Chorzalska A, Ahsan N, Rao RSP, Roder K, Yu X, Morgan J et al (2018) Overexpression of Tpl2 is linked to imatinib resistance and activation of MEK-ERK and NF-κB pathways in a model of chronic myeloid leukemia. Mol Oncol 12(5):630–647
Article
CAS
Google Scholar
Salimizand H, Amini S, Abdi M, Ghaderi B, Azadi NA (2016) Concurrent effects of ABCB1 C3435T, ABCG2 C421A, and XRCC1 Arg194Trp genetic polymorphisms with risk of cancer, clinical output, and response to treatment with imatinib mesylate in patients with chronic myeloid leukemia. Tumour Biol 37(1):791–798
Article
CAS
Google Scholar
Louati N, Turki F, Mnif H, Frikha R (2022) MDR1 gene polymorphisms and imatinib response in chronic myeloid leukemia: a meta-analysis. J Oncol Pharm Pract 28(1):39–48
Article
CAS
Google Scholar
Jabbour E, Kantarjian H (2020) Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am J Hematol 95(6):691–709
Article
CAS
Google Scholar
Gromicho M, Dinis J, Magalhães M, Fernandes AR, Tavares P, Laires A et al (2011) Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1. Leuk Lymphoma 52(10):1980–1990
Article
CAS
Google Scholar
Jabbour E, Kantarjian H (2022) Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol 97:1236–1256
Article
CAS
Google Scholar
Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP et al (2017) Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med 376(10):917–927
Article
CAS
Google Scholar
Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417
Article
CAS
Google Scholar
American Cancer Society (2015) Cancer facts & figures 2015. American Cancer Society, New York
Google Scholar
Tanis KQ, Veach D, Duewel HS, Bornmann WG, Koleske AJ (2003) Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Mol Cell Biol 23(11):3884–3896
Article
CAS
Google Scholar
Mughal TI, Radich JP, Deininger MW, Apperley JF, Hughes TP, Harrison CJ et al (2016) Chronic myeloid leukemia: reminiscences and dreams. Haematologica 101(5):541
Article
CAS
Google Scholar
Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289(5486):1938–1942
Article
CAS
Google Scholar
Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566
Article
CAS
Google Scholar
Gotta V, Bouchet S, Widmer N, Schuld P, Decosterd LA, Buclin T et al (2014) Large-scale imatinib dose–concentration–effect study in CML patients under routine care conditions. Leuk Res 38(7):764–772
Article
CAS
Google Scholar
Quintás-Cardama A, Kantarjian HM, Cortes JE (2009) Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control 16(2):122–131
Article
Google Scholar
Zhang WW, Cortes JE, Yao H, Zhang L, Reddy NG, Jabbour E et al (2009) Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resistance. J Clin Oncol 27(22):3642
Article
CAS
Google Scholar
Karabay AZ, Koc A, Ozkan T, Hekmatshoar Y, Altinok Gunes B, Sunguroglu A et al (2018) Expression analysis of Akirin-2, NFκB-p65 and β-catenin proteins in imatinib resistance of chronic myeloid leukemia. Hematology 23(10):765–770
Article
CAS
Google Scholar
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N et al (2014) Drug resistance in cancer: an overview. Cancers 6(3):1769–1792
Article
Google Scholar
Rabian F, Lengline E, Rea D (2019) Towards a personalized treatment of patients with chronic myeloid leukemia. Curr Hematol Malig Rep 14(6):492–500
Article
Google Scholar
Lardo M, Castro M, Moiraghi B, Rojas F, Borda N, Rey JA et al (2015) MDR1/ABCB1 gene polymorphisms in patients with chronic myeloid leukemia. Blood Res 50(3):154–159
Article
CAS
Google Scholar
Au A, Aziz Baba A, Goh AS, Wahid Fadilah SA, Teh A, Rosline H et al (2014) Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients. Biomed Pharmacother 68(3):343–349
Article
CAS
Google Scholar
Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O’Brien S et al (2006) Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia 20(10):1767–1773
Article
CAS
Google Scholar
Azevedo AP, Reichert A, Afonso C, Alberca MD, Tavares P, Lima F (2017) BCR-ABL V280G mutation, potential role in Imatinib resistance: first case report. Clin Med Insights Oncol 11:1179554917702870
Article
Google Scholar
Kaplan JB, Platanias LC (2017) Another tyrosine kinase inhibitor-resistance mutation within the BCR-ABL kinase domain: chasing our tails? Leuk Lymphoma 58(7):1526–1527
Article
CAS
Google Scholar
Kantarjian HM, Talpaz M, Giles F, O’Brien S, Cortes J (2006) New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann Intern Med 145(12):913–923
Article
Google Scholar
La Rosée P, Hochhaus A (2010) Molecular pathogenesis of tyrosine kinase resistance in chronic myeloid leukemia. Curr Opin Hematol 17(2):91–96
Article
Google Scholar
Elias MH, Azlan H, Sulong S, Baba AA, Ankathil R (2018) Aberrant DNA methylation at HOXA4 and HOXA5 genes are associated with resistance to imatinib mesylate among chronic myeloid leukemia patients. Cancer Rep 1(2):e1111
Article
Google Scholar
Diamond JM, Melo JV (2011) Mechanisms of resistance to BCR–ABL kinase inhibitors. Leuk Lymphoma 52(sup1):12–22
Article
CAS
Google Scholar
