Global Burden of Disease Cancer Collaboration (2018) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 4(11):1553–1568. https://doi.org/10.1001/jamaoncol.2018.2706
Article
Google Scholar
India State-Level Disease Burden Initiative Cancer Collaborators (2018) The burden of cancers and their variations across the states of India: the Global Burden of Disease Study 1990-2016. Lancet Oncol. 19(10):1289–1306
Article
Google Scholar
Hennipman A, Smits J, van Oirschot B, van Houwelingen JC, Rijksen G, Neyt JP, Unnik JAV, Staal GE (1987) Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue. Tumor Biol. 8(5):251–263. https://doi.org/10.1159/000217529
Article
CAS
Google Scholar
Cao B, Bray F, Ilbawi A, Soerjomataram I (2018) Effect on longevity of one-third reduction in premature mortality from non-communicable diseases by 2030: a global analysis of the Sustainable Development Goal health target. Lancet Glob Health. 6(12):e1288–e1296. https://doi.org/10.1016/S2214-109X(18)30411-X
Article
PubMed
Google Scholar
Pierotti MA, Sozzi G, Croce CM (2003) Discovery and identification of oncogenes. In: Kufe DW, Pollock RE, Weichselbaum RR et al (eds) Holland-Frei Cancer Medicine, 6th edn. BC Decker, Hamilton
Google Scholar
Kannaiyan R, Mahadevan D (2018) A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev Anticancer Ther. 18(12):1249–1270. https://doi.org/10.1080/14737140.2018.1527688
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA. 77(3):1311–1315. https://doi.org/10.1073/pnas.77.3.1311
Article
CAS
PubMed
Google Scholar
Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA. 75(4):2021–2024. https://doi.org/10.1073/pnas.75.4.2021
Article
CAS
PubMed
Google Scholar
Ardito F, Giuliani M, Perrone D, Troiano G, Lo ML (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Medi. 40(2):271–280. https://doi.org/10.3892/ijmm.2017.3036
Article
CAS
Google Scholar
Galmarini CM, Mackey JR, Dumontet C (2002) Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 3(7):415–424. https://doi.org/10.1016/S1470-2045(02)00788-X
Article
CAS
PubMed
Google Scholar
Ho VWT, Tan HY, Wang N, Feng Y. Cancer management by tyrosine kinase inhibitors: efficacy, limitation, and future strategies. Tyrosine Kinases as Druggable Targets in Cancer. 2019. https://www.intechopen.com/books/tyrosine-kinases-as-druggable-targets-in-cancer/cancer-management-by-tyrosine-kinase-inhibitors-efficacy-limitation-and-future-strategies Accessed 10 Dec 2020.
Roskoski R (2020) Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol Res. 152:104609. https://doi.org/10.1016/j.phrs.2019.104609
Article
CAS
PubMed
Google Scholar
Modi V, Dunbrack RL (2019) A structurally - validated multiple sequence alignment of 497 human protein kinase domains. Sci Rep. 9(1):19790. https://doi.org/10.1038/s41598-019-56499-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerr S (2013) Drug discovery through enzyme inhibition. In: Lemke TL, Williams DA, Roche VF, Zito SW (eds) Foye’s principles of medicinal chemistry, 7th edn. Lippincott Williams & Wilkins, Philadelphia, p 303
Google Scholar
Uniport Database. https://www.uniprot.org/docs/pkinfam Accessed 2 Dec 2020.
Richardson CJ, Gao Q, Mitsopoulous C, Zvelebil M, Pearl LH, Pearl FM (2009) MoKCa database-mutations of kinases in cancer. Nucleic Acids Res. 37(suppl_1):D824–D831. https://doi.org/10.1093/nar/gkn832
Article
CAS
PubMed
Google Scholar
Cusabio. https://www.cusabio.com/c-16643.html Accessed 10 Dec 2020.
Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS (2018) Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer. 17(1):36. https://doi.org/10.1186/s12943-018-0801-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Azevedo A, Silva S, Rueff J. Non-receptor tyrosine kinases role and significance in hematological malignancies. Tyrosine Kinases as Druggable Targets in Cancer. 2019. https://www.intechopen.com/books/tyrosine-kinases-as-druggable-targets-in-cancer/non-receptor-tyrosine-kinases-role-and-significance-in-hematological-malignancies Accessed 10 Dec 2020.
