Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA et al (2020) Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS. Mult Scler J 26:1816–21. https://doi.org/10.1177/1352458520970841
Article
Google Scholar
Hassoun HK, Al-Mahadawi A, Sheaheed NM, Sami SM, Jamal A, Allebban Z (2021) Epidemiology of multiple sclerosis in Iraq: retrospective review of 4355 cases and literature review. Neurol Res 44:14–23. https://doi.org/10.1080/01616412.2021.1952511
Article
CAS
PubMed
Google Scholar
Ghasemi N, Razavi S, Nikzad E (2017) Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 19:1–10. https://doi.org/10.22074/cellj.2016.4867
Article
PubMed
Google Scholar
Klineova S, Lublin FD (2018) Clinical course of multiple sclerosis. Cold Spring Harb Perspect Med 8:a028928. https://doi.org/10.1101/cshperspect.a028928
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobson R, Giovannoni G (2019) Multiple sclerosis–a review. Eur J Neurol 26:27–40. https://doi.org/10.1111/ene.13819
Article
CAS
PubMed
Google Scholar
Waubant E, Lucas R, Mowry E, Graves J, Olsson T, Alfredsson L et al (2019) Environmental and genetic risk factors for MS: an integrated review. Ann Clin Transl Neurol 6:1905–1922. https://doi.org/10.1002/acn3.50862
Article
PubMed
PubMed Central
Google Scholar
Drosu N, Giovannoni G, Pohl D, Hawkes C, Lechner-Scott J, Levy M (2021) Probing the association between Multiple Sclerosis and Epstein Barr Virus from a therapeutic perspective. Mult Scler Relat Disord 52:103087. https://doi.org/10.1016/j.msard.2021.103087
Article
PubMed
Google Scholar
Gaglia MM (2021) Anti-viral and pro-inflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virol J 18:218. https://doi.org/10.1186/s12985-021-01678-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Acioglu C, Heary RF, Elkabes S (2021) Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 91:740–755. https://doi.org/10.1016/j.bbi.2020.10.007
Article
CAS
PubMed
Google Scholar
Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 6:1–24. https://doi.org/10.1038/s41392-021-00687-0
Article
CAS
Google Scholar
El-Zayat SR, Sibaii H, Mannaa FA (2019) Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 43:1–12. https://doi.org/10.1186/s42269-019-0227-2
Article
Google Scholar
Li H, Liu S, Han J, Li S, Gao X, Wang M et al (2021) Role of toll-like receptors in neuroimmune diseases: therapeutic targets and problems. Front Immunol 12:777606. https://doi.org/10.3389/fimmu.2021.777606
Article
PubMed
PubMed Central
Google Scholar
Gooshe M, Abdolghaffari AH, Gambuzza ME, Rezaei N (2014) The role of toll-like receptors in multiple sclerosis and possible targeting for therapeutic purposes. Rev Neurosci 25:713–739. https://doi.org/10.1515/revneuro-2014-0026
Article
CAS
PubMed
Google Scholar
Ferreira TB, Hygino J, Wing AC, Kasahara TM, Sacramento PM, Camargo S et al (2018) Different interleukin-17-secreting Toll-like receptor + T-cell subsets are associated with disease activity in multiple sclerosis. Immunology 154:239–252. https://doi.org/10.1111/imm.12872
Article
CAS
PubMed
Google Scholar
Derkow K, Bauer JMJ, Hecker M, Paap BK, Thamilarasan M, Koczan D et al (2013) Multiple sclerosis: modulation of toll-like receptor (TLR) expression by interferon-β includes upregulation of TLR7 in plasmacytoid dendritic cells. PLoS ONE 8:e70626. https://doi.org/10.1371/journal.pone.0070626
Article
CAS
PubMed
PubMed Central
Google Scholar
Miranda-Hernandez S, Baxter AG (2013) Role of toll-like receptors in multiple sclerosis. Am J Clin Exp Immunol 2:75–93
PubMed
PubMed Central
Google Scholar
