James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. https://doi.org/10.1016/S0140-6736(18)32279-7
Article
Google Scholar
World Health Organization. Mental disorders 2019. https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed April 19, 2022).
Samsom JN, Wong AHC (2015) Schizophrenia and depression co-morbidity: What we have learned from animal models. Front Psychiatry 6:13. https://doi.org/10.3389/fpsyt.2015.00013
Article
Google Scholar
Buckley PF, Miller BJ, Lehrer DS, Castle DJ (2009) Psychiatric comorbidities and schizophrenia. Schizophr Bull 35:383–402. https://doi.org/10.1093/schbul/sbn135
Article
Google Scholar
Schiweck C, Arteaga-Henriquez G, Aichholzer M, Edwin Thanarajah S, Vargas-Cáceres S, Matura S et al (2021) Comorbidity of ADHD and adult bipolar disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 124:100–123. https://doi.org/10.1016/j.neubiorev.2021.01.017
Article
Google Scholar
Grunze H, Schaefer M, Scherk H, Born C, Preuss UW (2021) Comorbid bipolar and alcohol use disorder—a therapeutic challenge. Front Psychiatry 12:660432. https://doi.org/10.3389/fpsyt.2021.660432
Article
Google Scholar
Hyman SE (2018) The daunting polygenicity of mental illness: Making a new map. Philos Trans R Soc B Biol Sci 373:20170031. https://doi.org/10.1098/rstb.2017.0031
Article
CAS
Google Scholar
Sánchez-Valle J, Tejero H, Fernández JM, Juan D, Urda-García B, Capella-Gutiérrez S et al (2020) Interpreting molecular similarity between patients as a determinant of disease comorbidity relationships. Nat Commun 11:1–13. https://doi.org/10.1038/s41467-020-16540-x
Article
CAS
Google Scholar
Hernandez LM, Kim M, Hoftman GD, Haney JR, de la Torre-Ubieta L, Pasaniuc B et al (2021) Transcriptomic insight into the polygenic mechanisms underlying psychiatric disorders. Biol Psychiatry 89:54–64. https://doi.org/10.1016/j.biopsych.2020.06.005
Article
CAS
Google Scholar
Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS et al (2017) Post-mortem molecular profiling of three psychiatric disorders. Genome Med 9:72. https://doi.org/10.1186/s13073-017-0458-5
Article
CAS
Google Scholar
Martins HC, Schratt G (2021) MicroRNA-dependent control of neuroplasticity in affective disorders. Transl Psychiatry 11:263. https://doi.org/10.1038/s41398-021-01379-7
Article
CAS
Google Scholar
Egervari G, Kozlenkov A, Dracheva S, Hurd YL (2019) Molecular windows into the human brain for psychiatric disorders. Mol Psychiatry 24:653–673. https://doi.org/10.1038/s41380-018-0125-2
Article
CAS
Google Scholar
Reble E, Dineen A, Barr CL (2018) The contribution of alternative splicing to genetic risk for psychiatric disorders. Genes Brain Behav 17:e12430. https://doi.org/10.1111/gbb.12430
Article
CAS
Google Scholar
Rusconi F, Battaglioli E, Venturin M (2020) Psychiatric disorders and lncrnas: a synaptic match. Int J Mol Sci 21:3030. https://doi.org/10.3390/ijms21093030
Article
CAS
Google Scholar
Hentze MW, Castello A, Schwarzl T, Preiss T (2018) A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 19:327–341. https://doi.org/10.1038/nrm.2017.130
Article
CAS
Google Scholar
Harvey RF, Smith TS, Mulroney T, Queiroz RML, Pizzinga M, Dezi V et al (2018) Trans-acting translational regulatory RNA binding proteins. Wiley Interdiscip Rev RNA 9:e1465. https://doi.org/10.1002/wrna.1465
Article
CAS
Google Scholar
