Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, Tagua VG, Hernández-Carballo C, Ferri C, Rodríguez-Rodríguez AE, Mora-Fernández C, Navarro-González JF (2020) Inflammatory targets in diabetic nephropathy. J Clin Med 9:458
Article
CAS
PubMed Central
Google Scholar
Kanwar YS, Wada J, Sun L et al (2008) Diabetic nephropathy: mechanisms of renal disease progression. ExpBiol Med (Maywood) 233:4–11
Article
CAS
Google Scholar
Soldatos G, Cooper ME (2008) Diabetic nephropathy: important pathophysiologic mechanisms. Diabetes Res Clin Pract 82:S75–S79
Article
CAS
PubMed
Google Scholar
Forbes JM, Fukami K, Cooper ME (2007) Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabetes 115:69–84
Article
CAS
PubMed
Google Scholar
Bonnefont-Rosselot D (2004) The role of antioxidant micronutrients in the prevention of diabetic complications. Treat Endocrinol 3(1):41–52
Article
Google Scholar
Brownlee M (2001; Dec 13) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820
Article
CAS
PubMed
Google Scholar
Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57(6):1446–1454
Article
CAS
PubMed
Google Scholar
Motyl K, McCabe LR (2009) Streptozotocin, type I diabetes severity and bone. Biol Proced Online 11:296–315. https://doi.org/10.1007/s12575-009-9000-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Burney BO, Kalaitzidis RG, Bakris GL (2009) Novel therapies of diabetic nephropathy. Curr Opin Nephrol Hypertens 18:107–111
Article
CAS
PubMed
Google Scholar
Qi Y, Ma J, Li S et al (2019) Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 10:274. https://doi.org/https://doi.org/10.1186/s13287-019-1362-2
Locke M, Windsor J, Dunbar PR (2009) Human adipose-derived stem cells: isolation, characterization, and applications in surgery. ANZ J Surg 79(4):235–244
Article
PubMed
Google Scholar
Zhao Q, Ren H, Han Z (2016) Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother 2:3–20
Article
Google Scholar
Rawat S, Gupta S, Mohanty S (2019) Mesenchymal stem cells modulate the immune system in developing therapeutic interventions. Immune response activation and immunomodulation book. https://doi.org/10.5772/intechopen.80772
Keller CA, Gonwa TA, Hodge DO, Hei DJ, Centanni JM, Zubair AC (2018) Feasibility, safety, and tolerance of mesenchymal stem cell therapy for obstructive chronic lung allograft dysfunction. Stem Cells Transl Med 7:161–167. https://doi.org/10.1002/sctm.17-0198
Article
PubMed
PubMed Central
Google Scholar
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K (2019) Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019:9628536
Article
PubMed
PubMed Central
CAS
Google Scholar
Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am SocNephrol 15(7):1794–1804
Google Scholar
Lin F, Moran A, Igarashi P (2005) Intra-renal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115(7):1756–1764
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, Koc ON, Penn MS (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 21(12):3197–3207
Article
CAS
PubMed
Google Scholar
Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292(5):F1626–F3165
Article
CAS
PubMed
Google Scholar
Shulman K, Rosen S, Tognazzi K, Manseau EJ, Brown LF. Expression of vascular permeability factor (VPF/VEGF) is altered in many glomerular diseases. J Am SocNephrol 1996; 7:661–666. [PubMed: 8738799].
Hohenstein B, Hausknecht B, Boehmer K, Riess R, Brekken RA, Hugo CP. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int 2006; 69:1654–1661. [PubMed: 16541023].
Brosius FC 3rd, Alpers CE, Bottinger EP, et al. Animal models of diabetic complications consortium. Mouse models of diabetic nephropathy. J Am SocNephrol. 2009; 20:2503–2512. [PubMed: 19729434].
