org/10.1016/j.jnutbio.2014.03.010

    Article  PubMed  CAS  Google Scholar 

  1543. Hope CM, Welch J, Mohandas A, Pederson S, Hill D, Gundsambuu B, Eastaff-Leung N, Grosse R, Bresatz S, Ang G et al (2019) Peptidase inhibitor 16 identifies a human regulatory T-cell subset with reduced FOXP3 expression over the first year of recent onset type 1 diabetes. Eur J Immunol 49(8):1235–1250. https://doi.org/10.1002/eji.201948094

    Article  PubMed  CAS  Google Scholar 

  1544. Wu C, Liu W, Liu Y, Xu T, Li M, Li X, Wang Y, Meng G, Li L, Zheng R et al (2023) Human umbilical cord mesenchymal stem cell-derived TGFBI attenuates streptozotocin-induced type 1 diabetes mellitus by inhibiting T-cell proliferation. Hum Cell 36(3):997–1010. https://doi.org/10.1007/s13577-023-00868-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1545. Rodriguez S, Eiriksdottir G, Gaunt TR, Harris TB, Launer LJ, Gudnason V, Day IN (2010) IGF2BP1, IGF2BP2 and IGF2BP3 genotype, haplotype and genetic model studies in metabolic syndrome traits and diabetes. Growth Horm IGF Res 20(4):310–318. https://doi.org/10.1016/j.ghir.2010.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1546. Ghodsian N, Ismail P, Ahmadloo S, Heidari F, Haghvirdizadeh P, Ataollahi Eshkoor S, Etemad A (2016) Novel association of WNK4 gene, ala589ser polymorphism in essential hypertension, and type 2 diabetes mellitus in Malaysia. J Diabetes Res 2016:8219543. https://doi.org/10.1155/2016/8219543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1547. Yuan G, Liu Y, Sun T, Xu Y, Zhang J, Yang Y, Zhang M, Cianflone K, Wang DW (2011) The therapeutic role of very low-density lipoprotein receptor gene in hyperlipidemia in type 2 diabetic rats. Hum Gene Ther 22(3):302–312. https://doi.org/10.1089/hum.2010.038

    Article  PubMed  CAS  Google Scholar 

  1548. Fawzy MS, Beladi FIA (2018) Association of circulating vitamin D, VDBP, and vitamin D receptor expression with severity of diabetic nephropathy in a group of saudi type 2 diabetes mellitus patients. Clin Lab 64(10):1623–1633. https://doi.org/10.7754/Clin.Lab.2018.180401

    Article  PubMed  CAS  Google Scholar 

  1549. Garranzo-Asensio M, Solís-Fernández G, Montero-Calle A, García-Martínez JM, Fiuza MC, Pallares P, Palacios-Garcia N, García-Jiménez C, Guzman-Aranguez A, Barderas R et al (2022) Seroreactivity against tyrosine phosphatase PTPRN links type 2 diabetes and colorectal cancer and identifies a potential diagnostic and therapeutic target. Diabetes 71(3):497–510. https://doi.org/10.2337/db20-1206

    Article  PubMed  CAS  Google Scholar 

  1550. Puri S, Akiyama H, Hebrok M (2013) VHL-mediated disruption of Sox9 activity compromises β-cell identity and results in diabetes mellitus. Genes Dev 27(23):2563–2575. https://doi.org/10.1101/gad.227785.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1551. Adel H, Fawzy O, Mahmoud E, Mohammed NS, Khidr EG (2023) Inactive matrix Gla protein in relation to diabetic retinopathy in type 2 diabetes. J Diabetes Metab Disord 22(1):603–610. https://doi.org/10.1007/s40200-022-01180-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1552. Tajiri M, Nakahashi O, Kagawa T, Masuda M, Ohminami H, Iwano M, Takeda E, Taketani Y, Yamamoto H (2020) Association of increased renal Cyp24a1 gene expression with low plasma 1,25-dihydroxyvitamin D levels in rats with streptozotocin-induced diabetes. J Clin Biochem Nutr 66(1):49–56. https://doi.org/10.3164/jcbn.19-79

    Article  PubMed  CAS  Google Scholar 

  1553. Ermiş Karaali Z, Candan G, Aktuğlu MB, Velet M, Ergen A (2019) Toll-like receptor 2 (TLR-2) gene polymorphisms in type 2 diabetes mellitus. Cell J 20(4):559–563. https://doi.org/10.22074/cellj.2019.5540

    Article  PubMed  Google Scholar 

  1554. Rehman K, Akash MSH, Liaqat A, Kamal S, Qadir MI, Rasul A (2017) Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr 27(3):229–236. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019712

    Article  PubMed  Google Scholar 

  1555. Everett BM, Cook NR, Chasman DI, Magnone MC, Bobadilla M, Rifai N, Ridker PM, Pradhan AD (2013) Prospective evaluation of B-type natriuretic peptide concentrations and the risk of type 2 diabetes in women. Clin Chem 59(3):557–565. https://doi.org/10.1373/clinchem.2012.194167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1556. Schneider A, Suman A, Rossi L, Barmada MM, Beglinger C, Parvin S, Sattar S, Ali L, Khan AK, Gyr N et al (2002) SPINK1/PSTI mutations are associated with tropical pancreatitis and type II diabetes mellitus in Bangladesh. Gastroenterology 123(4):1026–1030. https://doi.org/10.1053/gast.2002.36059

    Article  PubMed  CAS  Google Scholar 

  1557. Fan H, Han J, Chen L, Feng B, Sun X, Shi B (2022) Association between plasma growth arrest-specific protein 6 and carotid atherosclerosis in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 32(8):1917–1923. https://doi.org/10.1016/j.numecd.2022.05.007

    Article  PubMed  CAS  Google Scholar 

  1558. Adedayo A, Eluwole A, Tedla F, Kremer A, Khan M, Mastrogiovanni N, Rosenberg C, Dreizen P, La Rosa J, Salciccioli L et al (2022) Relationship between the soluble F11 receptor and annexin A5 in African Americans patients with type-2 diabetes mellitus. Biomedicines 10(8):1818. https://doi.org/10.3390/biomedicines10081818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1559. Cheng W, Cai C, Xu Y, Xiao X, Shi T, Liao Y, Wang X, Chen S, Zhou M, Liao Z (2023) TRIM21-FOXD1-BCL-2 axis underlies hyperglycaemic cell death and diabetic tissue damage. Cell Death Dis 14(12):825. https://doi.org/10.1038/s41419-023-06355-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1560. Lamin V, Verry J, Eigner-Bybee I, Fuqua JD, Wong T, Lira VA, Dokun AO (2021) Modulation of miR-29a and ADAM12 reduces post-ischemic skeletal muscle injury and improves perfusion recovery and skeletal muscle function in a mouse model of type 2 diabetes and peripheral artery disease. Int J Mol Sci 23(1):429. https://doi.org/10.3390/ijms23010429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1561. Wang FF, Zhang JL, Ji Y, Yan XJ, Sun L, Zhu Y, Jin H (2022) KLF2 mediates the suppressive effect of BDNF on diabetic intimal calcification by inhibiting HK1 induced endothelial-to-mesenchymal transition. Cell Signal 94:110324. https://doi.org/10.1016/j.cellsig.2022.110324