Wang ZL, Li B, Luo YX, Lin Q, Liu SR, Zhang XQ et al (2018) Comprehensive genomic characterization of RNA-binding proteins across human cancers. Cell Rep 22:286–298. https://doi.org/10.1016/j.celrep.2017.12.035
Article
CAS
Google Scholar
Gebauer F, Schwarzl T, Valcárcel J, Hentze MW (2021) RNA-binding proteins in human genetic disease. Nat Rev Genet 22:185–198. https://doi.org/10.1038/s41576-020-00302-y
Article
CAS
Google Scholar
De Bruin RG, Rabelink TJ, Van Zonneveld AJ, Van Der Veer EP (2017) Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 38:1380–1388. https://doi.org/10.1093/eurheartj/ehw567
Article
CAS
Google Scholar
Nutter CA, Kuyumcu-Martinez MN (2018) Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. Wiley Interdiscip Rev RNA 9:208. https://doi.org/10.1002/wrna.1459
Article
CAS
Google Scholar
Conlon EG, Manley JL (2017) RNA-binding proteins in neurodegeneration: Mechanisms in aggregate. Genes Dev 31:1509–1528. https://doi.org/10.1101/gad.304055.117
Article
CAS
Google Scholar
Park CY, Zhou J, Wong AK, Chen KM, Theesfeld CL, Darnell RB et al (2021) Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk. Nat Genet 53:166–173. https://doi.org/10.1038/s41588-020-00761-3
Article
CAS
Google Scholar
Quattrone A, Dassi E (2019) The architecture of the human RNA-binding protein regulatory network. IScience 21:706–719. https://doi.org/10.1016/j.isci.2019.10.058
Article
CAS
Google Scholar
Sternburg EL, Karginov FV (2020) Global approaches in studying RNA-binding protein interaction networks. Trends Biochem Sci 45:593–603. https://doi.org/10.1016/j.tibs.2020.03.005
Article
CAS
Google Scholar
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J (2021) RNA-PROTACs: degraders of RNA-binding proteins. Angew Chemie Int Ed 60:3163–3169. https://doi.org/10.1002/anie.202012330
Article
CAS
Google Scholar
Gutierrez-Sacristan A, Grosdidier S, Valverde O, Torrens M, Bravo A, Piñero J et al (2015) PsyGeNET: a knowledge platform on psychiatric disorders and their genes. Bioinformatics 31:3075–3077. https://doi.org/10.1093/bioinformatics/btv301
Article
CAS
Google Scholar
Krismer K, Bird MA, Varmeh S, Kong YW, Cannell IG, Yaffe MB (2020) Transite: a computational motif-based analysis platform that identifies RNA-binding proteins modulating changes in gene expression ll. Cell Rep 32:108064. https://doi.org/10.1016/j.celrep.2020.108064
Article
CAS
Google Scholar
Li R, Hu K, Liu H, Green MR, Zhu LJ (2020) Onestoprnaseq: a web application for comprehensive and efficient analyses of rna-seq data. Genes (Basel) 11:1165. https://doi.org/10.3390/genes11101165
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software Environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303
Article
CAS
Google Scholar
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8:S11. https://doi.org/10.1186/1752-0509-8-S4-S11
Article
Google Scholar
Ge SX, Jung D, Jung D, Yao R (2020) ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. https://doi.org/10.1093/bioinformatics/btz931
Article
CAS
Google Scholar
Miro J, Bougé AL, Murauer E, Beyne E, Da CD, Claustres M et al (2020) First identification of rna-binding proteins that regulate alternative exons in the dystrophin gene. Int J Mol Sci 21:7803. https://doi.org/10.3390/ijms21207803
Article
CAS
Google Scholar
Berto S, Usui N, Konopka G, Fogel BL (2016) ELAVL2-regulated transcriptional and splicing networks in human neurons link neurodevelopment and autism. Hum Mol Genet 25:2451–2464. https://doi.org/10.1093/hmg/ddw110