Kim DHD, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K et al (2009) Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 15(14):4750–4758
Article
CAS
Google Scholar
Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal B et al (2004) Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Can Res 64(2):672–677
Article
CAS
Google Scholar
Dai Y, Rahmani M, Corey SJ, Dent P, Grant S (2004) A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem 279(33):34227–34239
Article
CAS
Google Scholar
Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10(2):147–156
Article
CAS
Google Scholar
Allen JD, Schinkel AH (2002) Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2) 1 supported in part by Dutch Cancer Society Grants NKI 97-1433 and NKI 97-1434 (to AHS). 1. Mol Cancer Ther 1(6):427–434
CAS
Google Scholar
Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2(1):48–58
Article
CAS
Google Scholar
Litman T, Druley T, Stein W, Bates S (2001) From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci CMLS 58(7):931–959
Article
CAS
Google Scholar
Miao ZH, Tang T, Zhang YX, Zhang JS, Ding J (2003) Cytotoxicity, apoptosis induction and downregulation of MDR-1 expression by the anti-topoisomerase II agent, salvicine, in multidrug-resistant tumor cells. Int J Cancer 106(1):108–115
Article
CAS
Google Scholar
Yagüe E, Higgins C, Raguz S (2004) Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther 11(14):1170–1174
Article
Google Scholar
Munteanu E, Verdier M, Grandjean-Forestier F, Stenger C, Jayat-Vignoles C, Huet S et al (2006) Mitochondrial localization and activity of P-glycoprotein in doxorubicin-resistant K562 cells. Biochem Pharmacol 71(8):1162–1174
Article
CAS
Google Scholar
de Lima LT, Vivona D, Bueno CT, Hirata RD, Hirata MH, Luchessi AD et al (2014) Reduced ABCG2 and increased SLC22A1 mRNA expression are associated with imatinib response in chronic myeloid leukemia. Med Oncol (Northwood, Lond, Engl) 31(3):851
Article
Google Scholar
Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci 106(25):10338–10342
Article
CAS
Google Scholar
Keskitalo J, Zolk O, Fromm MF, Kurkinen K, Neuvonen PJ, Niemi M (2009) ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86(2):197–203
Article
CAS
Google Scholar
Sissung TM, Baum CE, Kirkland CT, Gao R, Gardner ER, Figg WD (2010) Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol 44(2):152–167
Article
CAS
Google Scholar
El Mesallamy HO, Rashed WM, Hamdy NM, Hamdy N (2014) High-dose methotrexate in Egyptian pediatric acute lymphoblastic leukemia: the impact of ABCG2 C421A genetic polymorphism on plasma levels, what is next? J Cancer Res Clin Oncol 140(8):1359–1365
Article
Google Scholar
Sparreboom A, Nooter K (2000) Does P-glycoprotein play a role in anticancer drug pharmacokinetics? Drug Resist Updates 3(6):357–363
Article
CAS
Google Scholar
Bruhn O, Cascorbi I (2014) Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol 10(10):1337–1354
Article
CAS
Google Scholar
Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J et al (2009) Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 27(35):6041
Article
CAS
Google Scholar
Nair D, Dhangar S, Shanmukhaiah C, Vundinti BR (2017) Association of genetic polymorphisms of the ABCG2, ABCB1, SLCO1B3 genes and the response to Imatinib in chronic myeloid leukemia patients with chronic phase. Meta Gene 11:14–19
Article
Google Scholar
Gardner E (2008) Factors affecting pharmacokinetic variability of imatinib mesylate (Gleevec, STI-571)
Nambu T, Hamada A, Nakashima R, Yuki M, Kawaguchi T, Mitsuya H et al (2011) Association of SLCO1B3 polymorphism with intracellular accumulation of imatinib in leukocytes in patients with chronic myeloid leukemia. Biol Pharm Bull 34(1):114–119
Article
CAS
Google Scholar
Belohlavkova P, Vrbacky F, Voglova J, Racil Z, Zackova D, Hrochova K et al (2018) The significance of enzyme and transporter polymorphisms for imatinib plasma levels and achieving an optimal response in chronic myeloid leukemia patients. Arch Med Sci 14:1416
Article
CAS
Google Scholar
Niebudek K, Balcerczak E, Mirowski M, Pietrzak J, Zawadzka I, Żebrowska-Nawrocka M (2019) The contribution of ABCG2 G34A and C421A polymorphisms to multiple myeloma susceptibility. Onco Targets Ther 12:1655
Article
CAS
Google Scholar
da Cunha VF, Mauricio Scheiner MA, Moellman-Coelho A, Mencalha AL, Renault IZ, Rumjanek VM et al (2016) Low ABCB1 and high OCT1 levels play a favorable role in the molecular response to imatinib in CML patients in the community clinical practice. Leuk Res 51:3–10
Article
Google Scholar
Omran MM, Abdelfattah R, Moussa HS, Alieldin N, Shouman SA (2020) Association of the trough, peak/trough ratio of imatinib, pyridine-N-oxide imatinib and ABCG2 SNPs 34 G>A and SLCO1B3 334 T>G with imatinib response in Egyptian chronic myeloid leukemia patients. Front Oncol 10:1348
Article
Google Scholar
Seong S, Lim M, Sohn S, Moon J, Oh S-J, Kim BS et al (2013) Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients. Ann Oncol 24(3):756–760
Article
CAS
Google Scholar