Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14(2):244–269
Article
CAS
PubMed
PubMed Central
Google Scholar
Westgate SJ, Percival SL, Knottenbelt DC, Clegg PD, Cochrane CA (2011) Microbiology of equine wounds and evidence of bacterial biofilms. Vet Microbiol 150(1-2):152–159
Article
CAS
PubMed
Google Scholar
Whyte JL, Smith AA, Helms JA (2012) Wnt signaling and injury repair. Cold Spring Harb Perspect Biol 4(8):a008078
Article
PubMed
PubMed Central
CAS
Google Scholar
Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, Isik F (2006) Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol 7(1):4
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheon SS, Nadesan P, Poon R, Alman BA (2004) Growth factors regulate β-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res 293(2):267–274
Article
CAS
PubMed
Google Scholar
Zamierowski DS, Zamierowski David S (1990) Wound dressing and treatment method. US Patent 4 969:880
Google Scholar
Pu L (2015) Aesthetic plastic surgery in Asians. Thieme Medical, New York
Google Scholar
Daryabeigi R, Heidari M, Hosseini SA, Omranifar M (2010) Comparison of healing time of the 2nd degree burn wounds with two dressing methods of fundermol herbal ointment and 1% silver sulfadiazine cream. Iran J Nurs Midwifery Res 15(3):97
PubMed
PubMed Central
Google Scholar
Budovsky A, Yarmolinsky L, Ben-Shabat S (2015) Effect of medicinal plants on wound healing. Wound Repair Regen 23(2):171–183
Article
PubMed
Google Scholar
Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci Bangalore 87:44–53
CAS
Google Scholar
Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2002) Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50(13):3668–3672
Article
CAS
PubMed
Google Scholar
Demirovic D, Rattan SI (2011) Curcumin induces stress response and hormetically modulates wound healing ability of human skin fibroblasts undergoing ageing in vitro. Biogerontology 12(5):437–444
Article
CAS
PubMed
Google Scholar
Xiong Y, Zhou L, Su Z, Song J, Sun Q, Liu SS, Xia Y, Wang Z, Lu D (2019) Longdaysin inhibits Wnt/β-catenin signaling and exhibits antitumor activity against breast cancer. Onco Targets Ther 12:993
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang H, He X (2008) Wnt/β-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20(2):119–125
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruciat CM (2014) Casein kinase 1 and Wnt/β-catenin signaling. Curr Opin Cell Biol 31:46–55
Article
CAS
PubMed
Google Scholar
Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851
CAS
PubMed
Google Scholar
Suomalainen M, Thesleff I (2010) Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/β-catenin signaling in the epithelial stem cells. Dev Dyn 239(1):364–372
CAS
PubMed
Google Scholar
Mao J, Wang J, Liu B, Pan W, Farr GH III, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7(4):801–809
Article
CAS
PubMed
Google Scholar
MacDonald BT, Semenov MV, He X (2007) SnapShot: Wnt/β-catenin signaling. Cell 131(6):1204–12e1
Article
CAS
PubMed
Google Scholar
Silkstone D, Hong H, Alman BA (2008) β-Catenin in the race to fracture repair: in it to Wnt. Nat Rev Rheumatol 4(8):413
Article
CAS
Google Scholar
Zhang H, Nie X, Shi X, Zhao J, Chen Y, Yao Q, Sun C, Yang J (2018) Regulatory Mechanisms of the Wnt/β-catenin Pathway in Diabetic cutaneous Ulcers. Front Pharmacol 9:1114
Nusse R (2005) Wnt signaling in disease and in development. Cell Res 15(1):28
Article
CAS
PubMed
Google Scholar
MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26
Article
CAS
PubMed
PubMed Central
Google Scholar
Kneidinger N, Yildirim AO, Callegari J, Takenaka S, Stein MM, Dumitrascu R, Bohla A, Bracke KR, Morty RE, Brusselle GG, Schermuly RT (2011) Activation of the WNT/β-catenin pathway attenuates experimental emphysema. Am J Respir Crit Care Med 183(6):723–733
Article
CAS
PubMed
Google Scholar
Baron R, Rawadi G (2007) Targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148(6):2635–2643
Article
CAS
PubMed
Google Scholar
Bafico A, Gazit A, Pramila T, Finch PW, Yaniv A, Aaronson SA (1999) Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J Biol Chem 274(23):16180–16187
Article
CAS
PubMed
Google Scholar
Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480
Article
CAS
PubMed
Google Scholar
Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3:735
Article
PubMed
CAS
Google Scholar
Schrödinger Release 2018-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2018.
Schrödinger Release 2018-4 (2018) LigPrep. Schrödinger, LLC, New York
Google Scholar
Schrödinger Release 2019-3 (2019) Glide. Schrödinger, LLC, New York
Google Scholar
Dassault Systèmes BIeOVIA (2019) Discovery Studio Visualizer, 19.1. Dassault Systèmes, San Diego
Google Scholar
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717
Article
PubMed
PubMed Central
Google Scholar
Sander T (2001) OSIRIS property explorer. Organic Chemistry Portal
Google Scholar
Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11):3099–105. https://doi.org/10.1021/ci300367a. Epub 2012 Nov 1. Erratum in: J Chem Inf Model. 2019;59(11):4959.
