Suh WH, Suslick KS, Suh YH (2005) Therapeutic agents for Alzheimer’s disease. Curr Med Chem -Central Nervous Syst Agents 5:259–269. https://doi.org/10.2174/156801505774913035
Article
CAS
Google Scholar
Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117. https://doi.org/10.1016/s0140-6736(05)67889-0
Article
PubMed
PubMed Central
Google Scholar
Merriam AE, Aronson MK, Gaston P, Wey SL, Katz I (1988) The psychiatric symptoms of Alzheimer’s disease. J Am Geriatr Soc 36:7–22. https://doi.org/10.1111/j.1532-5415.1988.tb03427.x
Article
CAS
PubMed
Google Scholar
Nordberg A, Svensson AL (1998) Cholinesterase inhibitors in the treatment of Alzheimer’s disease. Drug Saf 19:465–480. https://doi.org/10.2165/00002018-199819060-00004
Article
CAS
PubMed
Google Scholar
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–186. https://doi.org/10.1126/science.1566067
Article
CAS
PubMed
Google Scholar
Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147. https://doi.org/10.1016/s0891-5849(96)00629-6
Article
CAS
PubMed
Google Scholar
Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147. https://doi.org/10.1136/jnnp.66.2.137
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang LK, Chao SP, Hu CJ (2020 Dec) Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 27(1):1–3. https://doi.org/10.1186/s12929-019-0609-7
Article
CAS
Google Scholar
https://alzheimersnewstoday.com/experimental-treatments-for-alzheimers-disease-treatments-that-target-beta-amyloid-protein/?cn-reloaded=1. Accessed Jan 2020.
Padurariu M, Ciobica A, Lefter R, Lacramioara Serban I, Stefanescu C, Chirita R (2013) The oxidative stress hypothesis in Alzheimer’s disease. Psychiatr Danub 25(4):0–409
CAS
Google Scholar
Persson T, Popescu BO, Cedazo-Minguez A (2014) Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid Med Cell Longev 2014. https://doi.org/10.1155/2014/427318
Teixeira JP, de Castro AA, Soares FV, da Cunha EF, Ramalho TC (2019) Future therapeutic perspectives into the Alzheimer’s disease targeting the oxidative stress hypothesis. Molecules. 24(23):4410. https://doi.org/10.3390/molecules24234410
Article
CAS
PubMed Central
Google Scholar
Terry AV, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827. https://doi.org/10.1124/jpet.102.041616
Article
CAS
PubMed
Google Scholar
Talesa VN (2001) Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 122:1961–1969. https://doi.org/10.1016/s0047-6374(01)00309-8
Article
CAS
PubMed
Google Scholar
Viegas J, Bolzani VD, Barreiro EJ, Manssour Fraga CA (2005) New anti-Alzheimer drugs from biodiversity: the role of the natural acetyl cholinesterase inhibitors. Mini Rev Med Chem 5:915–926. https://doi.org/10.2174/138955705774329546
Article
CAS
PubMed
Google Scholar
Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti B, Davis JG, Constantine G, Mathis CA, Moore RY, DeKosky ST (2005) Cognitive correlates of alterations in acetylcholinesterase in Alzheimer’s disease. Neurosci Lett 380:127–132. https://doi.org/10.1016/j.neulet.2005.01.031
Article
CAS
PubMed
Google Scholar
Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16:218–222. https://doi.org/10.1016/0166-2236(93)90159-j.