    Article  PubMed  CAS  Google Scholar 

  1562. Durrani IA, Bhatti A, John P (2023) Integrated bioinformatics analyses identifying potential biomarkers for type 2 diabetes mellitus and breast cancer: in SIK1-ness and health. PLoS ONE 18(8):0289839

    Article  Google Scholar 

  1563. Alwahsh SM, Qutachi O, Starkey Lewis PJ, Bond A, Noble J, Burgoyne P, Morton N, Carter R, Mann J, Ferreira-Gonzalez S et al (2021) Fibroblast growth factor 7 releasing particles enhance islet engraftment and improve metabolic control following islet transplantation in mice with diabetes. Am J Transplant 21(9):2950–2963. https://doi.org/10.1111/ajt.16488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1564. Kang YE, Choung S, Lee JH, Kim HJ, Ku BJ (2017) The role of circulating Slit2, the one of the newly batokines. Human Diabetes Mellitus. Endocrinol Metab (Seoul) 32(3):383–388. https://doi.org/10.3803/EnM.2017.32.3.383

    Article  PubMed  CAS  Google Scholar 

  1565. Ragvin A, Moro E, Fredman D, Navratilova P, Drivenes Ø, Engström PG, Alonso ME, de la Calle ME, Gómez Skarmeta JL, Tavares MJ et al (2010) Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc Natl Acad Sci USA 107(2):775–780. https://doi.org/10.1073/pnas.0911591107

    Article  PubMed  Google Scholar 

  1566. Zhang F, Han Y, Zheng L, Bao Z, Liu L, Li W (2024) Association between chitinase-3-like protein 1 and metabolic-associated fatty liver disease in patients with type 2 diabetes mellitus. Ir J Med Sci. https://doi.org/10.1007/s11845-024-03671-z

    Article  PubMed  Google Scholar 

  1567. Zhong Y, Du G, Liu J, Li S, Lin J, Deng G, Wei J, Huang J (2022) RUNX1 and CCL3 in diabetes mellitus-related coronary artery disease: a bioinformatics analysis. Int J Gen Med 15:955–963. https://doi.org/10.2147/IJGM.S350732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1568. Elsehmawy AAEW, El-Toukhy SE, Seliem NMA, Moustafa RS, Mohammed DS (2019) Apelin and chemerin as promising adipokines in children with type 1 diabetes mellitus. Diabetes Metab Syndr Obes 12:383–389. https://doi.org/10.2147/DMSO.S189264

    Article  PubMed  PubMed Central  Google Scholar 

  1569. Li Z, Sun Z, Chang D, Zhu L, Chen M, Zhao M (2022) Association between COL4A3 variant rs55703767 and susceptibility to diabetic kidney disease in patients with type 2 diabetes mellitus: results from the INDEED cohort study. Chin Med J (Engl) 135(9):1129–1130. https://doi.org/10.1097/CM9.0000000000001955

    Article  PubMed  CAS  Google Scholar 

  1570. Al-Awaida WJ, Hameed WS, Al Hassany HJ, Al-Dabet MM, Al-Bawareed O, Hadi NR (2021) Evaluation of the Genetic association and expressions of Notch-2 /Jagged-1 in patients with Type 2 diabetes mellitus. Med Arch 75(2):101–108. https://doi.org/10.5455/medarh.2021.75.101-108

    Article  PubMed  PubMed Central  Google Scholar 

  1571. Vandekerckhove L, Vermeulen Z, Liu ZZ, Boimvaser S, Patzak A, Segers VF, De Keulenaer GW (2016) Neuregulin-1 attenuates development of nephropathy in a type 1 diabetes mouse model with high cardiovascular risk. Am J Physiol Endocrinol Metab 310(7):E495–E504. https://doi.org/10.1152/ajpendo.00432.2015

    Article  PubMed  PubMed Central  Google Scholar 

  1572. Tao J, Yu XL, Yuan YJ, Shen X, Liu J, Gu PP, Wang Z, Ma YT, Li GQ (2022) DMRT2 interacts with FXR and improves insulin resistance in adipocytes and a mouse model. Front Endocrinol (Lausanne) 12:723623. https://doi.org/10.3389/fendo.2021.723623

    Article  PubMed  Google Scholar 

  1573. Choong YS, Lim YY, Soong JX, Savoo N, Guida C, Rhyman L, Ramracheya R, Ramasami P (2021) Theoretical study of the interactions between peptide tyrosine tyrosine [PYY (1–36)], a newly identified modulator in type 2 diabetes pathophysiology, with receptors NPY1R and NPY4R. Hormones (Athens) 20(3):557–569. https://doi.org/10.1007/s42000-021-00278-2

    Article  PubMed  Google Scholar 

  1574. Pfeifer CW, Walsh JT, Santeford A, Lin JB, Beatty WL, Terao R, Liu YA, Hase K, Ruzycki PA, Apte RS (2023) Dysregulated CD200-CD200R signaling in early diabetes modulates microglia-mediated retinopathy. Proc Natl Acad Sci USA 120(45):e2308214120. https://doi.org/10.1073/pnas.2308214120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1575. Zhou N, Liu W, Zhang W, Liu Y, Li X, Wang Y, Zheng R, Zhang Y (2021) Wip1 regulates the immunomodulatory effects of murine mesenchymal stem cells in type 1 diabetes mellitus via targeting IFN-α/BST2. Cell Death Discov 7(1):326. https://doi.org/10.1038/s41420-021-00728-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1576. Guo M, Xia Z, Hong Y et al (2023) The TFPI2-PPARγ axis induces M2 polarization and inhibits fibroblast activation to promote recovery from post-myocardial infarction in diabetic mice. J Inflamm (Lond) 20(1):35. https://doi.org/10.1186/s12950-023-00357-8

    Article  PubMed  CAS  Google Scholar 

  1577. Bhoj EJ, Romeo S, Baroni MG, Bartov G, Schultz RA, Zinn AR (2009) MODY-like diabetes associated with an apparently balanced translocation: possible involvement of MPP7 gene and cell polarity in the pathogenesis of diabetes. Mol Cytogenet 2:5. https://doi.org/10.1186/1755-8166-2-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1578. Crocco P, Dato S, Montesanto A, Bonfigli AR, Testa R, Olivieri F, Passarino G, Rose G (2022) The genetic variability of members of the SLC38 family of amino acid transporters (SLC38A3, SLC38A7 and SLC38A9) affects susceptibility to type 2 diabetes and vascular complications. Nutrients 14(21):4440. https://doi.org/10.3390/nu14214440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1579. Chen M, Lin WR, Lu CH, Chen CC, Huang YC, Liao WL, Tsai FJ (2014) Chimerin 2 genetic polymorphisms are associated with non-proliferative diabetic retinopathy in Taiwanese type 2 diabetic patients. J Diabetes Complications 28(4):460–463. https://doi.org/10.1016/j.jdiacomp.2014.04.009