Fore F, Indriputri C, Mamutse J, Nugraha J (2020) TLR10 and its unique anti-inflammatory properties and potential use as a target in therapeutics. Immune Netw 20:e21. https://doi.org/10.4110/in.2020.20.e21
Article
PubMed
PubMed Central
Google Scholar
Jiang S, Li X, Hess NJ, Guan Y, Tapping RI (2016) TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. J Immunol 196:3834–3841. https://doi.org/10.4049/jimmunol.1502599
Article
CAS
PubMed
Google Scholar
Hess NJ, Felicelli C, Grage J, Tapping RI (2017) TLR10 suppresses the activation and differentiation of monocytes with effects on DC-mediated adaptive immune responses. J Leukoc Biol 101:1245–1252. https://doi.org/10.1189/jlb.3a1116-492r
Article
CAS
PubMed
PubMed Central
Google Scholar
Fore F, Budipranama M, Destiawan RA (2021) TLR10 and its role in immunity. Handb Exp Pharmacol. https://doi.org/10.1007/164_2021_541
Article
PubMed
Google Scholar
Zhang Y, Cao R, Ying H, Du J, Chen S, Wang N et al (2018) Increased expression of TLR10 in B cell subsets correlates with disease activity in rheumatoid arthritis. Mediators Inflamm. https://doi.org/10.1155/2018/9372436
Article
PubMed
PubMed Central
Google Scholar
Su SB, Tao L, Deng ZP, Chen W, Qin SY, Jiang HX (2021) TLR10: insights, controversies and potential utility as a therapeutic target. Scand J Immunol 93:e12988. https://doi.org/10.1111/sji.12988
Article
CAS
PubMed
Google Scholar
Enevold C, Oturai AB, Sørensen PS, Ryder LP, Koch-Henriksen N, Bendtzen K (2009) Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD1-2, DDX58, and IFIH1. J Neuroimmunol 212:125–131. https://doi.org/10.1016/j.jneuroim.2009.04.008
Article
CAS
PubMed
Google Scholar
Milo R, Miller A (2014) Revised diagnostic criteria of multiple sclerosis. Autoimmun Rev 13:518–524. https://doi.org/10.1016/j.autrev.2014.01.012
Article
PubMed
Google Scholar
Piri CB, Guven YY (2018) What we learned from the history of multiple sclerosis measurement: expanded disease status scale. Arch Neuropsychiatr 55:S69-75. https://doi.org/10.29399/npa.23343
Article
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al (2012) Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Article
PubMed
PubMed Central
Google Scholar
Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M (2017) Epigenetic modifications and therapy in multiple sclerosis. NeuroMolecular Med 19:11–23. https://doi.org/10.1007/s12017-016-8422-x
Article
CAS
PubMed
Google Scholar
Baranzini SE, Oksenberg JR (2017) The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet 33:960–970. https://doi.org/10.1016/j.tig.2017.09.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollenbach JA, Oksenberg JR (2015) The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun 64:13–25. https://doi.org/10.1016/j.jaut.2015.06.010
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakr NM, Hashim NA, El-Baz HAED, Khalaf EM, Elharoun AS (2021) Polymorphisms in proinflammatory cytokines genes and susceptibility to Multiple Sclerosis. Mult Scler Relat Disord 47:102654. https://doi.org/10.1016/j.msard.2020.102654
Article
PubMed
Google Scholar
Al-Naseri MA, Salman ED, Ad’hiah AH (2019) Association between interleukin-4 and interleukin-10 single nucleotide polymorphisms and multiple sclerosis among Iraqi patients. Neurol Sci 40:2383–2089. https://doi.org/10.1007/s10072-019-04000-4
Article
PubMed
Google Scholar
Zhang Y, Liu J, Wang C, Liu J, Lu W (2021) Toll-like receptors gene polymorphisms in autoimmune disease. Front Immunol 12:672346. https://doi.org/10.3389/fimmu.2021.672346
Article
CAS
PubMed
PubMed Central
Google Scholar