Brosius FC, Khoury CC, Buller CL, Chen S (2010) Abnormalities in signaling pathways in diabetic nephropathy. Expert Rev Endocrinol Metab 5:51–64
Article
PubMed
PubMed Central
Google Scholar
Domouky AM, Hegab AS, Al-Shahat A, Raafat N (2017) Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus. Int J Biochem Cell Biol 87:77–85
Article
CAS
PubMed
Google Scholar
Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H, Li D (2012) Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med 30:85–92
CAS
PubMed
Google Scholar
Ni W, Fang Y, Xie L, Liu X, Shan W, Zeng R, Liu J, Liu X (2015 Nov) Adipose-derived mesenchymal stem cells transplantation alleviates renal injury in streptozotocin-induced diabetic nephropathy. J Histochem Cytochem 63(11):842–853. https://doi.org/10.1369/0022155415599039
Article
CAS
PubMed
PubMed Central
Google Scholar
Raafat N, Abdel Aal SM, Abdo FK, El Ghonaimy NM (2015) Mesenchymal stem cells: in vivo therapeutic application ameliorates carbon tetrachloride-induced liver fibrosis in rats. Int J Biochem Cell Biol 68:109–118
Article
CAS
PubMed
Google Scholar
Bhang SH, Lee S, Shin JY, Lee TJ, Jang HK, Kim BS (2014; Apr) Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther 22(4):862–872. https://doi.org/10.1038/mt.2013.301
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert JF, Benoit BO, Colvin GA et al (2000) Quick sex determination of mouse fetuses. J Neurosci Methods 95:127–132
Article
CAS
PubMed
Google Scholar
Yoshida K, Ono M, Maejima T, Esaki M, Sawada H (2007) Oligopotent mesenchymal stem cell-like clone becomes multinucleated following phorbol ester, TPA stimulation. Anat Rec 120:1256–1267
Article
CAS
Google Scholar
Scott E, Fawcett JK (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13(2):156–159
Article
PubMed
PubMed Central
Google Scholar
Henry R (1974) Clinical chemistry principles and techniques, second edn. Harper and Ow, New York
Google Scholar
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by the thiobarbituric acid reaction. Anal Biochem 95(2):351–358
Article
CAS
PubMed
Google Scholar
Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888
CAS
PubMed
Google Scholar
Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic press. NY, USA, New York, pp 673–677
Bradford MM.A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 1976; 72: 248–254.
Li CP, Li JH, He SY, Li P, Zhong XL (2014) Roles of Fas/Fasl, Bcl-2/Bax, and caspase-8 in rat nonalcoholic fatty liver disease pathogenesis. Genet Mol Res 13(2):3991–3999
Article
CAS
PubMed
Google Scholar
Hua P, Liu J, Tao J, Liu J, Yang S (2015) Influence of caspase-3 silencing on the roliferation and apoptosis of rat bone marrow mesenchymal stem cells under hypoxia. Int J ClinExp Med 8(2):1624–1633
CAS
Google Scholar
Kiernan JA (2001) Histological and histochemical methods: theory and practice, 3rd edn. Arnold publisher, London, pp 111–162
Google Scholar
Malatiali S, Francis S, Barac-Nieto M (2008) Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats. Exp Diabetes Res:305–313
Bancroft J, Gamble A (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, New York, London, pp 165–175
Google Scholar
Bancroft JD, Cook HC (1994) Immunocytochemistry. In: Bancroft JD, Cook HC, Turner DR (eds) Manual of histological techniques and their diagnostic application, 2nd edn. Churchill Livingstone, New York: Edinburgh, pp 263–325
Google Scholar
Villegas G, Lange-Sperandio GB, Tufro A (2005) Autocrine and paracrine functions of vascular endothelial growth factor (VEGF) in renal tubular epithelial cells. Kidney Int 67:449–457
Article
CAS
PubMed
Google Scholar
Ezquer FE, Ezquer ME, Parrau DB et al (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14:631–640
Article
CAS
PubMed
Google Scholar
Anglani F, Forino M, Del Prete D, Tosetto E, Torregrossa R, D’Angelo A (2004) In search of adult renal stem cells. J Cell Mol Med 8(4):474–487
Article
CAS
PubMed
PubMed Central
Google Scholar
Najafian B, Alpers CE, Fogo AB (2011) Pathology of human diabetic nephropathy. Contrib Nephrol 170:36–47
Article
PubMed
Google Scholar
Raparia K, Usman I, Kanwar YS (2013) Renal morphologic lesions reminiscent of diabetic nephropathy. Arch Pathol Lab Med 137:351–359
Article
CAS
PubMed
Google Scholar
Kim HJ, Kong MK, Kim YC (2008) Beneficial effects of Phellodendri cortex extract on hyperglycemia and diabetic nephropathy in streptozotocin-induced diabetic rats. BMB Rep 41(10):710–715
Article
CAS
PubMed
Google Scholar
Zafar M, Naeem-ul-Hassan Naqvi S, Ahmed M, Kaimkhani ZA (2009) Altered kidney morphology and enzymes in streptozotocin-induced diabetic rats. Int J Morphol 27(3):783 -790, 2009
Google Scholar
Wong CY, Cheong SK, Mok PL, Leong CF (2008) Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model. Pathology 40:52–57
Article
CAS
PubMed
Google Scholar
Qian H, Yang H, Xu W, Yan Y, Chen Q et al (2008) Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. Int J Mol Med 22:325–332
PubMed
Google Scholar