    Article  PubMed  Google Scholar 

  1580. Luo LG, Jackson I (2007) Thyrotropin releasing hormone (TRH) may preserve pancreatic islet cell function: potential role in the treatment of diabetes mellitus. Acta Biomed 78(Suppl 1):216–221

    PubMed  Google Scholar 

  1581. Barry DM, Liu XT, Liu B, Liu XY, Gao F, Zeng X, Liu J, Yang Q, Wilhelm S et al (2020) Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun 11(1):1397. https://doi.org/10.1038/s41467-020-15230-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1582. Powell-Roach KL, Yao Y, Cao X, Chamala S, Wallace MR, Cruz-Almeida Y, Molokie RE, Wang ZJ, Wilkie DJ (2023) Analysis of AVPR1A, thermal and pressure pain thresholds, and stress in sickle cell disease. Front Pain Res (Lausanne) 3:1060245. https://doi.org/10.3389/fpain.2022.1060245

    Article  PubMed  Google Scholar 

  1583. Wang Y, Hu X, Huang H, Jin Z, Gao J, Guo Y, Zhong Y, Li Z, Zong X, Wang K et al (2022) Optimization of 4-arylthiophene-3-carboxylic acid derivatives as inhibitors of ANO1: lead optimization studies toward their analgesic efficacy for inflammatory pain. Eur J Med Chem 237:114413. https://doi.org/10.1016/j.ejmech.2022.114413

    Article  PubMed  CAS  Google Scholar 

  1584. Echaniz-Laguna A, Altuzarra C, Verloes A, De La Banda MGG, Quijano-Roy S, Tudorache RA, Jaxybayeva A, Myrzaliyeva B, Tazir M, Vallat JM et al (2021) NTRK1 gene-related congenital insensitivity to pain with anhidrosis: a nationwide multicenter retrospective study. Neurogenetics 22(4):333–341. https://doi.org/10.1007/s10048-021-00668-z

    Article  PubMed  CAS  Google Scholar 

  1585. Bian J, Zhang B, Zhang Y, Tian Y, Yin L, Zou W (2022) FGF 10 inhibited spinal microglial activation in neuropathic pain via PPAR-γ/NF-κB signaling. Neuroscience 500:52–62. https://doi.org/10.1016/j.neuroscience.2022.07.033

    Article  PubMed  CAS  Google Scholar 

  1586. Husain SF, Lam RWM, Hu T, Ng MWF, Liau ZQG, Nagata K, Khanna S, Lam Y, Bhakoo K, Ho RCM et al (2019) Locating the site of neuropathic pain in vivo using MMP-12-targeted magnetic nanoparticles. Pain Res Manag 2019:9394715. https://doi.org/10.1155/2019/9394715

    Article  PubMed  PubMed Central  Google Scholar 

  1587. Niederberger E, Möller M, Mungo E, Hass M, Wilken-Schmitz A, Manderscheid C, Möser CV, Geisslinger G (2023) Distinct molecular mechanisms contribute to the reduction of melanoma growth and tumor pain after systemic and local depletion of alpha-Synuclein in mice. FASEB J 37(12):e23287. https://doi.org/10.1096/fj.202301489R

    Article  PubMed  CAS  Google Scholar 

  1588. Pawlik K, Ciapała K, Ciechanowska A, Kwiatkowski K, Mika J (2022) Pharmacological evidence of the important roles of CCR1 and CCR3 and their endogenous ligands CCL2/7/8 in hypersensitivity based on a murine model of neuropathic pain. Cells 12(1):98. https://doi.org/10.3390/cells12010098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1589. Das V, Kc R, Li X et al (2018) Blockade of vascular endothelial growth factor receptor-1 (Flt-1), reveals a novel analgesic for osteoarthritis-induced joint pain. Gene Rep 11:94–100. https://doi.org/10.1016/j.genrep.2018.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  1590. Gordon C, Trainor J, Shah RJ, Studholme K, Gelman A, Doswell F, Sadar F, Giovannetti A, Gershenson J, Khan A et al (2024) Fatty acid binding protein 5 inhibition attenuates pronociceptive cytokine/chemokine expression and suppresses osteoarthritis pain: a comparative human and rat study. Osteoarthritis Cartilage 32(3):266–280. https://doi.org/10.1016/j.joca.2023.11.010

    Article  PubMed  Google Scholar 

  1591. Aoki Y, Nishizawa D, Ohka S, Kasai S, Arita H, Hanaoka K, Yajima C, Iseki M, Kato J, Ogawa S et al (2023) Rs11726196 single-nucleotide polymorphism of the transient receptor potential canonical 3 (TRPC3) gene is associated with chronic pain. Int J Mol Sci 24(2):1028. https://doi.org/10.3390/ijms24021028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1592. Liu C, Sun Q, Xu J, Shen W, Li H, Yang L (2022) The role of bone morphogenetic protein 4 in microglial polarization in the process of neuropathic pain. J Inflamm Res 15:2803–2817. https://doi.org/10.2147/JIR.S356531

    Article  PubMed  PubMed Central  Google Scholar 

  1593. Mecklenburg J, Wangzhou A, Hovhannisyan AH, Barba-Escobedo P, Shein SA, Zou Y, Weldon K, Lai Z, Goffin V, Dussor G et al (2022) Sex-dependent pain trajectories induced by prolactin require an inflammatory response for pain resolution. Brain Behav Immun 101:246–263. https://doi.org/10.1016/j.bbi.2022.01.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1594. Liu X, Bae C, Gelman BB, Chung JM, Tang SJ (2022) A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain 145(11):4108–4123. https://doi.org/10.1093/brain/awac015

    Article  PubMed  PubMed Central  Google Scholar 

  1595. He M, Pang J, Sun H, Zheng G, Lin Y, Ge W (2020) Overexpression of TIMP3 inhibits discogenic pain by suppressing angiogenesis and the expression of substance P in nucleus pulposus. Mol Med Rep 21(3):1163–1171. https://doi.org/10.3892/mmr.2020.10922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1596. Lien WC, Zhou XR, Liang YJ, Ching CT, Wang CY, Lu FI, Chang HC, Lin FH, Wang HD (2022) Therapeutic potential of nanoceria pretreatment in preventing the development of urological chronic pelvic pain syndrome: Immunomodulation via reactive oxygen species scavenging and SerpinB2 downregulation. Bioeng Transl Med 8(1):e10346. https://doi.org/10.1002/btm2.10346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1597. Verma V, Khoury S, Parisien M, Cho C, Maixner W, Martin LJ, Diatchenko L (2020) The dichotomous role of epiregulin in pain. Pain 161(5):1052–1064. https://doi.org/10.1097/j.pain.0000000000001792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1598. Sikandar S, Minett MS, Millet Q, Santana-Varela S, Lau J, Wood JN, Zhao J (2018) Brain-derived neurotrophic factor derived from sensory neurons plays a critical role in chronic pain. Brain 141(4):1028–1039. https://doi.org/10.1093/brain/awy009