Deeba E, Koptides D, Lambrianides A, Pantzaris M, Krashias G, Christodoulou C (2019) Complete sequence analysis of human toll-like receptor 3 gene in natural killer cells of multiple sclerosis patients. Mult Scler Relat Disord 33:100–106. https://doi.org/10.1016/j.msard.2019.05.027
Article
PubMed
Google Scholar
Dominguez-Mozo MI, Garcia-Montojo M, López-Cavanillas M, De Las HV, Garcia-Martinez A, Arias-Leal AM et al (2014) Toll-like receptor-9 in Spanish multiple sclerosis patients: an association with the gender. Eur J Neurol 21:537–540. https://doi.org/10.1111/ene.12209
Article
CAS
PubMed
Google Scholar
Marques H, Freitas J, Medeiros R, Longatto-Filho A (2016) Methodology for single nucleotide polymorphism selection in promoter regions for clinical use. An example of its applicability. Int J Mol Epidemiol Genet 7:126–36
CAS
PubMed
PubMed Central
Google Scholar
Theodoropoulos GE, Saridakis V, Karantanos T, Michalopoulos NV, Zagouri F, Kontogianni P et al (2012) Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. Breast 21:534–538. https://doi.org/10.1016/j.breast.2012.04.001
Article
PubMed
Google Scholar
Greene JA, Sam-Agudu N, John CC, Opoka RO, Zimmerman PA, Kazura JW (2012) Toll-like receptor polymorphisms and cerebral malaria: TLR2 Δ22 polymorphism is associated with protection from cerebral malaria in a case control study. Malar J 11:47. https://doi.org/10.1186/1475-2875-11-47
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi M, Chen Z, Watanabe K, Kobayashi H, Nakajima T, Kimura A et al (2011) Toll-like receptor 2 gene polymorphisms associated with aggressive periodontitis in japanese. Open Dent J 5:190–194. https://doi.org/10.2174/1874210601105010190
Article
CAS
PubMed
PubMed Central
Google Scholar
Karaali ZE, Candan G, Aktuğlu MB, Velet M, Ergen A (2019) Toll-like receptor 2 (TLR-2) gene polymorphisms in type 2 diabetes mellitus. Cell J 20:559–63. https://doi.org/10.22074/cellj.2019.5540
Article
Google Scholar
Mandal RK, George GP, Mittal RD (2012) Association of Toll-like receptor (TLR) 2, 3 and 9 genes polymorphism with prostate cancer risk in North Indian population. Mol Biol Rep 39:7263–7269. https://doi.org/10.1007/s11033-012-1556-5
Article
CAS
PubMed
Google Scholar
Cai Y, Peng Y-H, Tang Z, Guo X-L, Qing Y-F, Liang S-H et al (2014) Association of Toll-like receptor 2 polymorphisms with gout. Biomed Reports 2:292–296. https://doi.org/10.3892/br.2014.224
Article
CAS
Google Scholar
Aflouk Y, Inoubli O, Saoud H, Zaafrane F, Gaha L, Bel BHJ (2021) Association between TLR2 polymorphisms (− 196–174 Ins/Del, R677W, R753Q, and P631H) and schizophrenia in a Tunisian population. Immunol Res 69:541–52. https://doi.org/10.1007/s12026-021-09238-9
Article
CAS
PubMed
Google Scholar
Zhu Z, Lee PH, Chaffin MD, Chung W, Loh PR, Lu Q et al (2018) A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet 50:857–864. https://doi.org/10.1038/s41588-018-0121-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieuwenburg SAV, Mommersteeg MC, Eikenboom EL, Yu B, den Hollander WJ, Holster IL et al (2021) Factors associated with the progression of gastric intestinal metaplasia: a multicenter, prospective cohort study. Endosc Int Open 09:E297-305. https://doi.org/10.1055/a-1314-6626
Article
CAS
Google Scholar
Li Y, Oosting M, Smeekens SP, Jaeger M, Aguirre-Gamboa R, Le KTT et al (2016) A functional genomics approach to understand variation in cytokine production in humans. Cell 167:1099-1110.e14. https://doi.org/10.1016/j.cell.2016.10.017
Article
CAS
PubMed
Google Scholar
Allen AS, Satten GA (2005) Robust testing of haplotype/disease association. BMC Genet 6:S69. https://doi.org/10.1186/1471-2156-6-S1-S69
Article
CAS
PubMed
PubMed Central
Google Scholar