Wu HJ (2014) Yiu WH, Li RX, Wong DW, Leung JC, et al. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis PloS One 9:e90883
Article
PubMed
PubMed Central
CAS
Google Scholar
Park JH, Hwang I, Hwang SH, Han H, Ha H (2012) Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract 98:465–473
Article
CAS
PubMed
Google Scholar
Lv SS, Liu G, Wang JP, Wang WW, Cheng J et al (2013) Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin induced diabetic nephropathy in rats via inhibiting macrophage infiltration. Int Immunopharmacol 17:275–282
Article
CAS
PubMed
Google Scholar
Ling L, Truong P, Igarashi P, Lin F (2007) Renal and bone marrow cells fuse after renal ischemic injury. J Am Soc Nephrol 18(12):3067–3077
Article
CAS
Google Scholar
Rookmaaker MB, Verhaar MC, de Boer HC, Goldschmeding R, Joles JA, Koomans HA, Gröne HJ, Rabelink TJ (2007) Met-RANTES reduces endothelial progenitor cell homing to activated (glomerular) endothelium in vitro and in vivo. Am J Physiol Renal Physiol 293(2):F624–F630
Article
CAS
PubMed
Google Scholar
Ito T, Suzuki A, Okabe M, Imai E, Hori M (2001) Application of bone marrow-derived stem cells in experimental nephrology. Exp Nephrol 9(6):444–450
Article
CAS
PubMed
Google Scholar
Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 5:1053–1067
Article
CAS
Google Scholar
Duffield JS, Bonventre JV (2005) Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int 68(5):1956–1961
Article
CAS
PubMed
PubMed Central
Google Scholar
Chishti AS, Sorof JM, Brewer ED, Kale AS (2001) Long-term treatment of focal segmental glomerulosclerosis in children with cyclosporine given as a single daily dose. Am J Kidney Dis 38(4):754–760
Article
CAS
PubMed
Google Scholar
Poulsom R, Forbes SJ, Hodivala-DHke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195(2):229–235
Article
CAS
PubMed
Google Scholar
Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1):1–9
Article
CAS
PubMed
Google Scholar
Chen HC, Guh JY, Chang JM, Hsieh MC, Shin SJ, Lai YH (2005) Role of lipid control in diabetic nephropathy. Kidney Int 94(Suppl):S60–S62
Article
Google Scholar
Bigagli E, Lodovici M (2019) Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxid Me Cell Longev 2019:5953685
Google Scholar
Horie K, Miyata T, Maeda K, Miyata S, Sugiyama S, Sakai H, van Ypersole de Strihou C, Monnier VM, Witztum JL, Kurokawa K (1997) Immunohistochemical co-localization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J Clin Invest 100(12):2995–2999
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS (2016) Antioxidants & redox signaling. Jul:119–146
Tunçdemir M, Oztürk M (2011) The effects of angiotensin-II receptor blockers on podocyte damage and glomerular apoptosis in a rat model of experimental streptozotocin-induced diabetic nephropathy. Acta Histochem 113(8):826–832
Article
PubMed
CAS
Google Scholar
Carlos CP, Sliva AA, Gil CD, Oliani SM (2018) Pharmacological treatment with galectin-1 protects against renal ischaemia-reperfusion injury. Sci Rep 8:9568. https://doi.org/10.1038/s41598-018-27907-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Sverrisson K, Axelsson J, Rippe A, Asgeirsson D, Rippe B (2015 Aug) Acute reactive oxygen species (ROS)-dependent effects of IL-1, TNF-, and IL-6 on the glomerular filtration barrier (GFB) in vivo. Am J Physiol Renal Physiol 309:F800–F806. https://doi.org/10.1152/ajprenal.00111.2015
Article
CAS
PubMed
Google Scholar
Koike N, Takamura T, Kaneko S (2007) Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-α stimulation, and effects of a phosphodiesterase inhibitor. Life Sci 80(18):1721–1728
Article
CAS
PubMed
Google Scholar
Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell DevBiol 15:269–290
Article
CAS
Google Scholar
Lavrik IN, Krammer PH (2012 Jan) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19(1):36–41. https://doi.org/10.1038/cdd.2011.155
Article
CAS
PubMed
Google Scholar
Sinha K, Pal PB, Sil PC (2014) Cadmium (Cd2+) exposure differentially elicits both cell proliferation and cell death related responses in SK-RC-45. Toxicol in Vitro 28:307–318
Article
CAS
PubMed
Google Scholar
Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490
Article
CAS
PubMed
Google Scholar
Sun W, Cao C, Huang W, Chen W, Yasser G, Sun D, Wan X (2016) Interleukin-10 deficiency increases renal inflammation and fibrosis in a mouse ischemia-reperfusion injury model. Int J Clin Exp Pathol 9(3):3037–3043
CAS
Google Scholar
Semedo P, Palasio CG, Oliveira CD, Feitoza CQ, Gonçalves GM, Cenedeze MA, Wang PM, Teixeira VP, Reis MA, Pacheco-Silva A, Câmara NO (2009) Early modulation of inflammation by mesenchymal stem cell after acute kidney injury. IntImmunopharmacol 9(6):677–682
Article
CAS
Google Scholar
Lawen A (2005) Apoptosis- an introduction. BioEssays 2003; 25 (9): 888–896.Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289(1):F31–F42
Article
CAS
Google Scholar
Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289(1):F31–F42
Article
PubMed
CAS
Google Scholar