Yatziv S, Erickson RP, Epstein CJ (1977) Mild and severe Hunter syndrome (MPS II) within the same sibships. Clin Genet 11:319–326. https://doi.org/10.1111/j.1399-0004.1977.tb01323.x
Article
CAS
PubMed
Google Scholar
Galvis J, González J, Uribe A, Velasco H (2015) Deep genotyping of the IDS Gene in Colombian Patients with Hunter Syndrome. JIMD Rep 19:101–109. https://doi.org/10.1007/8904_2014_376
Article
PubMed
PubMed Central
Google Scholar
Wilson PJ, Morris CP, Anson DS, Occhiodoro T, Bielicki J, Clements PR et al (1990) Hunter syndrome: isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA. Proc Natl Acad Sci U S A 87:8531–8535. https://doi.org/10.1073/pnas.87.21.8531
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaklee P, Glaser J, Conrad H (1985) A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans. J Biol Chem 260:9146–9149
Article
CAS
Google Scholar
Demydchuk M, Hill C, Zhou A, Bunkoczi G, Stein PE, Marchesan D et al (2017) Insights into Hunter syndrome from the structure of iduronate-2-sulfatase. Nat Commun 8:15786. https://doi.org/10.1038/ncomms15786
Article
CAS
PubMed
PubMed Central
Google Scholar
Young ID, Harper PS (1982) Incidence of Hunter’s syndrome. Hum Genet 60:391–392. https://doi.org/10.1007/BF00569230
Article
CAS
PubMed
Google Scholar
Nelson J, Crowhurst J, Carey B, Greed L (2003) Incidence of the mucopolysaccharidoses in Western Australia. Am J Med Genet A 123A:310–313. https://doi.org/10.1002/ajmg.a.20314
Article
PubMed
Google Scholar
Schumacher RG, Brzezinska R, Schulze-Frenking G, Pitz S (2008) Sonographic ocular findings in patients with mucopolysaccharidoses I, II and VI. Pediatr Radiol 38:543–550. https://doi.org/10.1007/s00247-008-0788-y
Article
PubMed
Google Scholar
Martin R, Beck M, Eng C, Giugliani R, Harmatz P, Muñoz V, Muenzer J (2008) Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome). Pediatrics 121:e377–e386. https://doi.org/10.1542/peds.2007-1350
Article
PubMed
Google Scholar
Sanjurjo-Crespo P (2007) Mucopolisacaridosis de tipo II: aspectos clínicos (Clinical aspects of mucopolysaccharidosis type II). Rev Neurol. 44 Suppl 1:S3–S6 (Spanish)
CAS
PubMed
Google Scholar
Wraith JE, Scarpa M, Beck M, Bodamer OA, De Meirleir L, Guffon N et al (2008) Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr 167:267–277. https://doi.org/10.1007/s00431-007-0635-4
Article
CAS
PubMed
Google Scholar
Giugliani R, Villarreal MLS, Valdez CAA, Hawilou AM, Guelbert N, Garzon LNC et al (2014) Guidelines for diagnosis and treatment of Hunter Syndrome for clinicians in Latin America. Genet Mol Biol 37:315–329. https://doi.org/10.1590/s1415-47572014000300003
Article
PubMed
PubMed Central
Google Scholar
Bradley L, Haddow H, Palomaki G (2017) Treatment of mucopolysaccharidosis type II (Hunter syndrome): results from a systematic evidence review. Genet Med 19:1187–1201. https://doi.org/10.1038/gim.2017.30
Article
PubMed
Google Scholar
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucl Acids Res 29:308–311. https://doi.org/10.1093/nar/29.1.308
Article
CAS
PubMed
PubMed Central
Google Scholar
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucl Acids Res 40(Web Server issue):W452-7. https://doi.org/10.1093/nar/gks539
Article
CAS
PubMed
PubMed Central
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky V, Gerasimova A, Bork P, Kondrashov A, Sunyaev SA (2010) Method and server for predicting damaging missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucl Acids Res 47:D419–D426. https://doi.org/10.1093/nar/gky1038
Article
CAS
PubMed
Google Scholar
Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucl Acids Res 33(Web Server issue):W306–W310. https://doi.org/10.1093/nar/gki375.10.1093/nar/gki375
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpí JL (2017) PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucl Acids Res 45:W222–W228. https://doi.org/10.1093/nar/gkx313
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucl Acids Res 46:W296-303. https://doi.org/10.1093/nar/gky427
Article
CAS
PubMed
PubMed Central
Google Scholar
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291. https://doi.org/10.1107/S0021889892009944
Article
CAS
Google Scholar
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl Acids Res 35:W407–W410. https://doi.org/10.1093/nar/gkm290
Article
PubMed
PubMed Central
Google Scholar
Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. https://doi.org/10.1002/elps.1150181505
Article
CAS
PubMed