Song S, Rosen KM, Corfas G (2013) Biological function of nuclear receptor tyrosine kinase action. Cold Spring Harb Perspect Biol. 5(7):a009001
Article
Google Scholar
Roskoski R Jr (2015) Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol. Res. 94:9–25. https://doi.org/10.1016/j.phrs.2015.01.003
Article
CAS
PubMed
Google Scholar
El-Rashedy AA, El-Din AAM (2018) Drug design of Src kinase inhibitor: an overview. J Innovat Pharm Biol Sci. 5(1):51–59
CAS
Google Scholar
RCSB Protein Data Bank. http://www.rcsb.org/ Accessed 10 Dec 2020.
Lee S, Lin X, Nam NH, Parang K, Sun G (2003) Determination of the substrate-docking site of protein tyrosine kinase C-terminal Src kinase. Proc Nat Acad Sci. 100(25):14707–14712. https://doi.org/10.1073/pnas.2534493100
Article
CAS
PubMed
Google Scholar
Uniport Database. https://www.uniprot.org/uniprot/P12931 Accessed 2 Dec 2020.
Okada M (2012) Regulation of the SRC family kinases by Csk. Int J Biol Sci. 8(10):1385–1397. https://doi.org/10.7150/ijbs.5141
Article
CAS
PubMed
PubMed Central
Google Scholar
Wenqing XU, Harrisont SC, Eckt MJ (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature. 385(6617):595–602
Article
Google Scholar
Jang EJ, Jeong HO, Park D, Kim DH, Choi YJ, Chung KW, Park MH, Yu BP, Chung HY (2015) Src tyrosine kinase activation by 4-hydroxynonenal upregulates p38, ERK/AP-1 signaling and COX-2 expression in YPEN-1 cells. Plos One. 10(10):e0129244. https://doi.org/10.1371/journal.pone.0129244
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui Z, Chen S, Wang Y, Gao C, Chen Y, Tan C, Jiang Y (2017) Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment. Eur J Med Chem. 136:372–381. https://doi.org/10.1016/j.ejmech.2017.05.006
Article
CAS
PubMed
Google Scholar
Cooper GM (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland
Google Scholar
Chen Q, Zhou Z, Shan L, Zeng H, Hua Y, Cai Z (2015) The importance of Src signaling in sarcoma (Review). Oncol Lett. 10(1):17–22. https://doi.org/10.3892/ol.2015.3184
Article
CAS
PubMed
PubMed Central
Google Scholar
Hana A, Leeb J, Leea M, Leec SY, Shina EJ, Songa YR, Leea KM, Leec KW, Lima TG (2019) Sulfuretin, a natural Src family kinases inhibitor for suppressing solar UV induced skin aging. J Funct Foods. 52:442–449. https://doi.org/10.1016/j.jff.2018.11.032
Article
CAS
Google Scholar
Chen J, Elfiky A, Han M, Chen C, Saif MW (2014) The role of Src in colon cancer and its therapeutic implications. Clin Colorectal Cancer. 13(1):5–13. https://doi.org/10.1016/j.clcc.2013.10.003
Article
CAS
PubMed
Google Scholar
Canonici A, Browne AL, Fanning KP, Roche S, Conlon NT, O’Neill F, Meiller J, Cremona M, Morgan C, Hennessy BT, Eustace AJ, Solca F, O’Donovan N, Crown J (2020) Combined targeting EGFR and SRC as a potential novel therapeutic approach for the treatment of triple negative breast cancer. Ther Adv Med Oncol. 12:1–16
Article
Google Scholar
Boufker HI, Lagneaux L, Najar M, Piccart M, Ghanem G, Body JJ, Journé F (2010) The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts. BMC Cancer. 10(1):298. https://doi.org/10.1186/1471-2407-10-298
Article
CAS
Google Scholar
Hong L, Zhang J, Heymach JV, Le X (2021) Current and future treatment options for MET exon 14 skipping alterations in non-small cell lung cancer. Ther Adv Med Oncol. 15(13):1758835921992976
Google Scholar
Belli C, Anand S, Gainor JF, Penault-Llorca F, Subbiah V, Drilon A, Andrè F, Curigliano G (2020) Progresses toward precision medicine in RET-altered solid tumors. Clin Cancer Res 26(23):6102–6111
Article
CAS
Google Scholar
Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 17(1):48. https://doi.org/10.1186/s12943-018-0804-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu R, Sun Y, Sheng W, Liao D (2017) Designing multi-targeted agents: an emerging anticancer drug discovery paradigm. Eur J Med Chem. 136:195–211. https://doi.org/10.1016/j.ejmech.2017.05.016
Article
CAS
PubMed
Google Scholar
Sun D, Zhao Y, Zhang S, Zhang L, Liu B, Ouyang L (2020) Dual-target kinase drug design: current strategies and future directions in cancer therapy. Eur J Med Chem. 15(188):112025
Article
Google Scholar
Musumeci F, Fallacara AL, Brullo C, Grossi G, Botta L, Calandro P, Chiariello M, Kissova M, Crespan E, Maga G, Schenone S (2017) Identification of new pyrrolo[2,3-d]pyrimidines as Src tyrosine kinase inhibitors in vitro active against glioblastoma. Eur J Med Chem. 15(127):369–378
Article
Google Scholar
Anwer Z, Gupta SP (2011) A QSAR study on a series of indolin-2-ones acting as non-receptor Src tyrosine kinase inhibitors. Lett Drug Design Discov. 8(10):918–925. https://doi.org/10.2174/157018011797655250
Article
CAS
Google Scholar
Zhang P, Jie H, Liu J, Zhang XY, Zhang W, Liu M, Wang Y, Wang YF, Huang W, Liu Z (2020) Studies on substituted thienopyridine carbonitriles as Src inhibitors using a comprehensive in silico method. Ind J Pharm Sci. 82:270–281
CAS
Google Scholar
Patil VM, Gupta SP, Masand N (2017) Quantitative structure-activity relationship studies: understanding the mechanism of tyrosine kinase inhibition. Curr Enzyme Inhi. 13:139–159
CAS
Google Scholar
Bahmani A, Tanzadehpanah H, Hosseinpour Moghadam N, Saidijam M. Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods. Mol Divers. 2020. https://doi.org/10.1007/s11030-020-10080-8. Epub ahead of print.
Ancuceanu R, Tamba B, Stoicescu CS, Dinu M (2019) Use of QSAR global models and molecular docking for developing new inhibitors of c-Src tyrosine kinase. Int J Mol Sci. 21(1):19. https://doi.org/10.3390/ijms21010019
Article
CAS
PubMed Central
Google Scholar
Yeatman TJ (2004) A renaissance for SRC. Nat Rev Cancer. 4(6):470–480. https://doi.org/10.1038/nrc1366
Article
CAS
PubMed
Google Scholar
Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol. 21(2):140–146. https://doi.org/10.1016/j.ceb.2009.01.028
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil VM, Masand N (2020) Role of kinases in antiviral therapeutics in A closer look at kinase inhibition. Edited by Alex Tompson. NOVA Publishers, USA
Google Scholar
Del Donno M, Bittesnich D, Chetta A, Olivieri D, Lopez-Vidriero MT (2000) The effect of inflammation on mucociliary clearance in asthma: an overview. Chest. 118(4):1142–1149. https://doi.org/10.1378/chest.118.4.1142
Article
PubMed
Google Scholar
Cohen J (2002) The immunopathogenesis of sepsis. Nature. 420(6917):885–891. https://doi.org/10.1038/nature01326
Article
CAS
PubMed
Google Scholar
Ziegler SF, Wilson CB, Perlmutter RM (1988) Augmented expression of a myeloid-specific protein tyrosine kinase gene (hck) after macrophage activation. J Exp Med. 168(5):1801–1810. https://doi.org/10.1084/jem.168.5.1801
Article
CAS
PubMed
Google Scholar
Boulet I, Ralph S, Stanley E, Lock P, Dunn AR, Green SP, Phillips WA (1992) Lipopolysaccharide-and interferon-gamma-induced expression of hck and lyn tyrosine kinases in murine bone marrow-derived macrophages. Oncogene. 7(4):703–710
CAS
PubMed
Google Scholar
Liu M. Alveolar epithelium in host defence: cytokine production. In Sepsis and Organ Dysfunction, Springer Milano. 2002;37-50, doi: https://doi.org/10.1007/978-88-470-2213-3_2.