Article
CAS
Google Scholar
ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome ENCODE Encyclopedia of DNA Elements. Nature 489:57–74
Article
Google Scholar
Ke H, Zhao L, Zhang H, Feng X, Xu H, Hao J et al (2018) Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with SRSF3. Proc Natl Acad Sci USA 115:E3426–E3435. https://doi.org/10.1073/pnas.1714573115
Article
CAS
Google Scholar
Song X, Wan X, Huang T, Zeng C, Sastry N, Wu B et al (2019) SRSF3-regulated RNA alternative splicing promotes glioblastoma tumorigenicity by affecting multiple cellular processes. Cancer Res 79:5288–5301. https://doi.org/10.1158/0008-5472.CAN-19-1504
Article
CAS
Google Scholar
He X, Zhang P (2015) Serine/arginine-rich splicing factor 3 (SRSF3) regulates homologous recombination-mediated DNA repair. Mol Cancer 14:158. https://doi.org/10.1186/s12943-015-0422-1
Article
CAS
Google Scholar
Okholm TLH, Sathe S, Park SS, Kamstrup AB, Rasmussen AM, Shankar A et al (2020) Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Med. https://doi.org/10.1186/s13073-020-00812-8
Article
Google Scholar
Utami KH, Skotte NH, Colaço AR, Yusof NABM, Sim B, Yeo XY et al (2020) Integrative analysis identifies key molecular signatures underlying neurodevelopmental deficits in fragile X syndrome. Biol Psychiatry 88:500–511. https://doi.org/10.1016/j.biopsych.2020.05.005
Article
CAS
Google Scholar
Appocher C, Mohagheghi F, Cappelli S, Stuani C, Romano M, Feiguin F et al (2017) Major hnRNP proteins act as general TDP-43 functional modifiers both in Drosophila and human neuronal cells. Nucleic Acids Res 45:8026–8045. https://doi.org/10.1093/nar/gkx477
Article
CAS
Google Scholar
Seachrist DD, Hannigan MM, Ingles NN, Webb BM, Weber-Bonk KL, Yu P et al (2020) The transcriptional repressor BCL11A promotes breast cancer metastasis. J Biol Chem 295:11707–11719. https://doi.org/10.1074/jbc.ra120.014018
Article
CAS
Google Scholar
Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H, et al. MBNL1 alternative splicing isoforms play opposing roles in cancer. Life Sci Alliance 2018;1: e201800157. https://doi.org/10.26508/lsa.201800157.
Fish L, Pencheva N, Goodarzi H, Tran H, Yoshida M, Tavazoie SF (2016) Muscleblind-like 1 suppresses breast cancer metastatic colonization and stabilizes metastasis suppressor transcripts. Genes Dev 30:386–398. https://doi.org/10.1101/gad.270645.115
Article
CAS
Google Scholar
Lanz TA, Reinhart V, Sheehan MJ, Rizzo SJS, Bove SE, James LC et al (2019) Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry. https://doi.org/10.1038/s41398-019-0492-8
Article
Google Scholar
Hagenauer MH, Schulmann A, Li JZ, Vawter MP, Walsh DM, Thompson RC, et al. Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis. PLoS One 2018;13: e0200003. https://doi.org/10.1371/journal.pone.0200003.
Abdolmaleky HM, Gower AC, Wong CK, Cox JW, Zhang X, Thiagalingam A et al (2019) Aberrant transcriptomes and DNA methylomes define pathways that drive pathogenesis and loss of brain laterality/asymmetry in schizophrenia and bipolar disorder. Am J Med Genet Part B Neuropsychiatr Genet 180:138–149. https://doi.org/10.1002/ajmg.b.32691
Article
CAS
Google Scholar
Chen C, Meng Q, Xia Y, Ding C, Wang L, Dai R, et al. The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Sci Transl Med 2018;10: eaat8178. https://doi.org/10.1126/scitranslmed.aat8178.