    Article  PubMed  PubMed Central  Google Scholar 

  1599. Wan J, Nan S, Liu J, Ding M, Zhu H, Suo C, Wang Z, Hu M, Wang D, Ding Y (2020) Synaptotagmin 1 is involved in neuropathic pain and electroacupuncture-mediated analgesic effect. Int J Mol Sci 21(3):968. https://doi.org/10.3390/ijms21030968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1600. Zahr NM, Sullivan EV, Pohl KM, Pfefferbaum A, Saranathan M (2020) Sensitivity of ventrolateral posterior thalamic nucleus to back pain in alcoholism and CD4 nadir in HIV. Hum Brain Mapp 41(5):1351–1361. https://doi.org/10.1002/hbm.24880

    Article  PubMed  Google Scholar 

  1601. Braden K, Giancotti LA, Chen Z, DeLeon C, Latzo N, Boehn T, D’Cunha N, Thompson BM, Doyle TM, McDonald JG et al (2020) GPR183-oxysterol axis in spinal cord contributes to neuropathic pain. J Pharmacol Exp Ther 375(2):367–375. https://doi.org/10.1124/jpet.120.000105

    Article  PubMed  CAS  Google Scholar 

  1602. Monteiro S, de Araujo D, Nassini R, Geppetti P, De Logu F (2020) TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 24(10):997–1008. https://doi.org/10.1080/14728222.2020.1815191

    Article  CAS  Google Scholar 

  1603. Zhang X, Xia L, Xie A, Liao O, Ju F, Zhou Y (2021) Low concentration of Bupivacaine ameliorates painful diabetic neuropathy by mediating miR-23a/PDE4B axis in microglia. Eur J Pharmacol 891:173719. https://doi.org/10.1016/j.ejphar.2020.173719

    Article  PubMed  CAS  Google Scholar 

  1604. Ebbinghaus M, Jenei-Lanzl Z, Segond von Banchet G, Stangl H, Gajda M, Straub RH, Schaible HG (2018) A promising new approach for the treatment of inflammatory pain: transfer of stem cell-derived tyrosine hydroxylase-positive cells. NeuroImmunoModulation 25(4):225–237. https://doi.org/10.1159/000495349

    Article  PubMed  CAS  Google Scholar 

  1605. Tajerian M, Clark JD (2019) Spinal matrix metalloproteinase 8 regulates pain after peripheral trauma. J Pain Res 12:1133–1138. https://doi.org/10.2147/JPR.S197761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1606. Chen N, Ge MM, Li DY, Wang XM, Liu DQ, Ye DW, Tian YK, Zhou YQ, Chen JP (2021) β2-adrenoreceptor agonist ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of mitochondrial biogenesis. Biomed Pharmacother 144:112331. https://doi.org/10.1016/j.biopha.2021.112331

    Article  PubMed  CAS  Google Scholar 

  1607. Zaręba P, Gryzło B, Malawska K, Sałat K, Höfner GC, Nowaczyk A, Fijałkowski Ł, Rapacz A, Podkowa A, Furgała A et al (2020) Novel mouse GABA uptake inhibitors with enhanced inhibitory activity toward mGAT3/4 and their effect on pain threshold in mice. Eur J Med Chem 188:111920. https://doi.org/10.1016/j.ejmech.2019.111920

    Article  PubMed  CAS  Google Scholar 

  1608. Montera MA, Goins AE, Alles SRA, Westlund KN (2023) Urokinase-type plasminogen activator-induced mouse back pain model. J Vis Exp. https://doi.org/10.3791/63997

    Article  PubMed  Google Scholar 

  1609. Inoue R, Nishizawa D, Hasegawa J, Nakayama K, Fukuda KI, Ichinohe T, Mieda T, Tsujita M, Nakagawa H, Kitamura A et al (2021) Effects of rs958804 and rs7858836 single-nucleotide polymorphisms of the ASTN2 gene on pain-related phenotypes in patients who underwent laparoscopic colectomy and mandibular sagittal split ramus osteotomy. Neuropsychopharmacol Rep 41(1):82–90. https://doi.org/10.1002/npr2.12159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1610. Sun JM, Sun LZ, Liu J, Su BH, Shi L (2013) Serum interleukin-15 levels are associated with severity of pain in patients with knee osteoarthritis. Dis Markers 35(3):203–206. https://doi.org/10.1155/2013/176278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1611. Yang L, Liu S, Wang Y (2019) Role of bone morphogenetic protein-2/4 in astrocyte activation in neuropathic pain. Mol Pain 15:1744806919892100. https://doi.org/10.1177/1744806919892100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1612. Liu S, Yang S, Zhu X, Li X, Zhang X, Zhou X, Cheng H, Huo FQ, Mao Q, Liang L (2023) Spinal apolipoprotein E is involved in inflammatory pain via regulating lipid metabolism and glial activation in the spinal dorsal horn. Biol Direct 18(1):85. https://doi.org/10.1186/s13062-023-00444-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1613. Kruse LS, Møller M, Tibaek M, Gammeltoft S, Olesen J, Kruuse C (2009) PDE9A, PDE10A, and PDE11A expression in rat trigeminovascular pain signalling system. Brain Res 1281:25–34. https://doi.org/10.1016/j.brainres.2009.05.012

    Article  PubMed  CAS  Google Scholar 

  1614. Fang Y, Cui H, Liu F, Su S, Wang T, Yuan B, Xie Y, Ma C (2022) Astrocytic phosphatase and tensin homolog deleted on chromosome 10 regulates neuropathic pain by facilitating 3-hydroxy-3-methylglutaryl-CoA reductase-dependent cholesterol biosynthesis. Pain 163(12):e1192–e1206. https://doi.org/10.1097/j.pain.0000000000002682

    Article  PubMed  CAS  Google Scholar 

  1615. Hühne K, Leis S, Schmelz M, Rautenstrauss B, Birklein F (2004) A polymorphic locus in the intron 16 of the human angiotensin-converting enzyme (ACE) gene is not correlated with complex regional pain syndrome I (CRPS I). Eur J Pain 8(3):221–225. https://doi.org/10.1016/j.ejpain.2003.08.004

    Article  PubMed  CAS  Google Scholar 

  1616. Zhang M, Yang K, Wang QH, Xie L, Liu Q, Wei R, Tao Y, Zheng HL, Lin N, Xu H et al (2023) The cytidine N-acetyltransferase NAT10 participates in peripheral nerve injury-induced neuropathic pain by stabilizing SYT9 expression in primary sensory neurons. J Neurosci 43(17):3009–3027. https://doi.org/10.1523/JNEUROSCI.2321-22.2023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1617. Wang J, Zhao M, Jia P, Liu FF, Chen K, Meng FY, Hong JH, Zhang T, Jin XH, Shi J (2020) The analgesic action of larixyl acetate, a potent TRPC6 inhibitor, in rat neuropathic pain model induced by spared nerve injury. J Neuroinflamm 17(1):118. https://doi.org/10.1186/s12974-020-01767-8

