Feinberg AP (2018) The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 378(14):1323–1334. https://doi.org/10.1056/NEJMra1402513
Article
CAS
PubMed
Google Scholar
Begam N, Jamil K, Raju SG (2017) Promoter hypermethylation of the ATM gene as a novel biomarker for breast cancer. Asian Pac J Cancer Prev 18(11):3003–3009. https://doi.org/10.22034/APJCP.2017.18.11.3003
Article
PubMed
PubMed Central
Google Scholar
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods, and major patterns in GLOBOCAN 2012. Int J Cancer. 136(5):E359–E386. https://doi.org/10.1002/ijc.29210
Article
CAS
PubMed
Google Scholar
Malvezzi M, Carioli G, Bertuccio P, Boffetta P, Levi F, La Vecchia C et al (2019) European cancer mortality predictions for the year 2019 with focus on breast cancer. Ann Oncol. 30(5):781–787. https://doi.org/10.1093/annonc/mdz051
Article
CAS
PubMed
Google Scholar
Nelson HD, Zakher B, Cantor A, Fu R, Griffin J, O'Meara ES, Buist DS, Kerlikowske K, van Ravesteyn N, Trentham-Dietz A, Mandelblatt JS, Miglioretti DL (2012) Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis. Ann Intern Med. 156(9):635–648. https://doi.org/10.7326/0003-4819-156-9-201205010-00006
Article
PubMed
PubMed Central
Google Scholar
Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, Maher ER, Latif F (2011) Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res. 71(8):2988–2999. https://doi.org/10.1158/0008-5472.CAN-10-4026
Article
CAS
PubMed
Google Scholar
Tomita T, Kimura S (2008) Regulation of mouse Scgb3a1 gene expression by NF-Y and association of CpG methylation with its tissue-specific expression. BMC Mol Biol. 9(1):5. https://doi.org/10.1186/1471-2199-9-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai D, Dong XH, Cheng ST, Zhu G, Guo XL (2014) Aberrant promoter methylation of HIN-1 gene may contribute to the pathogenesis of breast cancer: a meta-analysis. Tumour Biol. 35(8):8209–8216. https://doi.org/10.1007/s13277-014-2055-1
Article
CAS
PubMed
Google Scholar
Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X, Huan S, Huang M, Liu J, Sahin AA, Hunt KK, Bast RC Jr, Shen Y, Issa JPJ, Yu Y (2007) Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res. 9(4):R57. https://doi.org/10.1186/bcr1762
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, Rognum TO, Skotheim RI, Thiis-Evensen E, Lothe RA (2008) Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer. 7(1):94. https://doi.org/10.1186/1476-4598-7-94
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldgar DE, Healey S, Dowty JG, Da Silva L, Chen X, Spurdle AB et al (2011) Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 13(4):R73. https://doi.org/10.1186/bcr2919
Article
CAS
PubMed
PubMed Central
Google Scholar
Kermi C, Aze A, Maiorano D (2019) Preserving genome integrity during the early embryonic DNA replication cycles. Genes (Basel). 10(5):398. https://doi.org/10.3390/genes10050398
Article
CAS
PubMed Central
Google Scholar
Cao X, Tang Q, Holland-Letz T, Gündert M, Cuk K, Schott S, Heil J, Golatta M, Sohn C, Schneeweiss A, Burwinkel B (2018) Evaluation of promoter methylation of RASSF1A and ATM in peripheral blood of breast cancer patients and healthy control individuals. Int J Mol Sci. 19(3):900. https://doi.org/10.3390/ijms19030900
Article
CAS
PubMed Central
Google Scholar
Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R (2016) DNA methylation based biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta. 1866(1):106–120. https://doi.org/10.1016/j.bbcan.2016.07.001
Article
CAS
PubMed
Google Scholar
Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z (2020) Epigenetic modifications in head and neck cancer. Biochem Genet. 58(2):213–244. https://doi.org/10.1007/s10528-019-09941-1
Article
CAS
PubMed
Google Scholar
Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, Johnson N, Fletcher O, dos Santos Silva I, Peto J, Boshoff C, Narod S, Petronis A (2009) Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet. 18(7):1332–1342. https://doi.org/10.1093/hmg/ddp033