Google Scholar
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001
Article
Google Scholar
Coutsias EA, Seok C, Dill KA (2004) Using quaternions to calculate RMSD. J Comput Chem 25:1849–1857. https://doi.org/10.1002/jcc.20110
Article
CAS
PubMed
Google Scholar
Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. https://doi.org/10.1006/jmbi.1999.3091
Article
CAS
PubMed
Google Scholar
Magyar C, Gromiha MM, Pujadas G, Tusnády GE, Simon I (2005) SRide: a server for identifying stabilizing residues in proteins. Nucl Acids Res 33(Web Server issue):W303–W305. https://doi.org/10.1093/nar/gki409
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucl Acids Res 44:W344–W350. https://doi.org/10.1093/nar/gkw408
Article
CAS
PubMed
PubMed Central
Google Scholar
Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, Sommer MOA, Winther O, Nielsen M, Petersen B, Marcatili P (2019) NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins Struct Funct Bioinform 87:520–7. https://doi.org/10.1002/prot.25674
Article
CAS
Google Scholar
de Brevern AG, Bornot A, Craveur P, Etchebest C, Gelly JC (2012) PredyFlexy: flexibility and local structure prediction from sequence. Nucl Acids Res 40(Web Server issue):W317-22. https://doi.org/10.1093/nar/gks482
Article
CAS
PubMed
PubMed Central
Google Scholar
Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE (2019) Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J Mol Biol 431:2197–2212. https://doi.org/10.1016/j.jmb.2019.04.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Prot Eng 8:127–134. https://doi.org/10.1093/protein/8.2.127
Article
CAS
Google Scholar
Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S (2018) CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucl Acids Res. 46:W338-43. https://doi.org/10.1093/nar/gky356
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220:49–65. https://doi.org/10.1016/0022-2836(91)90380-O
Article
CAS
PubMed
Google Scholar
Pires DE, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucl Acids Res 42(W1):W314–W319. https://doi.org/10.1093/nar/gku411
Article
CAS
PubMed
PubMed Central
Google Scholar
Meléndez-Aranda L, Jaloma-Cruz AR, Pastor N, Romero-Prado MMdeJ (2019) In silico analysis of missense mutations in exons 1–5 of the F9 gene that cause hemophilia B. BMC Bioinform 20:363. https://doi.org/10.1186/s12859-019-2919-x
Article
CAS
Google Scholar
Pandey S, Dhusia K, Katara P, Singh S, Gautam B (2019) An in-silico analysis of deleterious single nucleotide polymorphisms and molecular dynamics simulation of disease linked mutations in genes responsible for neurodegenerative disorder. J Biomol Struct Dyn 1:22. https://doi.org/10.1080/07391102.2019.1682047
Article
CAS
Google Scholar
AbdulAzeez S, Borgio JF (2016) In-silico computing of the most deleterious nsSNPs in HBA1 gene. PLoS ONE 11:e0147702. https://doi.org/10.1371/journal.pone.0147702
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee JJ, Lakshmanan VK (2017) In silico analysis of the deleterious nsSNPs (missense) in the homeobox domain of human HOXB13 gene responsible for hereditary prostate cancer. Chem Biol Drug Des 90:188–199. https://doi.org/10.1111/cbdd.12938
Article
CAS
PubMed
Google Scholar
Manzoor MF, Ahmad N, Manzoor A, Kalsoom A (2017) Food based phytochemical luteolin their derivatives, sources and medicinal benefits. IJALS 3:195–207. https://doi.org/10.22573/spg.ijals.017.s12200084
Article
Google Scholar
Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M et al (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucl Acids Res 29:37–40. https://doi.org/10.1093/nar/29.1.37
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunkar S, Neeharika D (2020) CYP2R1 and CYP27A1 genes: An in silico approach to identify the deleterious mutations, impact on structure and their differential expression in disease conditions. Genomics 112:3677–3686. https://doi.org/10.1016/j.ygeno.2020.04.017
Article
CAS
PubMed
Google Scholar
Pandey S, Dhusia K, Katara P, Singh S, Gautam B (2019) An in-silico analysis of deleterious single nucleotide polymorphisms and molecular dynamics simulation of disease linked mutations in genes responsible for neurodegenerative disorder. J Biomol Struct Dyn 38:4259–4272. https://doi.org/10.1080/07391102.2019.1682047
Article
CAS
PubMed
Google Scholar
Yuan S, Chan HCS, Hu Z (2017) Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 7:e1298. https://doi.org/10.1002/wcms.1298
Article
CAS
Google Scholar