    Article  CAS  Google Scholar 

  1618. Ciechanowska A, Rojewska E, Piotrowska A, Barut J, Pawlik K, Ciapała K, Kreiner G, Mika J (2022) New insights into the analgesic properties of the XCL1/XCR1 and XCL1/ITGA9 axes modulation under neuropathic pain conditions - evidence from animal studies. Front Immunol 13:1058204. https://doi.org/10.3389/fimmu.2022.1058204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1619. Wack G, Metzner K, Kuth MS, Wang E, Bresnick A, Brandes RP, Schröder K, Wittig I, Schmidtko A, Kallenborn-Gerhardt W (2021) Nox4-dependent upregulation of S100A4 after peripheral nerve injury modulates neuropathic pain processing. Free Radic Biol Med 168:155–167. https://doi.org/10.1016/j.freeradbiomed.2021.03.021

    Article  PubMed  CAS  Google Scholar 

  1620. Singh S, Kartha S, Bulka BA, Stiansen NS, Winkelstein BA (2019) Physiologic facet capsule stretch can induce pain & upregulate matrix metalloproteinase-3 in the dorsal root ganglia when preceded by a physiological mechanical or nonpainful chemical exposure. Clin Biomech (Bristol, Avon) 64:122–130. https://doi.org/10.1016/j.clinbiomech.2018.01.009

    Article  PubMed  Google Scholar 

  1621. Merighi A (2016) Targeting the glial-derived neurotrophic factor and related molecules for controlling normal and pathologic pain. Expert Opin Ther Targets 20(2):193–208. https://doi.org/10.1517/14728222.2016.1085972

    Article  PubMed  CAS  Google Scholar 

  1622. Fattori V, Staurengo-Ferrari L, Zaninelli TH, Casagrande R, Oliveira RD, Louzada-Junior P, Cunha TM, Alves-Filho JC, Teixeira MM, Cunha FQ et al (2020) IL-33 enhances macrophage release of IL-1β and promotes pain and inflammation in gouty arthritis. Inflamm Res 69(12):1271–1282. https://doi.org/10.1007/s00011-020-01399-x

    Article  PubMed  CAS  Google Scholar 

  1623. Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L, Tive L (2020) Nerve growth factor signaling and its contribution to pain. J Pain Res 13:1223–1241. https://doi.org/10.2147/JPR.S247472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1624. Kluzek S, Bay-Jensen AC, Judge A, Karsdal MA, Shorthose M, Spector T, Hart D, Newton JL, Arden NK (2015) Serum cartilage oligomeric matrix protein and development of radiographic and painful knee osteoarthritis. A community-based cohort of middle-aged women. Biomarkers 20(8):557–564. https://doi.org/10.3109/1354750X.2015.1105498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1625. Perera RS, Dissanayake PH, Senarath U, Wijayaratne LS, Karunanayake AL, Dissanayake VHW (2017) Variants of ACAN are associated with severity of lumbar disc herniation in patients with chronic low back pain. PLoS ONE 12(7):e0181580. https://doi.org/10.1371/journal.pone.0181580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1626. Rausch SM, Gonzalez BD, Clark MM, Patten C, Felten S, Liu H, Li Y, Sloan J, Yang P (2012) SNPs in PTGS2 and LTA predict pain and quality of life in long term lung cancer survivors. Lung Cancer 77(1):217–223. https://doi.org/10.1016/j.lungcan.2012.02.01

    Article  PubMed  Google Scholar 

  1627. Jiang L, Tan B, Li S, Wang L, Zheng L, Liu Y, Long Z, Wu Y (2017) Decrease of growth and differentiation factor 10 contributes to neuropathic pain through N-methyl-D-aspartate receptor activation. NeuroReport 28(8):444–450. https://doi.org/10.1097/WNR.0000000000000785

    Article  PubMed  CAS  Google Scholar 

  1628. Ding S, Zhu T, Tian Y, Xu P, Chen Z, Huang X, Zhang X (2018) Role of brain-derived neurotrophic factor in endometriosis pain. Reprod Sci 25(7):1045–1057. https://doi.org/10.1177/1933719117732161

    Article  PubMed  CAS  Google Scholar 

  1629. Ma LT, Bai Y, Li J, Qiao Y, Liu Y, Zheng J (2021) Elemene emulsion injection administration reduces neuropathic pain by inhibiting astrocytic NDRG2 expression within spinal dorsal horn. Chin J Integr Med 27(12):912–918. https://doi.org/10.1007/s11655-021-3438-3

    Article  PubMed  CAS  Google Scholar 

  1630. Liu B, Li N, He Z, Zhang X, Duan G (2021) Emerging role of serum glucocorticoid-regulated kinase 1 in pathological pain. Front Mol Neurosci 14:683527. https://doi.org/10.3389/fnmol.2021.683527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1631. Zhang X, Gao R, Zhang C, Teng Y, Chen H, Li Q, Liu C, Wu J, Wei L, Deng L et al (2023) Extracellular RNAs-TLR3 signaling contributes to cognitive impairment after chronic neuropathic pain in mice. Signal Transduct Target Ther 8(1):292. https://doi.org/10.1038/s41392-023-01543-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1632. Zhao J, Yuan G, Cendan CM, Nassar MA, Lagerström MC, Kullander K, Gavazzi I, Wood JN (2010) Nociceptor-expressed ephrin-B2 regulates inflammatory and neuropathic pain. Mol Pain 6:77. https://doi.org/10.1186/1744-8069-6-77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1633. Shubayev VI, Strongin AY, Yaksh TL (2018) Structural homology of myelin basic protein and muscarinic acetylcholine receptor: significance in the pathogenesis of complex regional pain syndrome. Mol Pain 14:1744806918815005. https://doi.org/10.1177/1744806918815005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1634. Yoon SY, Kwon SG, Kim YH, Yeo JH, Ko HG, Roh DH, Kaang BK, Beitz AJ, Lee JH, Oh SB (2017) A critical role of spinal Shank2 proteins in NMDA-induced pain hypersensitivity. Mol Pain 13:1744806916688902. https://doi.org/10.1177/1744806916688902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1635. Garrity R, Arora N, Haque MA, Weis D, Trinh RT, Neerukonda SV, Kumari S, Cortez I, Ubogu EE, Mahalingam R et al (2023) Fibroblast-derived PI16 sustains inflammatory pain via regulation of CD206+ myeloid cells. Brain Behav Immun 112:220–234. https://doi.org/10.1016/j.bbi.2023.06.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1636. Zhang G, Zhou Y, Su M, Yang X, Zeng B (2020) Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5. BioFactors 46(5):788–802. https://doi.org/10.1002/biof.1670

    Article  PubMed  CAS  Google Scholar 

  1637. Celikbilek A (2020) Possible associations of vitamin D, vitamin D-binding protein, and vitamin D receptor with diabetic neuropathic pain and balance [Letter]. J Pain Res 13:465–466. https://doi.org/10.2147/JPR.S249871

    Article  PubMed  PubMed Central  Google Scholar 

  1638. Habib AM, Matsuyama A, Okorokov AL, Santana-Varela S, Bras JT, Aloisi AM, Emery EC, Bogdanov YD, Follenfant M, Gossage SJ et al (2018) A novel human pain insensitivity disorder caused by a point mutation in ZFHX2. Brain 141(2):365–376. https://doi.org/10.1093/brain/awx326