Chen C, Cheng L, Grennan K, Pibiri F, Zhang C, Badner JA et al (2013) Two gene co-expression modules differentiate psychotics and controls. Mol Psychiatry 18:1308–1314. https://doi.org/10.1038/mp.2012.146
Article
CAS
Google Scholar
Harris LW, Wayland M, Lan M, Ryan M, Giger T, Lockstone H et al (2008) The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS ONE 3:e3964. https://doi.org/10.1371/journal.pone.0003964
Article
CAS
Google Scholar
Dassi E (2017) Handshakes and fights: the regulatory interplay of RNA-binding proteins. Front Mol Biosci 4:1–8. https://doi.org/10.3389/fmolb.2017.00067
Article
CAS
Google Scholar
Haroutunian V, Katsel P, Dracheva S, Davis KL (2006) The human homolog of the QKI gene affected in the severe dysmyelination “quaking” mouse phenotype: downregulated in multiple brain regions in schizophrenia. Am J Psychiatry 163:1834–1837. https://doi.org/10.1176/ajp.2006.163.10.1834
Article
Google Scholar
Sakers K, Liu Y, Llaci L, Lee SM, Vasek MJ, Rieger MA et al (2021) Loss of Quaking RNA binding protein disrupts the expression of genes associated with astrocyte maturation in mouse brain. Nat Commun 12:1–14. https://doi.org/10.1038/s41467-021-21703-5
Article
CAS
Google Scholar
Neumann DP, Goodall GJ, Gregory PA. The Quaking RNA‐binding proteins as regulators of cell differentiation. Wiley Interdiscip Rev 2022;e1724.
Zybura-Broda K, Wolder-Gontarek M, Ambrozek-Latecka M, Choros A, Bogusz A, Wilemska-Dziaduszycka J et al (2018) HuR (Elavl1) and HuB (Elavl2) stabilize matrix metalloproteinase-9 mRNA during seizure-induced Mmp-9 expression in neurons. Front Neurosci 12:224. https://doi.org/10.3389/fnins.2018.00224
Article
Google Scholar
Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A (2018) Fragile X-associated neuropsychiatric disorders (FXAND). Front Psychiatry. https://doi.org/10.3389/fpsyt.2018.00564
Article
Google Scholar
Fernández E, Rajan N, Bagni C (2013) The FMRP regulon: From targets to disease convergence. Front Neurosci. https://doi.org/10.3389/fnins.2013.00191
Article
Google Scholar
More DA, Kumar A (2020) SRSF3: Newly discovered functions and roles in human health and diseases. Eur J Cell Biol 99:151099. https://doi.org/10.1016/j.ejcb.2020.151099
Article
CAS
Google Scholar
Watanuki T, Funato H, Uchida S, Matsubara T, Kobayashi A, Wakabayashi Y et al (2008) Increased expression of splicing factor SRp20 mRNA in bipolar disorder patients. J Affect Disord 110:62–69. https://doi.org/10.1016/j.jad.2008.01.003
Article
CAS
Google Scholar
Laguesse S, Ron D (2020) Protein translation and psychiatric disorders. Neuroscientist 26:21–42. https://doi.org/10.1177/1073858419853236
Article
Google Scholar
Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA et al (2011) The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 35:1774–1779. https://doi.org/10.1016/j.pnpbp.2011.05.010
Article
CAS
Google Scholar
Bettegazzi B, Bellani S, Roncon P, Guarnieri FC, Bertero A, Codazzi F et al (2017) EIF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Sci Rep 7:1–16. https://doi.org/10.1038/s41598-017-11096-1
Article
CAS
Google Scholar
Chu TT, Liu Y, Kemether E (2009) Thalamic transcriptome screening in three psychiatric states. J Hum Genet 54:665–675. https://doi.org/10.1038/jhg.2009.93
Article
CAS
Google Scholar
Cuperfain AB, Zhang ZL, Kennedy JL, Gonçalves VF (2018) The complex interaction of mitochondrial genetics and mitochondrial pathways in psychiatric disease. Mol Neuropsychiatry 4:52–69. https://doi.org/10.1159/000488031
Article
CAS
Google Scholar
Zhang X, Hui L, Liu Y, Wang ZQ, You Y, Miao LN et al (2013) The type 2 diabetes mellitus susceptibility gene IGF2BP2 is associated with schizophrenia in a Han Chinese Population. J Clin Psychiatry 74:e287–e292. https://doi.org/10.4088/JCP.12m07846
Article
CAS
Google Scholar
Choudhury R, Roy SG, Tsai YS, Tripathy A, Graves LM, Wang Z (2014) The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration. Nat Commun 5:3078. https://doi.org/10.1038/ncomms4078
Article
CAS
Google Scholar
Zucchi FCR, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, et al. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS ONE 2013;8:e56967. https://doi.org/10.1371/journal.pone.0056967.