Article
CAS
PubMed
PubMed Central
Google Scholar
Delaney C, Garg SK, Yung R (2015) Analysis of DNA methylation by pyrosequencing. methods. Mol Biol 1343:249–264. https://doi.org/10.1007/978-1-4939-2963-4_19
Article
CAS
Google Scholar
Roessler J, Lehmann U (2015) Quantitative DNA methylation analysis by Pyrosequencing®. methods. Mol Biol 1315:175–188. https://doi.org/10.1007/978-1-4939-2715-9_13
Article
Google Scholar
Poulin M, Zhou JY, Yan L, Shioda T (1856) Pyrosequencing methylation analysis. Methods Mol Biol. 2018:283–296. https://doi.org/10.1007/978-1-4939-8751-1_17
Article
CAS
Google Scholar
Delmonico L, Silva Magalhães Costa MA, Gomes RJ, De Oliveira Vieira P, ABP DS, Fournier MV et al (2020) Methylation profiling in promoter sequences of ATM and CDKN2A (p14ARF/p16INK4a) genes in blood and cfDNA from women with impalpable breast lesions. Oncol Lett. 19(4):3003–3010. https://doi.org/10.3892/ol.2020.11382
Article
CAS
PubMed
PubMed Central
Google Scholar
Krasteva ME, Antov GG, Gospodinova ZI, Angelova SG, Nacheva MB, Georgieva EI et al (2014) Aberrant promoter methylation in p53 and ATM genes was not associated with sporadic breast carcinogenesis in Bulgarian patients. J. BioSci. Biotech. 3(2):105–109
Google Scholar
Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M, Dalay N, Santella RM (2010) Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Res. 30(7):2489–2496
CAS
PubMed
PubMed Central
Google Scholar
Vavoulidis E, Petousis S, Margioula Siarkou C, Mareti E, Kougioumtsidou N, Symeonidou M, Loufopoulos PD, Daniilidis A, Chatzikyriakidou A, Lambropoulos A, Zepiridis L, Dinas K (2020) Molecular evaluation of a multiplex methylation panel for epigenetic analysis of FNAB samples from Greek patients with suspicious breast lesions. J BUON. 25(5):2244–2254
PubMed
Google Scholar
Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2011) Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch. 458(1):73–84. https://doi.org/10.1007/s00428-010-1013-6
Article
CAS
PubMed
Google Scholar
Gurioli G, Salvi S, Martignano F, Foca F, Gunelli R, Costantini M, Cicchetti G, de Giorgi U, Sbarba PD, Calistri D, Casadio V (2016) Methylation pattern analysis in prostate cancer tissue: identification of biomarkers using an MS-MLPA approach. J Transl Med. 14(1):249. https://doi.org/10.1186/s12967-016-1014-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JS, Fackler MJ, Teo WW, Lee JH, Choi C, Park MH et al (2008) Quantitative promoter hypermethylation profiles of ductal carcinoma in situ in North American and Korean women: potential applications for diagnosis. Cancer Biol Ther. 7(9):1398–1406. https://doi.org/10.4161/cbt.7.9.6425
Article
CAS
PubMed
Google Scholar
Goldstein NS, Vicini FA, Kestin LL, Thomas M (2000) Differences in the pathologic features of ductal carcinoma in situ of the breast based on patient age. Cancer. 88(11):2553–2560. https://doi.org/10.1002/1097-0142(20000601)88:11<2553::aid-cncr18>3.0.co;2-v
Article
CAS
PubMed
Google Scholar
Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K, Sukumar S, Argani P (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer. 107(6):970–975. https://doi.org/10.1002/ijc.11508
Article
CAS
PubMed
Google Scholar
Xu J, Shetty PB, Feng W, Chenault C, Bast RC Jr, Issa JP et al (2012) Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. BMC Cancer. 12(1):243. https://doi.org/10.1186/1471-2407-12-243
Article
CAS
PubMed
PubMed Central
Google Scholar
Conway K, Edmiston SN, May R, Kuan PF, Chu H, Bryant C, Tse CK, Swift-Scanlan T, Geradts J, Troester MA, Millikan RC (2014) DNA methylation profiling in the Carolina Breast Cancer Study defines cancer subclasses differing in clinicopathologic characteristics and survival. Breast Cancer Res. 16(5):450. https://doi.org/10.1186/s13058-014-0450-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan CL, Wang Y, Marian C, Weng DY, Eng KH, Tao MH, Ambrosone CB, Nie J, Trevisan M, Smiraglia D, Edge SB, Shields PG, Freudenheim JL (2016) DNA methylation and breast tumor clinicopathological features: the Western New York Exposures and Breast Cancer (WEB) study. Epigenetics. 11(9):643–652. https://doi.org/10.1080/15592294.2016.1192735