    Article  PubMed  Google Scholar 

  1639. Kim MJ, Son JY, Ju JS, Ahn DK (2020) Early blockade of EphA4 pathway reduces trigeminal neuropathic pain. J Pain Res 13:1173–1183. https://doi.org/10.2147/JPR.S249185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1640. Trivedi MK, Mondal S, Gangwar M, Jana S (2023) Effects of cannabidiol interactions with CYP2R1, CYP27B1, CYP24A1, and vitamin D3 receptors on spatial memory, pain, inflammation, and aging in vitamin D3 deficiency diet-induced rats. Cannabis Cannabinoid Res 8(6):1019–1029. https://doi.org/10.1089/can.2021.0240

    Article  PubMed  CAS  Google Scholar 

  1641. Jiang L, Wu Q, Yang T (2016) Silencing of Id2 alleviates chronic neuropathic pain following chronic constriction injury. J Mol Neurosci 59(1):99–105. https://doi.org/10.1007/s12031-016-0713-z

    Article  PubMed  CAS  Google Scholar 

  1642. Gao X, Gao LF, Zhang YN, Kong XQ, Jia S, Meng CY (2023) Huc-MSCs-derived exosomes attenuate neuropathic pain by inhibiting activation of the TLR2/MyD88/NF-κB signaling pathway in the spinal microglia by targeting Rsad2. Int Immunopharmacol 114:109505. https://doi.org/10.1016/j.intimp.2022.109505

    Article  PubMed  CAS  Google Scholar 

  1643. Atzeni F, Nucera V, Masala IF, Sarzi-Puttini P, Bonitta G (2019) Il-6 Involvement in pain, fatigue and mood disorders in rheumatoid arthritis and the effects of Il-6 inhibitor sarilumab. Pharmacol Res 149:104402. https://doi.org/10.1016/j.phrs.2019.104402

    Article  PubMed  CAS  Google Scholar 

  1644. Tremblay K, Dubois-Bouchard C, Brisson D, Gaudet D (2014) Association of CTRC and SPINK1 gene variants with recurrent hospitalizations for pancreatitis or acute abdominal pain in lipoprotein lipase deficiency. Front Genet 5:90. https://doi.org/10.3389/fgene.2014.00090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1645. Fan W, Liu C, Chen D, Xu C, Qi X, Zhang A, Zhu X, Liu Y, Wang L, Hao L et al (2023) Ozone alleviates MSU-induced acute gout pain via upregulating AMPK/GAS6/MerTK/SOCS3 signaling pathway. J Transl Med 21(1):890. https://doi.org/10.1186/s12967-023-04769-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1646. Zhang J, Zhao H, Zhang A, Zhao C, Mei Z, Yao H, Fan Z, Liang D (2022) Identifying a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in Spare Nerve Injury-induced neuropathic pain. Cell Death Discov 8(1):272. https://doi.org/10.1038/s41420-022-01060-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1647. Zhang J, Mei Z, Yao W, Zhao C, Wu S, Ouyang J (2023) SIX1 induced HULC modulates neuropathic pain and Schwann cell oxidative stress after sciatic nerve injury. Gene 882:147655. https://doi.org/10.1016/j.gene.2023.147655

    Article  PubMed  CAS  Google Scholar 

  1648. Yamanaka H, Kobayashi K, Okubo M, Fukuoka T, Noguchi K (2011) Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain. J Comp Neurol 519(8):1597–1615. https://doi.org/10.1002/cne.22588

    Article  PubMed  CAS  Google Scholar 

  1649. Ke C, Gao F, Tian X, Li C, Shi D, He W, Tian Y (2017) Slit2/Robo1 mediation of synaptic plasticity contributes to bone cancer pain. Mol Neurobiol 54(1):295–307. https://doi.org/10.1007/s12035-015-9564-9

    Article  PubMed  CAS  Google Scholar 

  1650. Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG (2022) Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 25(9):104936. https://doi.org/10.1016/j.isci.2022.104936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1651. Deng J, Liang J, Cao Y, Tong X, Li H (2024) CCL2- and Notch2-mediated central sensitization in a rat chronic pelvic pain model. In Vivo 38(1):205–212. https://doi.org/10.21873/invivo.13427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1652. Heeschen C, Dimmeler S, Fichtlscherer S, Hamm CW, Berger J, Simoons ML, Zeiher AM (2004) Prognostic value of placental growth factor in patients with acute chest pain. JAMA 291(4):435–441. https://doi.org/10.1001/jama.291.4.435

    Article  PubMed  CAS  Google Scholar 

  1653. Wan C, Xu Y, Cen B, Xia Y, Yao L, Zheng Y, Zhao J, He S, Chen Y (2021) Neuregulin1-ErbB4 signaling in spinal cord participates in electroacupuncture analgesia in inflammatory pain. Front Neurosci 15:636348. https://doi.org/10.3389/fnins.2021.636348

    Article  PubMed  PubMed Central  Google Scholar 

  1654. Zhang D, Zhao W, Liu J, Ou M, Liang P, Li J, Chen Y, Liao D, Bai S, Shen J et al (2021) Sodium leak channel contributes to neuronal sensitization in neuropathic pain. Prog Neurobiol 202:102041. https://doi.org/10.1016/j.pneurobio.2021.102041

    Article  PubMed  CAS  Google Scholar 

  1655. Kühlein HN, Tegeder I, Möser C, Lim HY, Häussler A, Spieth K, Jennes I, Marschalek R, Beckhaus T, Karas M et al (2011) Nerve injury evoked loss of latexin expression in spinal cord neurons contributes to the development of neuropathic pain. PLoS ONE 6(4):e19270. https://doi.org/10.1371/journal.pone.0019270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1656. Behbehani MM, Zemlan FP (1990) Bulbospinal and intraspinal thyrotropin releasing hormone systems: modulation of spinal cord pain transmission. Neuropeptides 15(3):161–168. https://doi.org/10.1016/0143-4179(90)90149-s

    Article  PubMed  CAS  Google Scholar 

  1657. Kleemann M, Schneider H, Unger K, Sander P, Schneider EM, Fischer-Posovszky P, Handrick R, Otte K (2018) MiR-744-5p inducing cell death by directly targeting HNRNPC and NFIX in ovarian cancer cells. Sci Rep 8(1):9020. https://doi.org/10.1038/s41598-018-27438-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1658. Huang L, Schauer IG, Zhang J, Mercado-Uribe I, Deavers MT, Huang J, Liu J (2011) The oncogenic gene fusion TMPRSS2: ERG is not a diagnostic or prognostic marker for ovarian cancer. Int J Clin Exp Pathol 4(7):644–650

    PubMed  PubMed Central  CAS  Google Scholar 

  1659. Zhang Z, Chen F, Li S, Guo H, Xi H, Deng J, Han Q, Zhang W (2020) ERG the modulates Warburg effect and tumor progression in cervical cancer. Biochem Biophys Res Commun 522(1):191–197. https://doi.org/10.1016/j.bbrc.2019.11.079

    Article  PubMed  CAS  Google Scholar 

  1660. Landi S, Giannetti F, Benzoni P, Campostrini G, Rossi G, Piantoni C, Bertoli G, Bonfanti C, Carnevali L, Bucchi A et al (2023) Lack of the transcription factor Nfix causes tachycardia in mice sinus node and rats neonatal cardiomyocytes. Acta Physiol (Oxf) 239(2):e13981. https://doi.org/10.1111/apha.13981