Nikolaou N, Gordon P, Hamid F, Taylor R, Makeyev E, Houart C. Cytoplasmic pool of spliceosome protein SNRNP70 regulates the axonal transcriptome and development of motor connectivity. BioRxiv 2020.
Dean B, Keriakous D, Scarr E, Thomas EA (2007) Gene expression profiling in Brodmann’s area 46 from subjetcs with schizophrenia. Aust N Z J Psychiatry 41:308–320. https://doi.org/10.1080/00048670701213245
Article
Google Scholar
Fila M, Diaz L, Szczepanska J, Pawlowska E, Blasiak J. Mrna trafficking in the nervous system: A key mechanism of the involvement of activity-regulated cytoskeleton-associated protein (arc) in synaptic plasticity. Neural Plast 2021;2021. https://doi.org/10.1155/2021/3468795.
Thelen MP, Kye MJ (2020) The role of RNA binding proteins for local mRNA translation: implications in neurological disorders. Front Mol Biosci 6:161. https://doi.org/10.3389/fmolb.2019.00161
Article
CAS
Google Scholar
Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: insights into their role in health and disease. Hum Genet 135:851–867. https://doi.org/10.1007/s00439-016-1683-5
Article
CAS
Google Scholar
Clarke JP, Thibault PA, Salapa HE, Levin MC (2021) A comprehensive analysis of the role of hnRNP A1 function and dysfunction in the pathogenesis of neurodegenerative disease. Front Mol Biosci 8:659610. https://doi.org/10.3389/fmolb.2021.659610
Article
CAS
Google Scholar
Richard P, Trollet C, Stojkovic T, De Becdelievre A, Perie S, Pouget J et al (2017) Correlation between PABPN1 genotype and disease severity in oculopharyngeal muscular dystrophy. Neurology 88:359–365. https://doi.org/10.1212/WNL.0000000000003554
Article
CAS
Google Scholar
Zhou Z, Fu XD (2013) Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122:191–207. https://doi.org/10.1007/s00412-013-0407-z
Article
CAS
Google Scholar
Cassidy MF, Herbert ZT, Moulton VR (2022) Splicing factor SRSF1 controls distinct molecular programs in regulatory and effector T cells implicated in systemic autoimmune disease. Mol Immunol 141:191–207. https://doi.org/10.1016/j.molimm.2021.11.008
Article
CAS
Google Scholar
Mason MA, Gomez-Paredes C, Sathasivam K, Neueder A, Papadopoulou AS, Bates GP (2020) Silencing Srsf6 does not modulate incomplete splicing of the huntingtin gene in Huntington’s disease models. Sci Rep 10:14057. https://doi.org/10.1038/s41598-020-71111-w
Article
CAS
Google Scholar
Geuens T, De Winter V, Rajan N, Achsel T, Mateiu L, Almeida-Souza L et al (2017) Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease. J Intensive Care 5:5. https://doi.org/10.1186/s40478-016-0407-3
Article
CAS
Google Scholar
Yoshimura M, Honda H, Sasagasako N, Mori S, Hamasaki H, Suzuki SO et al (2021) PCBP2 is downregulated in degenerating neurons and rarely observed in TDP-43-positive inclusions in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 80:220–228. https://doi.org/10.1093/jnen/nlaa148
Article
CAS
Google Scholar
Salem A, Wilson C, Rutledge B, Dilliott A, Farhan S, Choy W, et al. Matrin3: Disorder and ALS Pathogenesis. Front Mol Biosci 2022.