Rydberg P, Gloriam DE, Olsen L (2010) The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics 26(23):2988–2989
Article
CAS
PubMed
Google Scholar
Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457
Article
CAS
Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1-3):3–25
Article
CAS
Google Scholar
Nagori BP, Solanki R (2011) Role of medicinal plants in wound healing. Res J Med Plant 5(4):392–405
Article
Google Scholar
Kundu S, Biswas TK, Das P, Kumar S, De DK (2005) Turmeric (Curcuma longa) rhizome paste and honey show similar wound healing potential: a preclinical study in rabbits. Int J Low Extrem Wounds 4(4):205–213
Article
PubMed
Google Scholar
Purohit SK, Solanki R, Mathur V, Mathur M (2013) Evaluation of wound healing activity of ethanolic extract of Curcuma longa rhizomes in male albino rats. Asian J Pharm Res 3(2):79–81
Google Scholar
Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2):337–356
Article
CAS
PubMed
Google Scholar
Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Lead discovery using molecular docking. Curr Opin Chem Biol 6(4):439–446
Article
CAS
PubMed
Google Scholar
Davis AM, Teague SJ (1999) Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew Chem Int Ed 38(6):736–749
Article
CAS
Google Scholar
Kadam RU, Roy N (2007) Recent trends in drug-likeness prediction: a comprehensive review of in silico methods. Indian J Pharm Sci 69(5):609
Article
CAS
Google Scholar
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623
Article
CAS
PubMed
Google Scholar
Pollastri MP (2010) Overview on the rule of five. Curr Protoc Pharm 49(1):9–12
Article
Google Scholar
Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6(11):881
Article
CAS
PubMed
Google Scholar
Yu H, Adedoyin A (2003) ADME–Tox in drug discovery: integration of experimental and computational technologies. Drug Discov Today 8(18):852–861
Article
CAS
PubMed
Google Scholar
Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, Liu X, Luo X, Luo C, Chen K, Zheng M (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48(4):488–515
Article
PubMed
Google Scholar
Sarkar B, Alam S, Rajib TK, et al (2021) Identification of the most potent acetylcholinesterase inhibitors from plants for possible treatment of Alzheimer’s disease: a computational approach. Egypt J Med Hum Genet 22:10. https://doi.org/10.1186/s43042-020-00127-8
Ullah A, Prottoy NI, Araf Y, Hossain S, Sarkar B, Saha A Molecular docking and pharmacological property analysis of phytochemicals from Clitoria ternatea as potent inhibitors of cell cycle checkpoint proteins in the cyclin/CDK pathway in cancer cells. Comput Mol Biosci 9(03):81
Sarkar B, Ullah MA, Johora FT, Taniya MA, Araf Y Immunoinformatics-guided designing of epitope-based subunit vaccine against the SARS Coronavirus-2 (SARS-CoV-2). Immunobiology:151955. https://doi.org/10.1016/j.imbio.2020.151955
Ullah A, Sarkar B, Islam SS Exploiting the reverse vaccinology approach to design novel subunit vaccine against ebola virus. Immunobiology:151949. https://doi.org/10.1016/j.imbio.2020.151949
Ullah MA, Johora FT, Sarkar B, Araf Y, Rahman MH Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: a computer-based study. J Receptors Signal Transduct:1–5. https://doi.org/10.1080/10799893.2020.1742741
Sarkar B, Ullah MA, Islam SS, Rahman MH, Araf Y Analysis of plant-derived phytochemicals as anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor receptor-2. J Receptors and Signal Transduct. https://doi.org/10.1080/10799893.2020.1805628
Paul Gleeson M, Hersey A, Hannongbua S (2011) In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem 11(4):358–381
Article
PubMed
Google Scholar
Li AP (2001) Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today 6(7):357–366
Article
CAS
PubMed
Google Scholar
Geerts T, Vander Heyden Y (2011) In silico predictions of ADME-Tox properties: drug absorption. Comb Chem High Throughput Screen 14(5):339–361
Article
CAS
PubMed
Google Scholar
Anzenbacher P, Anzenbacherova E (2001) Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 58(5-6):737–747
Article
CAS
PubMed
Google Scholar
Trevan JW (1927) The error of determination of toxicity. Proceedings of the Royal Society of London. Proc R Soc Lond B Biol Sci 101(712):483–514
Article
CAS
Google Scholar
Li X, Chen L, Cheng F, Wu Z, Bian H, Xu C, Li W, Liu G, Shen X, Tang Y (2014) In silico prediction of chemical acute oral toxicity using multi-classification methods. J Chem Inf Model 54(4):1061–1069
Article
CAS
PubMed
Google Scholar
Ames BN, Gurney EG, Miller JA, Bartsch H (1972) Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci 69(11):3128–3132
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, Lee PW, Tang Y (2012) In silico prediction of chemical Ames mutagenicity. J Chem Inf Model 52(11):2840–2847
Article
CAS
PubMed
Google Scholar
Parasuraman S (2011) Prediction of activity spectra for substances. J Pharmacol Pharmacother 2(1):52
Article
CAS
PubMed
PubMed Central
Google Scholar
Stepanchikova AV, Lagunin AA, Filimonov DA, Poroikov VV (2003) Prediction of biological activity spectra for substances: Evaluation on the diverse sets of drug-like structures. Curr Med Chem 10(3):225–233
Article
CAS
PubMed
Google Scholar
Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16(8):747–748
Article
CAS
PubMed
Google Scholar
Background [Internet]. Smartcyp.sund.ku.dk. 2021. Available from: https://smartcyp.sund.ku.dk/background_smartcyp. Cited 22 January 2021
Tyzack JD, Kirchmair J (2019) Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem Biol Drug Des 93(4):377–386
Article
CAS
PubMed
PubMed Central
Google Scholar