    Article  PubMed  CAS  Google Scholar 

  1661. Sperone A, Dryden NH, Birdsey GM, Madden L, Johns M, Evans PC, Mason JC, Haskard DO, Boyle JJ, Paleolog EM et al (2011) The transcription factor Erg inhibits vascular inflammation by repressing NF-kappaB activation and proinflammatory gene expression in endothelial cells. Arterioscler Thromb Vasc Biol 31(1):142–150. https://doi.org/10.1161/ATVBAHA.110.216473

    Article  PubMed  CAS  Google Scholar 

  1662. Yang L, Yang Z, Yao R, Li Y, Liu Z, Chen X, Zhang G (2018) miR-210 promotes progression of endometrial carcinoma by regulating the expression of NFIX. Int J Clin Exp Pathol 11(11):5213–5222

    PubMed  PubMed Central  CAS  Google Scholar 

  1663. Chen L, Lai L, Zheng L, Wang Y, Lu H, Chen Y (2024) Construction of an exosome-associated miRNA-mRNA regulatory network and validation of FYCO1 and miR-17-5p as potential biomarkers associated with ovarian cancer. Transl Cancer Res 13(2):1052–1067. https://doi.org/10.21037/tcr-23-940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1664. Aman P, Pejovic T, Wennborg A, Heim S, Mitelman F (1993) Mapping of the 19p13 breakpoint in an ovarian carcinoma between the INSR and TCF3 loci. Genes Chromosomes Cancer 8(2):134–136. https://doi.org/10.1002/gcc.2870080212

    Article  PubMed  CAS  Google Scholar 

  1665. Chen Y, Cao XY, Li YN, Qiu YY, Li YN, Li W, Wang H (2018) Reversal of cisplatin resistance by microRNA-139-5p-independent RNF2 downregulation and MAPK inhibition in ovarian cancer. Am J Physiol Cell Physiol 315(2):C225–C235. https://doi.org/10.1152/ajpcell.00283.2017

    Article  PubMed  CAS  Google Scholar 

  1666. Sun Y, Jin L, Sui YX, Han LL, Liu JH (2017) Circadian gene CLOCK affects drug-resistant gene expression and cell proliferation in ovarian cancer SKOV3/DDP cell lines through autophagy. Cancer Biother Radiopharm 32(4):139–146. https://doi.org/10.1089/cbr.2016.2153

    Article  PubMed  CAS  Google Scholar 

  1667. Herold N, Schmolling J, Ernst C, Ataseven B, Blümcke B, Schömig-Markiefka B, Heikaus S, Göhring UJ, Engel C, Lampe B et al (2023) Pathogenic germline variants in SMARCA4 and further cancer predisposition genes in early onset ovarian cancer. Cancer Med 12(14):15256–15260. https://doi.org/10.1002/cam4.6214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1668. Zhang F, Zhu T, Wu C, Shen D, Liu L, Chen X, Guan Y, Ding H, Tong X (2023) TRIM28 recruits E2F1 to regulate CBX8-mediated cell proliferation and tumor metastasis of ovarian cancer. Hum Cell 36(6):2113–2128. https://doi.org/10.1007/s13577-023-00983-7

    Article  PubMed  CAS  Google Scholar 

  1669. Xu Y, Zhang Q, Lin F, Zhu L, Huang F, Zhao L, Ou R (2019) Casiopeina II-gly acts on lncRNA MALAT1 by miR-17-5p to inhibit FZD2 expression via the Wnt signaling pathway during the treatment of cervical carcinoma. Oncol Rep 42(4):1365–1379. https://doi.org/10.3892/or.2019.7268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1670. Yu X, Li Z, Bai R, Tang F (2022) Transcriptional factor 3 binds to sirtuin 1 to activate the Wnt/β-catenin signaling in cervical cancer. Bioengineered 13(5):12516–12531. https://doi.org/10.1080/21655979.2022.2076481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1671. Li F, Wang Z, Lu G (2018) TRIM28 promotes cervical cancer growth through the mTOR signaling pathway. Oncol Rep 39(4):1860–1866. https://doi.org/10.3892/or.2018.6235

    Article  PubMed  CAS  Google Scholar 

  1672. Chan GC, Than WH, Kwan BC, Lai KB, Chan RC, Ng JK, Chow KM, Cheng PM, Law MC et al (2022) Adipose expression of miR-130b and miR-17-5p with wasting, cardiovascular event and mortality in advanced chronic kidney disease patients. Nephrol Dial Transplant 37(10):1935–1943. https://doi.org/10.1093/ndt/gfab287

    Article  PubMed  CAS  Google Scholar 

  1673. Liang J, Bai S, Su L, Li C, Wu J, Xia Z, Xu D (2015) A subset of circulating microRNAs is expressed differently in patients with myocardial infarction. Mol Med Rep 12(1):243–247. https://doi.org/10.3892/mmr.2015.3422

    Article  PubMed  CAS  Google Scholar 

  1674. Su D, Ju Y, Han W, Yang Y, Wang F, Wang T, Tang J (2020) Tcf3-activated lncRNA Gas5 regulates newborn mouse cardiomyocyte apoptosis in diabetic cardiomyopathy. J Cell Biochem 121(11):4337–4346. https://doi.org/10.1002/jcb.29630

    Article  PubMed  CAS  Google Scholar 

  1675. Liu L, Li C, Yu L, Wang Y, Pan X, Huang J (2024) Deciphering the role of SMARCA4 in cardiac disorders: insights from single-cell studies on dilated cardiomyopathy and coronary heart disease. Cell Signal. https://doi.org/10.1016/j.cellsig.2024.111150

    Article  PubMed  Google Scholar 

  1676. D’Antona S, Porro D, Gallivanone F, Bertoli G (2024) Characterization of cell cycle, inflammation, and oxidative stress signaling role in non-communicable diseases: insights into genetic variants, microRNAs and pathways. Comput Biol Med 174:108346. https://doi.org/10.1016/j.compbiomed.2024.108346

    Article  PubMed  CAS  Google Scholar 

  1677. Ma Z, Lian H, Lin X, Li Y (2021) LncRNA MIAT promotes allergic inflammation and symptoms by targeting MiR-10b-5p in allergic rhinitis mice. Am J Rhinol Allergy 35(6):781–789. https://doi.org/10.1177/1945892421998143

    Article  PubMed  Google Scholar 

  1678. Li Y, Li R, Li Y, Li G, Zhao Y, Mou H, Chen Y, Xiao L, Gong K (2023) Transcription factor TCF3 promotes macrophage-mediated inflammation and mmp secretion in abdominal aortic aneurysm by regulating miR-143-5p /CCL20. J Cardiovasc Pharmacol 82(6):458–469. https://doi.org/10.1097/FJC.0000000000001484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1679. Sun MY, Lin JN (2017) Relationship between NR1I2 polymorphisms and inflammatory bowel disease risk: a systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 41(2):230–239. https://doi.org/10.1016/j.clinre.2016.10.006