Article
CAS
PubMed
Google Scholar
McGleenon BM, Dynan KB, Passmore AP (1999) Acetylcholinesterase inhibitors in Alzheimer’s disease. Br J Clin Pharmacol 48:471. https://doi.org/10.1046/j.1365-2125.1999.00026.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Tayeb HO, Yang HD, Price BH, Tarazi FI (2012) Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther 134(1):8–25. https://doi.org/10.1016/j.pharmthera.2011.12.002
Article
CAS
PubMed
Google Scholar
Farlow M, Veloso F, Moline M, Yardley J, Brand-Schieber E, Bibbiani F, Zou H, Hsu T, Satlin A (2011) Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer’s disease. BMC Neurol 11(1):57. https://doi.org/10.1186/1471-2377-11-57
Article
CAS
PubMed
PubMed Central
Google Scholar
Winblad B, Grossberg G, Frölich L, Farlow M, Zechner S, Nagel J, Lane R (2007) IDEAL: a 6-month, double-blind, placebo-controlled study of the first skin patch for Alzheimer disease. Neurology 69(4 suppl 1):S14–S22. https://doi.org/10.1212/01.wnl.0000281847.17519.e0
Article
CAS
PubMed
Google Scholar
Bartolucci C, Perola E, Pilger C, Fels G, Lamba D (2001) Three-dimensional structure of a complex of galanthamine (Nivalin®) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-Alzheimer drugs. Proteins: Structure Function Bioinform 42(2):182–191. https://doi.org/10.1002/1097-0134(20010201)42:2<182::aid-prot50>3.0.co;2-1
Article
CAS
Google Scholar
Pilger C, Bartolucci C, Lamba D, Tropsha A, Fels G (2001) Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking. J Mol Graph Model 19(3-4):288–296. https://doi.org/10.1016/s1093-3263(00)00056-5
Article
CAS
PubMed
Google Scholar
Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157. https://doi.org/10.2174/157340911795677602
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar B, Ullah MA, Islam SS, Rahman MH, Araf Y (2020) Analysis of plant-derived phytochemicals as anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor receptor-2. J Recept Signal Transduct:1–7. https://doi.org/10.1080/10799893.2020.1805628
Dhananjayan K, Sumathy A, Palanisamy S (2013) Molecular docking studies and in-vitro acetylcholinesterase inhibition by terpenoids and flavonoids. Asian J Res Chem 6(11):1011–1017
Google Scholar
Kitphati W, Wattanakamolkul K, Lomarat P, Phanthong P, Anantachoke N, Nukoolkarn V, Thirapanmethee K, Bunyapraphatsara N (2012) Anticholinesterase of essential oils and their constituents from Thai medicinal plants on purified and cellular enzymes
Google Scholar
Nag G, Das S, Das S, Mandal S, De B (2015) Antioxidant, anti-acetylcholinesterase and anti-glycosidase properties of three species of Swertia, their xanthones and amarogentin: a comparative study. Pharm J 7(2). https://doi.org/10.5530/pj.2015.2.6
Cahlíková L, Opletal L, Kurfürst M, Macáková K, Kulhánková A, Hošt'álková A (2010) Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus (Papaveraceae). Nat Prod Commun 5(11):1934578X1000501110. https://doi.org/10.1177/1934578x1000501110
Article
Google Scholar
Olennikov DN, Kashchenko NI, Chirikova NK, Akobirshoeva A, Zilfikarov IN, Vennos C (2017) Isorhamnetin and quercetin derivatives as anti-acetylcholinesterase principles of marigold (Calendula officinalis) flowers and preparations. Int J Mol Sci 18(8):1685. https://doi.org/10.3390/ijms18081685
Article
CAS
PubMed Central
Google Scholar
Hlila MB, Mosbah H, Mssada K, Jannet HB, Aouni M, Selmi B (2015) Acetylcholinesterase inhibitory and antioxidant properties of roots extracts from the Tunisian Scabiosa arenaria Forssk. Ind Crop Prod 67:62–69. https://doi.org/10.1016/j.indcrop.2015.01.009
Article
CAS
Google Scholar
Urbain A, Marston A, Hostettmann K (2005) Coumarins from Peucedanum ostruthium as inhibitors of acetylcholinesterase. Pharm Biol 43(8):647–650. https://doi.org/10.1080/13880200500382720
Article
CAS
Google Scholar
Kim DK (2002) Inhibitory effect of corynoline isolated from the aerial parts of corydalis incisa on the acetylcholinesterase. Arch Pharm Res 25(6):817. https://doi.org/10.1007/bf02976997
Article
CAS
PubMed
Google Scholar
Andrade MT, Lima JA, Pinto AC, Rezende CM, Carvalho MP, Epifanio RA (2005) Indole alkaloids from Tabernaemontana australis (Müell. Arg) Miers that inhibit acetylcholinesterase enzyme. Bioorg Med Chem 13(12):4092–4095. https://doi.org/10.1016/j.bmc.2005.03.045