Simon RH, Paine R (1995) 3rd. Participation of pulmonary alveolar epithelial cells in lung inflammation. J Lab Clin Med. 126(2):108–118
CAS
PubMed
Google Scholar
Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci. 20(23):6008. https://doi.org/10.3390/ijms20236008
Article
CAS
PubMed Central
Google Scholar
Han B, Mura M, Andrade CF, Okutani D, Lodyga M, dos Santos CC, Keshavjee S, Matthay M, Liu M (2005) TNFalpha-induced long pentraxin PTX3 expression in human lung epithelial cells via JNK. J Immunol. 175(12):8303–8311. https://doi.org/10.4049/jimmunol.175.12.8303
Article
CAS
PubMed
Google Scholar
Park JG, Kim SC, Kim YH, Yang WS, Kim Y, Hong S, Kim KH, Yoo BC, Kim SH, Kim JH, Cho JY (2016) Anti-inflammatory and antinociceptive activities of anthraquinone-2-carboxylic acid. Mediators Inflamm. 2016:1903849
PubMed
PubMed Central
Google Scholar
Sung NY, Kim MY, Cho JY (2015) Scutellarein reduces inflammatory responses by inhibiting Src kinase activity. Korean J Physiol Pharmacol. 19(5):441–449. https://doi.org/10.4196/kjpp.2015.19.5.441
Article
CAS
PubMed
PubMed Central
Google Scholar
Song C, Hong YH, Park JG, Kim HG, Jeong D, Oh J, Sung GH, Hossain MA, Taamalli A, Kim JH, Cho JY (2019) Suppression of Src and Syk in the NF-κB signaling pathway by Olea europaea methanol extract is leading to its anti-inflammatory effects. J Ethnopharmacol. 235:38–46. https://doi.org/10.1016/j.jep.2019.01.024
Article
CAS
PubMed
Google Scholar
Kim HG, Choi S, Lee J, Hong YH, Jeong D, Yoon K, Yoon DH, Sung GH, Lee S, Hong S, Yi YS, Kim JH, Cho JY (2018) Src is a prime target inhibited by Celtis choseniana methanol extract in its anti-inflammatory action. Evid Based Complement Alternat Med. 2018:3909038
PubMed
PubMed Central
Google Scholar
Mitchell J, Kim SJ, Seelmann A, Veit B, Shepard B, Im E, Rhee SH (2018) Src family kinase tyrosine phosphorylates Toll-like receptor 4 to dissociate MyD88 and Mal/Tirap, suppressing LPS-induced inflammatory responses. Biochem Pharmacol. 147:119–127. https://doi.org/10.1016/j.bcp.2017.11.015
Article
CAS
PubMed
Google Scholar
Khadaroo RG, He R, Parodo J, Powers KA, Marshall JC, Kapus A, Rotstein OD (2004) The role of the Src family of tyrosine kinases after oxidant-induced lung injury in vivo. Surgery. 136(2):483–488. https://doi.org/10.1016/j.surg.2004.05.029
Article
PubMed
Google Scholar
Severgnini M, Takahashi S, Tu P, Perides G, Homer RJ, Jhung JW, Bhavsar D, Cochran BH, Simon AR (2005) Inhibition of the Src and Jak kinases protects against lipopolysaccharide-induced acute lung injury. Am J Respir Crit Care Med. 171(8):858–867. https://doi.org/10.1164/rccm.200407-981OC
Article
PubMed
Google Scholar
Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 24(8):916–925. https://doi.org/10.1097/01.WCB.0000125886.48838.7E
Article
CAS
PubMed
Google Scholar
Lennmyr F, Ericsson A, Gerwins P, Akterin S, Ahlström H, Terént A (2004) Src family kinase-inhibitor PP2 reduces focal ischemic brain injury. Acta Neurol Scand. 110(3):175–179. https://doi.org/10.1111/j.1600-0404.2004.00306.x
Article
CAS
PubMed
Google Scholar
Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, McSharry H, Iwakura A, Yoon YS, Himes N, Burstein D (2004) Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest. 113(6):885–894. https://doi.org/10.1172/JCI200420702
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul R, Zhang ZG, Eliceiri BP, Jiang Q, Boccia AD, Zhang RL, Chopp M, Cheresh DA (2001) Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med. 7(2):222–227. https://doi.org/10.1038/84675