    Article  PubMed  CAS  Google Scholar 

  1680. Qin Y, Li Q, Liang W, Yan R, Tong L, Jia M, Zhao C, Zhao W (2021) TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation. Nat Commun 12(1):4794. https://doi.org/10.1038/s41467-021-25033-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1681. Santos AS, Ferreira LRP, da Silva AC, Alves LI, Damasceno JG, Kulikowski L, Cunha-Neto E, da Silva MER (2022) Progression of type 1 diabetes: circulating MicroRNA expression profiles changes from preclinical to overt disease. J Immunol Res 2022:2734490. https://doi.org/10.1155/2022/2734490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1682. Zogg H, Singh R, Ha SE, Wang Z, Jin B, Ha M, Dafinone M, Batalon T, Hoberg N, Poudrier S et al (2023) miR-10b-5p rescues leaky gut linked with gastrointestinal dysmotility and diabetes. United Eur Gastroenterol J 11(8):750–766. https://doi.org/10.1002/ueg2.12463

    Article  CAS  Google Scholar 

  1683. Jia SZ, Yang Y, Lang J, Sun P, Leng J (2013) Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum Reprod 28(2):322–330. https://doi.org/10.1093/humrep/des413

    Article  PubMed  CAS  Google Scholar 

  1684. Rooda I, Hasan MM, Roos K, Viil J, Andronowska A, Smolander OP, Jaakma Ü, Salumets A, Fazeli A, Velthut-Meikas A (2020) Cellular, extracellular and extracellular vesicular miRNA profiles of pre-ovulatory follicles indicate signaling disturbances in polycystic ovaries. Int J Mol Sci 21(24):9550. https://doi.org/10.3390/ijms21249550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1685. Brennan E, Butler AE, Drage DS, Sathyapalan T, Atkin SL (2023) Serum polychlorinated biphenyl levels and circulating miRNAs in non-obese women with and without polycystic ovary syndrome. Front Endocrinol (Lausanne) 14:1233484. https://doi.org/10.3389/fendo.2023.1233484

    Article  PubMed  Google Scholar 

  1686. Chen R, Xin G, Zhang X (2019) Long non-coding RNA HCP5 serves as a ceRNA sponging miR-17-5p and miR-27a/b to regulate the pathogenesis of childhood obesity via the MAPK signaling pathway. J Pediatr Endocrinol Metab 32(12):1327–1339. https://doi.org/10.1515/jpem-2018-0432

    Article  PubMed  CAS  Google Scholar 

  1687. Russo P, Lauria F, Sirangelo I, Siani A, Iacomino G (2023) Association between urinary AGEs and circulating miRNAs in children and adolescents with overweight and obesity from the Italian I family cohort: a pilot study. J Clin Med 12(16):5362. https://doi.org/10.3390/jcm12165362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1688. Bond ST, King EJ, Henstridge DC, Tran A, Moody SC, Yang C, Liu Y, Mellett NA, Nath AP, Inouye M et al (2021) Deletion of Trim28 in committed adipocytes promotes obesity but preserves glucose tolerance. Nat Commun 12(1):74. https://doi.org/10.1038/s41467-020-20434-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1689. Li J, Gan B, Lu L, Chen L, Yan J (2023) Expression of microRNAs in patients with gestational diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol 60(4):461–469. https://doi.org/10.1007/s00592-022-02005-8

    Article  PubMed  CAS  Google Scholar 

  1690. Gui T, Liu M, Yao B, Jiang H, Yang D, Li Q, Zeng X, Wang Y, Cao J, Deng Y et al (2021) TCF3 is epigenetically silenced by EZH2 and DNMT3B and functions as a tumor suppressor in endometrial cancer. Cell Death Differ 28(12):3316–3328. https://doi.org/10.1038/s41418-021-00824-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1691. Kaur R, Mehta J, Borges AM (2021) Role of SMARCA4 (BRG1) and SMARCB1 (INI1) in dedifferentiated endometrial carcinoma with paradoxical aberrant expression of mmr in the well-differentiated component: a case report and review of the literature. Int J Surg Pathol 29(5):571–577. https://doi.org/10.1177/1066896920959453

    Article  PubMed  Google Scholar 

  1692. Chen Y, Cheng H, Long H (2021) Tripartite motif containing 28 (TRIM28) promotes the growth and migration of endometrial carcinoma cells by regulating the AKT/mTOR signaling pathway. Gen Physiol Biophys 40(3):245–252. https://doi.org/10.4149/gpb_2021009

    Article  PubMed  CAS  Google Scholar 

  1693. Zhong Y, Zhu F, Ding Y (2019) Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med 18(1):826–832. https://doi.org/10.3892/etm.2019.7637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1694. Ma H, He Y, Bai M, Zhu L, He X, Wang L, Jin T (2019) The genetic polymorphisms of ZC3HC1 and SMARCA4 are associated with hypertension risk. Mol Genet Genomic Med 7(11):e942. https://doi.org/10.1002/mgg3.942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1695. Chen M, Shi P, Wang P, Zhang T, Zhao J, Zhao L (2024) Up-regulation of Trim28 in pregnancy-induced hypertension is involved in the injury of human umbilical vein endothelial cells through the p38 signaling pathway. Histol Histopathol 39(5):603–610. https://doi.org/10.14670/HH-18-651

    Article  PubMed  Google Scholar 

  1696. Liu B, Liu L, Sulaiman Z, Wang C, Wang L, Zhu J, Liu S, Cheng Z (2024) Comprehensive analysis of lncRNA-miRNA-mRNA ceRNA network and key genes in granulosa cells of patients with biochemical primary ovarian insufficiency. J Assist Reprod Genet 41(1):15–29. https://doi.org/10.1007/s10815-023-02937-2

    Article  PubMed  Google Scholar 

  1697. Abedini A, Landry DA, Macaulay AD, Vaishnav H, Parbhakar A, Ibrahim D, Salehi R, Maranda V, Macdonald E, Vanderhyden BC (2023) SWI/SNF chromatin remodeling subunit Smarca4/BRG1 is essential for female fertility. Biol Reprod 108(2):279–291. https://doi.org/10.1093/biolre/ioac209

    Article  PubMed  Google Scholar 

  1698. Tang J, Chen Q, Xiang L, Tu T, Zhang Y, Ou C (2024) TRIM28 fosters microglia ferroptosis via autophagy modulation to enhance neuropathic pain and neuroinflammation. Mol Neurobiol. https://doi.org/10.1007/s12035-024-04133-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank very much to Peixin Jiang, Baylor College of Medicine, Houston, TX, USA, the author who deposited their NGS dataset GSE243039, into the public GEO database.

Funding

The authors received no financial support for the research.

Author information

Authors and Affiliations

Authors

Contributions

BV performed writing original draft and review and editing. CV contributed to software and investigation.

Corresponding author

Correspondence to Chanabasayya Vastrad.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vastrad, B., Vastrad, C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. Egypt J Med Hum Genet 25, 116 (2024). https://doi.org/10.1186/s43042-024-00572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s43042-024-00572-9

Keywords