Article
CAS
PubMed
Google Scholar
Wangchuk P, Keller PA, Pyne SG, Sastraruji T, Taweechotipatr M, Rattanajak R, Tonsomboon A, Kamchonwongpaisan S (2012) Phytochemical and biological activity. https://doi.org/10.1177/1934578x1200700507
Book
Google Scholar
Farag MA, Ezzat SM, Salama MM, Tadros MG, Serya RA (2016) Anti-acetylcholinesterase activity of essential oils and their major constituents from four Ocimum species. Z Naturforsch C 71(11-12):393–402. https://doi.org/10.1515/znc-2016-0030
Article
CAS
PubMed
Google Scholar
Heo HJ, Kim MJ, Lee JM, Choi SJ, Cho HY, Hong B, Kim HK, Kim E, Shin DH (2004) Naringenin from Citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord 17(3):151–157. https://doi.org/10.1159/000076349
Article
CAS
PubMed
Google Scholar
Tundis R, Bonesi M, Menichini F, Loizzo MR, Conforti F, Statti G, Pirisi FM, Menichini F (2012) Antioxidant and anti-cholinesterase activity of Globularia meridionalis extracts and isolated constituents. Nat Prod Commun 7(8):1934578X1200700814. https://doi.org/10.1177/1934578x1200700814
Article
Google Scholar
Askin H, Yildiz M, Ayar A (2017) Effects of thymol and carvacrol on acetylcholinesterase from drosophila melanogaster. Acta Physica Polonica A 132(3):720–722. https://doi.org/10.12693/aphyspola.132.720
Article
CAS
Google Scholar
Jukic M, Politeo O, Maksimovic M, Milos M, Milos M (2007) In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother Res 21(3):259–261. https://doi.org/10.1002/ptr.2063
Article
CAS
PubMed
Google Scholar
Kaufmann D, Dogra AK, Wink M (2011) Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. J Pharm Pharmacol 63(10):1368–1371. https://doi.org/10.1111/j.2042-7158.2011.01344.x
Article
CAS
PubMed
Google Scholar
Ndhlala AR, Aremu AO, Moyo M, Amoo SO, Van Staden J (2012) Acetylcholineterase inhibitors from plant sources: friends or foes. Cholinesterase: Production, Uses Health Effects:67–98. https://doi.org/10.1016/b978-0-12-405927-6.00016-3
Matochko WL, James A, Lam CW, Kozera DJ, Ata A, Gengan RM (2010) Triterpenoidal alkaloids from Buxus natalensis and their acetylcholinesterase inhibitory activity. J Nat Prod 73(11):1858–1862. https://doi.org/10.1021/np100494u
Article
CAS
PubMed
Google Scholar
Yang ZD, Zhang DB, Ren J, Yang MJ (2012) Skimmianine, a furoquinoline alkaloid from Zanthoxylum nitidum as a potential acetylcholinesterase inhibitor. Med Chem Res 21(6):722–725. https://doi.org/10.1007/s00044-011-9581-9
Article
CAS
Google Scholar
Cabral RS, Sartori MC, Cordeiro I, Queiroga CL, Eberlin MN, Lago JH, Moreno PR, Young M (2012) Anticholinesterase activity evaluation of alkaloids and coumarin from stems of Conchocarpus fontanesianus. Rev Bras Farm 22(2):374–380. https://doi.org/10.1590/s0102-695x2011005000219
Article
CAS
Google Scholar
Adhami HR, Farsam H, Krenn L (2011) Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition. Phytother Res 25(8):1148–1152. https://doi.org/10.1002/ptr.3409
Article
CAS
PubMed
Google Scholar
Wszelaki N, Kuciun A, Kiss A (2010) Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm 60(1):119–128. https://doi.org/10.2478/v10007-010-0006-y
Article
CAS
PubMed
Google Scholar
Howes MJ, Houghton PJ (2009) Acetylcholinesterase inhibitors of natural origin. Int J Biomed Pharm Sci 3(SI1):67–86
Google Scholar
Phoopichayanun C (2007) Acetylcholinesterase inhibitors from roots of Feroniella lucida (Doctoral dissertation)
Google Scholar
Dohi S, Terasaki M, Makino M (2009) Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils. J Agric Food Chem 57(10):4313–4318. https://doi.org/10.1021/jf804013j
Article
CAS
PubMed
Google Scholar
Balkis A, Tran K, Lee YZ, Ng K (2015) Screening flavonoids for inhibition of acetylcholinesterase identified baicalein as the most potent inhibitor. Int J Biol 7(9):26. https://doi.org/10.5539/jas.v7n9p26
Article
Google Scholar
Antikolinesteraz AHTP, Bitkileri BKOLF (2014) Lamiaceae family plants as a potential anticholinesterase source in the treatment of Alzheimer’s disease. Bezmialem Sci 1:1–25
Google Scholar