Article
CAS
PubMed
Google Scholar
Sever PS, Messerli FH (2011) Hypertension management 2011: optimal combination therapy. Eur Heart J. 32(20):2499–2506. https://doi.org/10.1093/eurheartj/ehr177
Article
PubMed
Google Scholar
Schiffrin EL, Park JB, Intengan HD, Touyz RM (2000) Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation. 101(14):1653–1659. https://doi.org/10.1161/01.CIR.101.14.1653
Article
CAS
PubMed
Google Scholar
Garrido AM, Griendling KK (2009) NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol. 302(2):148–158. https://doi.org/10.1016/j.mce.2008.11.003
Article
CAS
PubMed
Google Scholar
Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci. 112(8):417–428. https://doi.org/10.1042/CS20060342
Article
CAS
Google Scholar
Tang DD, Anfinogenova Y (2008) Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther. 13(2):130–140. https://doi.org/10.1177/1074248407313737
Article
CAS
PubMed
PubMed Central
Google Scholar
Cat AND, Touyz RM (2011) Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep. 13(2):122–128
Article
Google Scholar
Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 292(1):C82–C97. https://doi.org/10.1152/ajpcell.00287.2006
Article
CAS
PubMed
Google Scholar
Abe K, Nakashima H, Ishida M, Miho N, Sawano M, Soe NN, Kurabayashi M, Chayama K, Yoshizumi M, Ishida T (2008) Angiotensin II−induced osteopontin expression in vascular smooth muscle cells involves G q/11, Ras, ERK, Src and Ets-1. Hypertens Res. 31(5):987–998. https://doi.org/10.1291/hypres.31.987
Article
CAS
PubMed
Google Scholar
Touyz RM, Wu XH, He G, Park JB, Chen X, Vacher J, Rajapurohitam V, Schiffrin EL (2001) Role of c-Src in the regulation of vascular contraction and Ca2+ signaling by angiotensin II in human vascular smooth muscle cells. J Hypertens. 19(3):441–449. https://doi.org/10.1097/00004872-200103000-00012
Article
CAS
PubMed
Google Scholar
Mugabe BE, Yaghini FA, Song CY, Buharalioglu CK, Waters CM, Malik KU (2010) Angiotensin II-induced migration of vascular smooth muscle cells is mediated by p38 mitogen-activated protein kinase-activated c-Src through spleen tyrosine kinase and epidermal growth factor receptor transactivation. J Pharmacol Exp Ther. 332(1):116–124. https://doi.org/10.1124/jpet.109.157552
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin B, Zhou J (2015) Src family kinases (SFK) mediate angiotensin II-induced myosin light chain phosphorylation and hypertension. Plos One. 10(5):0127891
Google Scholar
Li Y, Feng J, Song S, Li H, Yang H, Zhou B, Li Y, Yue Z, Lian H, Liu L, Hu S, Nie Y (2020) gp130 Controls cardiomyocyte proliferation and heart regeneration. Circulation. 142(10):967–982. https://doi.org/10.1161/CIRCULATIONAHA.119.044484
Article
CAS
PubMed
Google Scholar
Ge MM, Zhou YQ, Tian XB, Manyande A, Tian YK, Ye DW, Yang H (2020) Src-family protein tyrosine kinases: a promising target for treating chronic pain. Biomed Pharmacother 125:110017. https://doi.org/10.1016/j.biopha.2020.110017
Article
CAS
PubMed
Google Scholar
Ku KE, Choi N, Oh SH, Kim WS, Suh W, Sung JH (2019) Src inhibition induces melanogenesis in human G361 cells. Mol Med Rep. 19(4):3061–3070. https://doi.org/10.3892/mmr.2019.9958
Article
CAS
PubMed
PubMed Central
Google Scholar
Glassock RJ, Warnock DG, Delanaye P (2017) The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol. 13(2):104–114. https://doi.org/10.1038/nrneph.2016.163
Article
CAS
PubMed
Google Scholar
Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 7(12):684–696. https://doi.org/10.1038/nrneph.2011.149
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol. 21(11):1819–1834. https://doi.org/10.1681/ASN.2010080793
Article
CAS
PubMed
Google Scholar
Yan Y, Ma L, Zhou X, Ponnusamy M, Tang J, Zhuang MA, Tolbert E, Bayliss G, Bai J, Zhuang S (2016) Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int. 89(1):68–81. https://doi.org/10.1038/ki.2015.293
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Chen JK, Nagai K, Plieth D, Tan M, Lee TC, Threadgill DW, Neilson EG, Harris RC (2012) EGFR signaling promotes TGFβ-dependent renal fibrosis. J Am Soc Nephrol. 23(2):215–224. https://doi.org/10.1681/ASN.2011070645
Article
CAS
PubMed
PubMed Central
Google Scholar
Mima A, Abe H, Nagai K, Arai H, Matsubara T, Araki M, Torikoshi K, Tominaga T, Iehara N, Fukatsu A, Kita T (2011) Activation of Src mediates PDGF-induced Smad1 phosphorylation and contributes to the progression of glomerulosclerosis in glomerulonephritis. Plos one. 6(3):17929
Article
Google Scholar
Mima A, Matsubara T, Arai H, Abe H, Nagai K, Kanamori H, Sumi E, Takahashi T, Iehara N, Fukatsu A, Kita T (2006) Angiotensin II-dependent Src and Smad1 signaling pathway is crucial for the development of diabetic nephropathy. Lab Invest. 86(9):927–939. https://doi.org/10.1038/labinvest.3700445
Article
CAS
PubMed
Google Scholar
Taniguchi K, Xia L, Goldberg HJ, Lee KW, Shah A, Stavar L, Masson EA, Momen A, Shikatani EA, John R, Husain M (2013) Inhibition of Src kinase blocks high glucose–induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes. 62(11):3874–3886. https://doi.org/10.2337/db12-1010
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, Shi Y, Deng X, Su Y, Du C, Wei J, Ren Y, Wu M, Hou Y, Duan H (2015) Inhibition of c-Src/p38 MAPK pathway ameliorates renal tubular epithelial cells apoptosis in db/db mice. Mol Cell Endocrinol. 417:27–35. https://doi.org/10.1016/j.mce.2015.09.008
Article
CAS
PubMed
Google Scholar
Elliott J, Zheleznova NN, Wilson PD (2011) c-Src inactivation reduces renal epithelial cell-matrix adhesion, proliferation, and cyst formation. Am J Physiol Cell Physiol. 301(2):C522–C529. https://doi.org/10.1152/ajpcell.00163.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Sweeney WE Jr, von Vigier RO, Frost P, Avner ED (2008) Src inhibition ameliorates polycystic kidney disease. J Am Soc Nephrol. 19(7):1331–1341. https://doi.org/10.1681/ASN.2007060665
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan NG, Leete P, Foulis AK, Richardson SJ (2014) Islet inflammation in human type 1 diabetes mellitus. IUBMB life. 66(11):723–734. https://doi.org/10.1002/iub.1330
Article
CAS
PubMed
Google Scholar
Crèvecoeur I, Rondas D, Mathieu C, Overbergh L (2015) The beta-cell in type 1 diabetes: What have we learned from proteomic studies? Proteomics-Clin Appl. 9(7-8):755–766. https://doi.org/10.1002/prca.201400135
Article
CAS
PubMed
Google Scholar
Tsatsoulis A, Mantzaris MD, Bellou S, Andrikoula M (2013) Insulin resistance: an adaptive mechanism becomes maladaptive in the current environment-an evolutionary perspective. Metab. 62(5):622–633. https://doi.org/10.1016/j.metabol.2012.11.004
Article
CAS
Google Scholar
Oakie A, Wang R (2018) β-Cell receptor tyrosine kinases in controlling insulin secretion and exocytotic machinery: c-kit and insulin receptor. Endocrinology. 159(11):3813–3821. https://doi.org/10.1210/en.2018-00716
Article
CAS
PubMed
PubMed Central
Google Scholar