Article
PubMed
PubMed Central
Google Scholar
Hafez MM, Al-Shabanah OA, Al-Rejaie SS, Al-Harbi NO, Hassan ZK, Alsheikh A et al (2015) Increased hypermethylation of glutathione S-transferase P1, DNA-binding protein inhibitor, death associated protein kinase and paired box protein-5 genes in triple-negative breast cancer Saudi females. Asian Pac J Cancer Prev. 16(2):541–549. https://doi.org/10.7314/apjcp.2015.16.2.541
Article
PubMed
Google Scholar
Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, Xu J, Bast RC Jr, Yu Y (2010) Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer. 10(1):378. https://doi.org/10.1186/1471-2407-10-378
Article
CAS
PubMed
PubMed Central
Google Scholar
Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 5(9):a012716. https://doi.org/10.1101/cshperspect.a012716
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdel-Fatah TM, Arora A, Alsubhi N, Agarwal D, Moseley PM, Perry C et al (2014) Clinicopathological significance of ATM-Chk2 expression in sporadic breast cancers: a comprehensive analysis in large cohorts. Neoplasia. 16(11):982–991. https://doi.org/10.1016/j.neo.2014.09.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuatrecasas M, Santamaria G, Velasco M, Camacho E, Hernandez L, Sanchez M et al (2006) ATM gene expression is associated with differentiation and angiogenesis in infiltrating breast carcinomas. Histol Histopathol 21(2):149–156. https://doi.org/10.14670/HH-21.149
Article
CAS
PubMed
Google Scholar
Dejeux E, Rønneberg JA, Solvang H, Bukholm I, Geisler S, Aas T, Gut IG, Børresen-Dale AL, Lønning P, Kristensen VN, Tost J (2010) DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer. 9(1):68. https://doi.org/10.1186/1476-4598-9-68
Article
CAS
PubMed
PubMed Central
Google Scholar
Allinen M, Peri L, Kujala S, Lahti-Domenici J, Outila K, Karppinen SM, Launonen V, Winqvist R (2002) Analysis of 11q21-24 loss of heterozygosity candidate target genes in breast cancer: indications of TSLC1 promoter hypermethylation. Genes Chromosomes Cancer. 34(4):384–389. https://doi.org/10.1002/gcc.10079
Article
CAS
PubMed
Google Scholar
Treilleux I, Chapot B, Goddard S, Pisani P, Angèle S, Hall J (2007) The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase. Histopathology. 51(1):63–69. https://doi.org/10.1111/j.1365-2559.2007.02726.x
Article
CAS
PubMed
Google Scholar
Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A, Swerdlow A, Thorne H, KConFab Investigators, Riboli E, Vineis P, Dorronsoro M, Clavel-Chapelon F, Panico S, Onland-Moret NC, Trichopoulos D, Kaaks R, Khaw KT, Brown R, Flanagan JM (2012) Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res. 72(9):2304–2313. https://doi.org/10.1158/0008-5472.CAN-11-3157
Article
CAS
PubMed
Google Scholar
Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD (2004) The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 23(58):9432–9437. https://doi.org/10.1038/sj.onc.1208092 Erratum in: Oncogene. 2005; 24(11):1964
Article
CAS
PubMed
Google Scholar
Fraser HB, Lam LL, Neumann SM, Kobor MS (2012) Population-specificity of human DNA methylation. Genome Biol. 13(2):R8. https://doi.org/10.1186/gb-2012-13-2-r8
Article
CAS
PubMed
PubMed Central
Google Scholar
Galanter JM, Gignoux CR, Oh SS, Torgerson D, Pino-Yanes M, Thakur N, Eng C, Hu D, Huntsman S, Farber HJ, Avila PC, Brigino-Buenaventura E, LeNoir MA, Meade K, Serebrisky D, Rodríguez-Cintrón W, Kumar R, Rodríguez-Santana JR, Seibold MA, Borrell LN, Burchard EG, Zaitlen N (2017) Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures. Elife. 6:e20532. https://doi.org/10.7554/eLife.20532
Article
PubMed
PubMed Central
Google Scholar