Damar İH, Eroz R (2020) The association of hereditary prothrombotic risk factors with ST-elevation myocardial infarction. Medeniyet Med J 35(4):295. https://doi.org/10.5222/MMJ.2020.67366
Article
Google Scholar
Shen G-Q, Li L, Rao S, Abdullah KG, Ban JM, Lee B-S et al (2008) Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease. Arterioscler Thromb Vasc Biol 28(2):360–365. https://doi.org/10.1161/ATVBAHA.107.157248
Article
CAS
PubMed
Google Scholar
Huang DL, Chen QF, Wang W, Huang Z, Li T, Li J et al (2018) Association of rs1333040 SNPs with susceptibility, risk factors, and clinical characteristics of acute myocardial infarction patients in a Chinese Han population. Int J Clin Exp Pathol 11(2):727–738
PubMed
PubMed Central
Google Scholar
Wilson PW (1994) Established risk factors and coronary artery disease: the Framingham Study. Am J Hypertens 7(7Pt2):7S-12S. https://doi.org/10.1093/ajh/7.7.7S
Article
CAS
PubMed
Google Scholar
Amara A, Mrad M, Sayeh A, Haggui A, Lahideb D, Fekih-Mrissa N et al (2018) Association of FV G1691A polymorphism but not A4070G with coronary artery disease. Clin Appl Thromb Hemost 24(2):330–337
Article
CAS
Google Scholar
Li M-N, Wang H-J, Zhang N-R, Xuan L, Shi X-J, Zhou T et al (2017) MTHFR C677T gene polymorphism and the severity of coronary lesions in acute coronary syndrome. Medicine. https://doi.org/10.1097/MD.0000000000009044
Article
PubMed
PubMed Central
Google Scholar
Balogh L, Katona É, Mezei ZA, Kállai J, Gindele R, Édes I et al (2018) Effect of factor XIII levels and polymorphisms on the risk of myocardial infarction in young patients. Mol Cell Biochem 448(1):199–209. https://doi.org/10.1007/s11010-018-3326-8
Article
CAS
PubMed
Google Scholar
They-They TP, Hamzi K, Moutawafik MT, Bellayou H, El Messal M, Nadifi S (2010) Prevalence of angiotensin-converting enzyme, methylenetetrahydrofolate reductase, Factor V Leiden, prothrombin and apolipoprotein E gene polymorphisms in Morocco. Ann Hum Biol 37(6):767–777. https://doi.org/10.3109/03014461003738850
Article
PubMed
Google Scholar
Asghar M, Kabita S, Kalla L, Murry B, Saraswathy KN (2013) Prevalence of MTHFR, Factor V, ACE and APOE gene polymorphisms among Muslims of Manipur, India. Ann Hum Biol 40(1):83–87. https://doi.org/10.3109/03014460.2012.737832
Article
PubMed
Google Scholar
Kohler H, Ariëns R, Whitaker P, Grant P (1998) A common coding polymorphism in the FXIII A-subunit gene (FXIIIVal34Leu) affects cross-linking activity. Thromb Haemost 80(10):704–704
CAS
PubMed
Google Scholar
Shafey M, Anderson JL, Scarvelis D, Doucette SP, Gagnon F, Wells PS (2007) Factor XIII Val34Leu variant and the risk of myocardial infarction. Thrombosis Haemostasis 97(04):635–641. https://doi.org/10.1160/TH06-09-0517
Article
CAS
PubMed
Google Scholar
Liew S-C, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10. https://doi.org/10.1016/j.ejmg.2014.10.004
Article
PubMed
Google Scholar
Xuan C, Bai X-Y, Gao G, Yang Q, He G-W (2011) Association between polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T and risk of myocardial infarction: a meta-analysis for 8,140 cases and 10,522 controls. Arch Med Res 42(8):677–685. https://doi.org/10.1016/j.arcmed.2011.11.009
Article
CAS
PubMed
Google Scholar
Antman E, Bassand J-P, Klein W, Ohman M, Lopez Sendon JL, Rydén L et al (2000) Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction: the Joint European Society of Cardiology/American College of Cardiology Committee. J Am Coll Cardiol 36(3):959–969
Article
Google Scholar
Collins A, Ke X (2012) Primer1: primer design web service for tetra-primer ARMS-PCR. Open Bioinform J. https://doi.org/10.2174/1875036201206010055
Article
Google Scholar
Msalati A, Bashein A, Ghrew M, Khalil I, Sedaa K, Ali A et al (2021) Association of venous thromboembolism and myocardial infarction with Factor V Leiden and Factor II gene mutations among Libyan patients. Libyan J Med 16(1):1857525. https://doi.org/10.1186/s40246-019-0243-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Cushman M, Rosendaal FR, Psaty BM, Cook EF, Valliere J, Kuller LH et al (1998) Factor V Leiden is not a risk factor for arterial vascular disease in the elderly: results from the Cardiovascular Health Study. Thromb Haemost 79(05):912–915
Article
CAS
Google Scholar
Juul K, Tybjærg-Hansen A, Steffensen R, Kofoed S, Jensen G, Nordestgaad BG (2002) Factor V Leiden: the copenhagen city heart study and 2 meta-analyses. Blood J Am Soc Hematol 100(1):3–10. https://doi.org/10.1182/blood-2002-01-0111