Rachdi L, El Ghazi L, Bernex F, Panthier JJ, Czernichow P, Scharfmann R (2001) Expression of the receptor tyrosine kinase KIT in mature β-cells and in the pancreas in development. Diabetes. 50(9):2021–2028. https://doi.org/10.2337/diabetes.50.9.2021
Article
CAS
PubMed
Google Scholar
Krishnamurthy M, Ayazi F, Li J, Lyttle AW, Woods M, Wu Y, Yee SP, Wang R (2007) c-Kit in early onset of diabetes: a morphological and functional analysis of pancreatic β-cells in c-Kit Wv mutant mice. Endocrinology. 148(11):5520–5530. https://doi.org/10.1210/en.2007-0387
Article
CAS
PubMed
Google Scholar
Cheng H, Straub SG, Sharp GW (2007) Inhibitory role of Src family tyrosine kinases on Ca2+-dependent insulin release. Am J Physiol Endocrinol Metab. 292(3):E845–E852. https://doi.org/10.1152/ajpendo.00103.2006
Article
CAS
PubMed
Google Scholar
Cheke RS, Firke SD, Patil RR, Bari SB. ISATIN: new hope against convulsion. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents). 2018;18(2):76-101, doi: https://doi.org/10.2174/1871524917666171113124112.
Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci. 14(5):337–349. https://doi.org/10.1038/nrn3482
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitkänen A, Lukasiuk K (2009) Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav. 14(1):16–25. https://doi.org/10.1016/j.yebeh.2008.09.023
Article
PubMed
Google Scholar
Amato S, Liu X, Zheng B, Cantley L, Rakic P, Man HY (2011) AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization. Science. 332(6026):247–251. https://doi.org/10.1126/science.1201678
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan CB, Liu X, Pradoldej S, Hao C, An J, Yepes M, Luo HR, Ye K (2011) Phosphoinositide 3-kinase enhancer regulates neuronal dendritogenesis and survival in neocortex. J Neurosci. 31(22):8083–8092. https://doi.org/10.1523/JNEUROSCI.1129-11.2011
Article
CAS
PubMed
Google Scholar
Oliva AA, Atkins CM, Copenagle L, Banker GA (2006) Activated c-Jun N-terminal kinase is required for axon formation. J Neurosci. 26(37):9462–9470. https://doi.org/10.1523/JNEUROSCI.2625-06.2006
Article
CAS
PubMed
PubMed Central
Google Scholar
Berdichevsky Y, Dryer AM, Saponjian Y, Mahoney MM, Pimentel CA, Lucini CA, Usenovic M, Staley KJ (2013) PI3K-Akt signaling activates mTOR-mediated epileptogenesis in organotypic hippocampal culture model of post-traumatic epilepsy. J Neurosci. 33(21):9056–9067. https://doi.org/10.1523/JNEUROSCI.3870-12.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Aungst S, England PM, Thompson SM (2013) Critical role of trkB receptors in reactive axonal sprouting and hyperexcitability after axonal injury. J Neurophysiol. 109(3):813–824. https://doi.org/10.1152/jn.00869.2012
Article
CAS
PubMed
Google Scholar
Scharfman HE (2005) Brain-derived neurotrophic factor and epilepsy—a missing link. Epilepsy Curr. 5(3):83–88. https://doi.org/10.1111/j.1535-7511.2005.05312.x
Article
PubMed
PubMed Central
Google Scholar
Grabenstatter HL, Del Angel YC, Carlsen J, Wempe MF, White AM, Cogswell M, Russek SJ, Brooks-Kayal AR (2014) The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol Dis. 62:73–85. https://doi.org/10.1016/j.nbd.2013.09.003
Article
CAS
PubMed
Google Scholar
Zeng LH, Rensing NR, Wong M (2009) The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci. 29(21):6964–6972. https://doi.org/10.1523/JNEUROSCI.0066-09.2009