Mollataghi A, Coudiere E, Hadi AHA, Mukhtar MR, Awang K, Litaudon M, Ata A (2012) Anti-acetylcholinesterase, anti-α-glucosidase, anti-leishmanial and anti-fungal activities of chemical constituents of Beilschmiedia species. Fitoterapia 83(2):298–302. https://doi.org/10.1016/j.fitote.2011.11.009
Article
CAS
PubMed
Google Scholar
Kaufmann D, Kaur Dogra A, Tahrani A, Herrmann F, Wink M (2016) Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target. Molecules 21(9):1161. https://doi.org/10.3390/molecules21091161
Article
CAS
PubMed Central
Google Scholar
Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza AD, Brantner AH (2014) Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 19(1):767–782. https://doi.org/10.3390/molecules19010767
Article
CAS
PubMed
PubMed Central
Google Scholar
Falé PL, Ferreira C, Rodrigues AM, Cleto P, Madeira PA, Florêncio MH, Frazão FN, Serralheiro ML (2013) Antioxidant and anti-acetylcholinesterase activity of commercially available medicinal infusions after in vitro gastrointestinal digestion. J Med Plant Res 7(20):1370–1378. https://doi.org/10.5897/jmpr13.4438
Article
Google Scholar
Min BS, Cuong TD, Lee JS, Shin BS, Woo MH, Hung TM (2010) Cholinesterase inhibitors from Cleistocalyx operculatus buds. Arch Pharm Res 33(10):1665–1670. https://doi.org/10.1007/s12272-010-1016-5
Article
CAS
PubMed
Google Scholar
Ogura H, Kosasa T, Kuriya Y, Yamanishi Y (2000) Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find Exp Clin Pharmacol 22(8):609–614. https://doi.org/10.1358/mf.2000.22.8.701373
Article
CAS
PubMed
Google Scholar
Cummings JL, Geldmacher D, Farlow M, Sabbagh M, Christensen D, Betz P, Donepezil 23 mg Expert Working Group (2013) High-dose donepezil (23 mg/day) for the treatment of moderate and severe Alzheimer’s disease: drug profile and clinical guidelines. CNS Neurosci Ther 19:294–301. https://doi.org/10.1111/cns.12076
Article
CAS
PubMed
PubMed Central
Google Scholar
Schrödinger Release 2018-4: protein preparation wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2018.
Schrödinger Release 2018-4: Prime, Schrödinger, LLC, New York, 2018.
Schrödinger Release 2018-4: LigPrep, Schrödinger, LLC, New York, 2018.
Schrödinger Release 2018-4: Epik, Schrödinger, LLC, New York, 2018.
Schrödinger Release 2018-4: Glide, Schrödinger, LLC, New York, 2018.
Dash R, Hosen SZ, Karim MR, Kabir MS, Hossain MM, Junaid M, Islam A, Paul A, Khan MA (2015) In silico analysis of indole-3-carbinol and its metabolite DIM as EGFR tyrosine kinase inhibitors in platinum resistant ovarian cancer vis a vis ADME/T property analysis. J App Pharm Sci 5(11):073–078. https://doi.org/10.7324/japs.2015.501112
Article
CAS
Google Scholar
Visualizer DS (2017) Release 4.1. Accelrys Inc., San Diego
Google Scholar
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717
Article
PubMed
PubMed Central
Google Scholar
Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee P, W.; Tang, Y. (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. https://doi.org/10.1021/ci300367a
Book
Google Scholar
Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, Lu AP, Cao DS (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Chem 10(1):29. DOI. https://doi.org/10.1186/s13321-018-0283-x
Article
CAS
Google Scholar
Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457. https://doi.org/10.1007/s10593-014-1496-1
Article
CAS
Google Scholar
Geronikaki A, Poroikov V, Hadjipavlou-Litina D, Filimonov D, Lagunin A, Mgonzo R (1999) Computer aided predicting the biological activity spectra and experimental testing of new thiazole derivatives. Quant Struct-act Rel 18(1):16–25. https://doi.org/10.1002/(sici)1521-3838(199901)18:1<16::aid-qsar16>3.0.co;2-o
Article
CAS
Google Scholar
Zaretzki J, Bergeron C, Huang TW, Rydberg P, Swamidass SJ, Breneman CM (2012) RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics 29(4):497–498. https://doi.org/10.1093/bioinformatics/bts705
Article
CAS
PubMed
PubMed Central
Google Scholar
Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42(W1):W53–W58. https://doi.org/10.1093/nar/gku401
Article
CAS
PubMed
PubMed Central
Google Scholar
Schrödinger Release 2018-4: Jaguar, Schrödinger, LLC, New York, 2018.
Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785. https://doi.org/10.1103/physrevb.37.785
Article
CAS
Google Scholar
Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098. https://doi.org/10.1103/physreva.38.3098
Article
CAS
Google Scholar
Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. P Natl Acad Sci 83(22):8440–8441. https://doi.org/10.1073/pnas.83.22.8440
Article
CAS
Google Scholar
Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, vol. 16 of International series of monographs on chemistry. Oxford University Press, New York
Google Scholar
Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit 26(5):215–239. https://doi.org/10.1002/jmr.2266
Article
CAS
PubMed
Google Scholar
Zhang X, Perez-Sanchez H, C-Lightstone F (2017) A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr Top Med Chem 4v(14):1631–1639. https://doi.org/10.2174/1568026616666161117112604
Article
CAS
Google Scholar
Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553. DOI. https://doi.org/10.1021/jm050540c
Article
CAS
PubMed
Google Scholar
Aamir M, Singh VK, Dubey MK, Meena M, Kashyap SP, Katari SK, Upadhyay RS, Singh S (2018) In silico prediction, characterization, molecular docking and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against fusarium wilt in tomato. Front Pharmacol 9:1038. https://doi.org/10.3389/fphar.2018.01038
Article
CAS
PubMed
PubMed Central
Google Scholar
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm051256o
Article
CAS
PubMed
Google Scholar
Priyadarshini V, Pradhan D, Munikumar M, Swargam S, Umamaheswari A, Rajasekhar D (2014) Genome-based approaches to develop epitope-driven subunit vaccines against pathogens of infective endocarditis. J Biomol Struct Dyn 32(6):876–889. https://doi.org/10.1080/07391102.2013.795871
Article
CAS
PubMed
Google Scholar
Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2):337–356. https://doi.org/10.1006/jmbi.1999.3371
Article
CAS
PubMed
Google Scholar
Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Lead discovery using molecular docking. Curr Opin Chem Biol 6(4):439–446. https://doi.org/10.1016/s1367-5931(02)00339-3
Article
CAS
PubMed
Google Scholar
Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1-3):10–22. DOI. https://doi.org/10.1016/j.cbi.2010.01.042
Article
CAS
PubMed
PubMed Central
Google Scholar
Klebe G (2015) Protein-ligand interactions as the basis for drug action. In: Multifaceted Roles of Crystallography in Modern Drug Discovery. Springer, Dordrecht, pp 83–92. https://doi.org/10.1007/978-94-017-9719-1_7
Chapter
Google Scholar
Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Article
CAS
PubMed
Google Scholar
Pollastri MP (2010) Overview on the rule of five. Curr Protoc Pharmacol 49:9–12. https://doi.org/10.1002/0471141755.ph0912s49
Article
Google Scholar
Ullah A, Prottoy NI, Araf Y, Hossain S, Sarkar B, Saha A (2019) Molecular docking and pharmacological property analysis of phytochemicals from Clitoria ternatea as potent inhibitors of cell cycle checkpoint proteins in the cyclin/CDK pathway in cancer cells. Comput Mol Biosci 9(03):81. DOI. https://doi.org/10.4236/cmb.2019.93007
Article
CAS
Google Scholar
Sarkar B, Islam SS, Ullah MA, Hossain S, Prottoy MN, Araf Y, Taniya MA (2019) Computational assessment and pharmacological property breakdown of eight patented and candidate drugs against four intended targets in Alzheimer’s disease. Adv Biosci Biotechnol 10(11):405. https://doi.org/10.4236/abb.2019.1011030
Article
CAS
Google Scholar
Li AP (2001) Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today 6(7):357–366. https://doi.org/10.1016/s1359-6446(01)01712-3
Article
CAS
PubMed
Google Scholar
Guengerich FP (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39(1):1–17. https://doi.org/10.1146/annurev.pharmtox.39.1.1
Article
CAS
PubMed
Google Scholar
Glue P, Clement RP (1999) Cytochrome P450 enzymes and drug metabolism—basic concepts and methods of assessment. Cell Mol Neurobiol 19(3):309–323. https://doi.org/10.1023/a:1006993631057
Article
CAS
PubMed
Google Scholar
Dixit B (2017) A review on the effects of CMPF binding with human serum albumin. Bioinform Rev 3(9):9–18
Google Scholar