Article
CAS
Google Scholar
Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eisenberg PR, Miletich JP (1995) Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 332(14):912–917
Article
CAS
Google Scholar
Mahmoodi BK, Tragante V, Kleber ME, Holmes MV, Schmidt AF, McCubrey RO et al (2020) Association of factor V Leiden with subsequent atherothrombotic events: a GENIUS-CHD study of individual participant data. Circulation 142(6):546–555. https://doi.org/10.1161/Circulationaha.119.045526
Article
PubMed
PubMed Central
Google Scholar
Ezzat H, Attia FA, Mokhtar A, El-Tokhy HM, Alalfy MN, Elkhouly NY (2014) Prevalence of thrombophilic gene polymorphisms (FVLG1691A and MTHFRC677T) in patients with myocardial infarction. Egypt J Med Hum Genet 15(2):113–123. https://doi.org/10.1016/j.ejmhg.2014.02.001
Article
Google Scholar
Bagoly Z, Koncz Z, Hársfalvi J, Muszbek L (2012) Factor XIII, clot structure, thrombosis. Thromb Res 129(3):382–387. https://doi.org/10.1016/j.thromres.2011.11.040
Article
CAS
PubMed
Google Scholar
Wartiovaara U, Mikkola H, Szôke G, Haramura G, Kárpáti L, Balogh I et al (2000) Effect of Val34Leu polymorphism on the activation of the coagulation factor XIII-A. Thromb Haemost 84(10):595–600
Article
CAS
Google Scholar
Lim BC, Ariëns RA, Carter AM, Weisel JW, Grant PJ (2003) Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet 361(9367):1424–1431. https://doi.org/10.1016/S0140-6736(03)13135-2
Article
CAS
PubMed
Google Scholar
Gdl R, Tàssies D, Espinosa G, Monteagudo J, Bové A, Plaza J et al (2009) Factor XIII-A subunit Val34Leu polymorphism is associated with the risk of thrombosis in patients with antiphospholipid antibodies and high fibrinogen levels. Thromb Haemost 101(02):312–316
Article
Google Scholar
Amin HA-KA, Kotb-El-Sayed MI, Hashish AA, Mohamed FM, Aziz HFA, Leheta OF (2013) Correlation of FXIII Val34Leu polymorphism with decreased risk of myocardial infarction in Egypt. J Adv Med Med Res. https://doi.org/10.9734/BJMMR/2013/4730
Article
Google Scholar
Vishwajeet V, Jamwal M, Sharma P, Das R, Ahluwalia J, Dogra RK et al (2018) Coagulation F13A1 V34L, fibrinogen and homocysteine versus conventional risk factors in the pathogenesis of MI in young persons. Acta Cardiol 73(4):328–334. https://doi.org/10.1080/00015385.2017.1384172
Article
PubMed
Google Scholar
Chen F, Qiao Q, Xu P, Fan B, Chen Z (2013) Effect of Factor XIII-A Val34Leu polymorphism on myocardial infarction risk: a meta-analysis. Clin Appl Thromb Hemost 20(8):783–792. https://doi.org/10.1177/1076029613504130
Article
CAS
PubMed
Google Scholar
Vokó Z, Bereczky Z, Katona E, Adany R, Muszbek L (2007) Factor XIII Val34Leu variant protects against coronary artery disease. Thrombos Haemost 97(03):458–463. https://doi.org/10.1160/TH06-11-0676
Article
CAS
Google Scholar
Attié-Castro FA, Zago MA, Lavinha J, Elion J, Rodriguez-Delfin L, Guerreiro JF et al (2000) Ethnic heterogeneity of the factor XIII Val34Leu polymorphism. Thrombos Haemost 84(10):601–603. https://doi.org/10.1055/s-0037-1614074
Article
Google Scholar
Sajjadi SM, Khosravi A, Pakravesh J, Soheili Z, Samiei H, Mohammadi S et al (2016) Factor XIII Val34Leu polymorphism and risk of recurrent pregnancy loss in Iranian population: a case control study. Front Biol 11(6):471–475
Article
CAS
Google Scholar
Dayakar S, Goud KI, Reddy TPK, Rao SP, Sesikeran SB, Sadhnani M (2011) Sequence variation of the methylene tetrahydrofolate reductase gene (677C> T and 1298 A> C) and traditional risk factors in a South Indian population. Genet Test Mol Biomark 15(11):765–769. https://doi.org/10.1089/gtmb.2011.0024
Article
CAS
Google Scholar
Kang S-S, Wong P, Susmano A, Sora J, Norusis M, Ruggie N (1991) Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 48(3):536–545
CAS
PubMed
PubMed Central
Google Scholar
Lai WKC, Kan MY (2015) Homocysteine-induced endothelial dysfunction. Ann Nutr Metabol 67(1):1–12. https://doi.org/10.1159/000437098
Article
CAS
Google Scholar
McCully KS (2015) Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol 8(2):211–219. https://doi.org/10.1586/17512433.2015.1010516
Article
CAS
PubMed
Google Scholar
Xu B, Kong X, Xu R, Song Y, Liu L, Zhou Z et al (2017) (2017) Homocysteine and all-cause mortality in hypertensive adults without pre-existing cardiovascular conditions: Effect modification by MTHFRC677T polymorphism. Medicine 96(8):e5862-e. https://doi.org/10.1097/MD.0000000000005862
Article
CAS
Google Scholar