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Gu B, He XP, Joshi RB, Wackerle HD, Rodriguiz RM, Wetsel WC, McNamara JO (2013) Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron. 79(1):31–38. https://doi.org/10.1016/j.neuron.2013.04.027
Article
CAS
PubMed
PubMed Central
Google Scholar
Dinocourt C, Gallagher SE, Thompson SM (2006) Injury-induced axonal sprouting in the hippocampus is initiated by activation of trkB receptors. Eu J Neurosci. 24(7):1857–1866. https://doi.org/10.1111/j.1460-9568.2006.05067.x
Article
Google Scholar
Buckmaster PS, Ingram EA, Wen X (2009) Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J Neurosci. 29(25):8259–8269. https://doi.org/10.1523/JNEUROSCI.4179-08.2009
Article
CAS
PubMed
PubMed Central
Google Scholar
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science. 298(5600):1912–1934. https://doi.org/10.1126/science.1075762
Article
CAS
PubMed
Google Scholar
Martin KJ, Arthur JSC (2012) Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology. 63(7):1227–1237. https://doi.org/10.1016/j.neuropharm.2012.07.024
Article
CAS
PubMed
Google Scholar
Gao Y, Davies SP, Augustin M, Woodward A, Patel UA, Kovelman R, Harvey KJ (2013) A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Biochem J 451(2):313–328. https://doi.org/10.1042/BJ20121418
Article
CAS
PubMed
Google Scholar
Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, Mclauchlan H, Klevernic I, Arthur JSC, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J. 408(3):297–315. https://doi.org/10.1042/BJ20070797
Article
CAS
PubMed
PubMed Central
Google Scholar
Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol. 29(11):1039–1045. https://doi.org/10.1038/nbt.2017
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Chen H, Johns TG, Neufeld AH (2006) Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. J Neurosci. 26(28):7532–7540. https://doi.org/10.1523/JNEUROSCI.1004-06.2006
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagayama T, Nagayama M, Kohara S, Kamiguchi H, Shibuya M, Katoh Y, Itoh J, Shinohara Y (2004) Post-ischemic delayed expression of hepatocyte growth factor and c-Met in mouse brain following focal cerebral ischemia. Brain Res. 999(2):155–166. https://doi.org/10.1016/j.brainres.2003.11.052
Article
CAS
PubMed
Google Scholar
Sköld MK, Gertten CV, Sandbergnordqvist AC, Mathiesen T, Holmin S (2005) VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma. 22(3):353–367. https://doi.org/10.1089/neu.2005.22.353
Article
PubMed
Google Scholar
Castañeda-Cabral JL, Beas-Zárate C, Rocha-Arrieta LL, Orozco-Suárez SA, Alonso-Vanegas M, Guevara-Guzmán R, Ureña-Guerrero ME (2019) Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients. J Neuroimmunol. 328:68–72. https://doi.org/10.1016/j.jneuroim.2018.12.007
Article
CAS
PubMed
Google Scholar
Zhu JM, Li KX, Cao SX, Chen XJ, Shen CJ, Zhang Y, Geng HY, Chen BQ, Lian H, Zhang JM, Li XM (2017) Increased NRG1-ErbB4 signaling in human symptomatic epilepsy. Sci Rep 7(1):141
Article
Google Scholar
Karim AF, Chandra P, Chopra A, Siddiqui Z, Bhaskar A, Singh A, Kumar D (2011) Express path analysis identifies a tyrosine kinase Src-centric network regulating divergent host responses to Mycobacterium tuberculosis infection. J Biol Chem. 286(46):40307–40319. https://doi.org/10.1074/jbc.M111.266239
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandra P, Rajmani RS, Verma G, Bhavesh NS, Kumar D (2016) Targeting drug-sensitive and-resistant strains of Mycobacterium tuberculosis by inhibition of Src family kinases lowers disease burden and pathology. Msphere. 1:2
Article
Google Scholar