Radchenko EV, Dyabina AS, Palyulin VA, Zefirov NS (2016) Prediction of human intestinal absorption of drug compounds. Russ Chem Bull 65(2):576–580. https://doi.org/10.1007/s11172-016-1340-0
Article
CAS
Google Scholar
Wessel MD, Jurs PC, Tolan JW, Muskal SM (1998) Prediction of human intestinal absorption of drug compounds from molecular structure. J Chem Inf Comput Sci 38(4):726–735. https://doi.org/10.1021/ci980029a
Article
CAS
PubMed
Google Scholar
Basant N, Gupta S, Singh KP (2016) Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches. Comput Biol Chem 61:178–196. https://doi.org/10.1016/j.compbiolchem.2016.01.005
Article
CAS
PubMed
Google Scholar
Swierczewska M, Lee KC, Lee S (2015) What is the future of PEGylated therapies? https://doi.org/10.1517/14728214.2015.1113254
Book
Google Scholar
Smalling RW (1996) Molecular biology of plasminogen activators: what are the clinical implications of drug design? Am J Cardiol 78(12):2–7. https://doi.org/10.1016/s0002-9149(96)00736-9
Article
CAS
PubMed
Google Scholar
Sahin S, Benet LZ (2008) The operational multiple dosing half-life: a key to defining drug accumulation in patients and to designing extended release dosage forms. Pharm Res 25(12):2869–2877. https://doi.org/10.1007/s11095-008-9787-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel. Cell 81(2):299–307. https://doi.org/10.1016/0092-8674(95)90340-2
Article
CAS
PubMed
Google Scholar
Aronov AM (2005) Predictive in silico modeling for hERG channel blockers. Drug Discov Today 10(2):149–155. https://doi.org/10.1016/s1359-6446(04)03278-7
Article
CAS
PubMed
Google Scholar
Cheng A, Dixon SL (2003) In silico models for the prediction of dose-dependent human hepatotoxicity. J Comput Aid Mol Des 17(12):811–823. https://doi.org/10.1023/b:jcam.0000021834.50768.c6
Article
CAS
Google Scholar
Xu JJ, Diaz D, O’Brien PJ (2004) Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact 150(1):115–128. https://doi.org/10.1016/j.cbi.2004.09.011
Article
CAS
PubMed
Google Scholar
Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res-Fund Mol M 455(1-2):29–60. https://doi.org/10.1016/s0027-5107(00)00064-6
Article
CAS
Google Scholar
Holt, M P, ; Ju, C. Mechanisms of drug-induced liver injury. AAPS J. 2006, 8(1), E48-E54. DOI: https://doi.org/10.1208/aapsj080106
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16(8):747–748. https://doi.org/10.1093/bioinformatics/16.8.747
Article
CAS
PubMed
Google Scholar
United Nations. Economic Commission for Europe. Secretariat, 2005. Globally harmonized system of classification and labelling of chemicals (GHS). United Nations Publications. https://unece.org/ghs-rev1-2005. Accessed 3 Dec 2020.
Tyzack JD, Mussa HY, Williamson MJ, Kirchmair J, Glen RC (2014) Cytochrome P450 site of metabolism prediction from 2D topological fingerprints using GPU accelerated probabilistic classifiers. J scinemrofnimehC 6(1):29. https://doi.org/10.1186/1758-2946-6-29
Article
CAS
Google Scholar
Danielson PB (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 3(6):561–597. https://doi.org/10.2174/1389200023337054
Article
CAS
PubMed
Google Scholar
Matysiak J (2007) Evaluation of electronic, lipophilic and membrane affinity effects on antiproliferative activity of 5-substituted-2-(2, 4-dihydroxyphenyl)-1, 3, 4-thiadiazoles against various human cancer cells. Eur J Med Chem 42(7):940–947. https://doi.org/10.1016/j.ejmech.2006.12.033
Article
CAS
PubMed
Google Scholar
Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195. DOI. https://doi.org/10.1021/jp0225774
Article
CAS
Google Scholar
Hoque MM, Halim MA, Sarwar MG, Khan MW (2015) Palladium-catalyzed cyclization of 2-alkynyl-N-ethanoyl anilines to indoles: synthesis, structural, spectroscopic, and mechanistic study. J Phys Org Chem 28(12):732–742. https://doi.org/10.1002/poc.3477
Article
CAS
Google Scholar
Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124(19):194107. https://doi.org/10.1063/1.2196882
Article
CAS
PubMed
Google Scholar
Ullah MA, Johora FT, Sarkar B, Araf Y, Rahman MH (2020) Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: a computer-based study. J Recept Signal Transduct:1–5. https://doi.org/10.1080/10799893.2020.1742741