Glantz S, Gonzalez M (2012) Effective tobacco control is key to rapid progress in reduction of non-communicable diseases. The Lancet 379:1269–1271. https://doi.org/10.1016/S0140-6736(11)60615-6
Article
Google Scholar
Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P et al (2011) Priority actions for the non-communicable disease crisis. Lancet 377:1438–1447. https://doi.org/10.1016/S0140-6736(11)60393-0
Article
PubMed
Google Scholar
Reitsma MB, Kendrick PJ, Ababneh E, Abbafati C, Abbasi-Kangevari M, Abdoli A et al (2021) Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet 397:2337–2360. https://doi.org/10.1016/S0140-6736(21)01169-7
Article
Google Scholar
Bade BC, Dela Cruz CS (2020) Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med 41:1–24. https://doi.org/10.1016/j.ccm.2019.10.001
Article
PubMed
Google Scholar
Talhout R, Schulz T, Florek E, Van Benthem J, Wester P, Opperhuizen A (2011) Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 8:613–628. https://doi.org/10.3390/ijerph8020613
Article
PubMed
PubMed Central
Google Scholar
Gümüş ZH, Du B, Kacker A, Boyle JO, Bocker JM, Mukherjee P et al (2008) Effects of tobacco smoke on gene expression and cellular pathways in a cellular model of oral leukoplakia. Cancer Prev Res (Phila) 1:100–111. https://doi.org/10.1158/1940-6207.CAPR-08-0007
Article
CAS
Google Scholar
Hecht SS (2006) Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg 391:603–613. https://doi.org/10.1007/s00423-006-0111-z
Article
PubMed
Google Scholar
Peppone LJ, Mustian KM, Morrow GR, Dozier AM, Ossip DJ, Janelsins MC et al (2011) The effect of cigarette smoking on cancer treatment-related side effects. Oncologist 16:1784–1792. https://doi.org/10.1634/theoncologist.2011-0169
Article
PubMed
PubMed Central
Google Scholar
Kopa PN, Pawliczak R (2018) Effect of smoking on gene expression profile – overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol Mech Methods 28:397–409. https://doi.org/10.1080/15376516.2018.1461289
Article
CAS
PubMed
Google Scholar
Na H-K, Kim M, Chang S-S, Kim S-Y, Park JY, Chung MW et al (2015) Tobacco smoking-response genes in blood and buccal cells. Toxicol Lett 232:429–437. https://doi.org/10.1016/j.toxlet.2014.10.005
Article
CAS
PubMed
Google Scholar
Tsai P-C, Glastonbury CA, Eliot MN, Bollepalli S, Yet I, Castillo-Fernandez JE et al (2018) Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clin Epigenetics 10:126. https://doi.org/10.1186/s13148-018-0558-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai G, Bossé Y, Xiao F, Kheradmand F, Amos CI (2020) Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med 201:1557–1559. https://doi.org/10.1164/rccm.202003-0693LE
Article
CAS
PubMed
PubMed Central
Google Scholar
Hijazi K, Malyszko B, Steiling K, Xiao X, Liu G, Alekseyev YO et al (2019) Tobacco-related alterations in airway gene expression are rapidly reversed within weeks following smoking-cessation. Sci Rep 9:6978. https://doi.org/10.1038/s41598-019-43295-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Huan T, Joehanes R, Schurmann C, Schramm K, Pilling LC, Peters MJ et al (2016) A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking. Hum Mol Genet 25:4611–4623. https://doi.org/10.1093/hmg/ddw288
Article
CAS
PubMed
PubMed Central
Google Scholar
Sridhar S, Schembri F, Zeskind J, Shah V, Gustafson AM, Steiling K et al (2008) Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics 9:259. https://doi.org/10.1186/1471-2164-9-259
Article
CAS
PubMed
PubMed Central
Google Scholar
Blighe K, Rana S, Lewis M (2018) EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. https://github.com/kevinblighe/EnhancedVolcano
Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol 16:284–287. https://doi.org/10.1089/omi.2011.0118
Article
CAS
Google Scholar
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. https://doi.org/10.1016/j.xinn.2021.100141
Article
Google Scholar
Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L (2020) SIGNOR 2.0, the SIGnaling network open resource 2.0 2019 update. Nucleic Acids Res 48:D504–D510. https://doi.org/10.1093/nar/gkz949
Article
CAS
PubMed
Google Scholar
Kolla V, Zhuang T, Higashi M, Naraparaju K, Brodeur GM (2014) Role of CHD5 in human cancers: 10 years later. Cancer Res 74:652–658. https://doi.org/10.1158/0008-5472.CAN-13-3056
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson PM, Gotoh T, Kok M, White PS, Brodeur GM (2003) CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 22:1002–1011. https://doi.org/10.1038/sj.onc.1206211
Article
CAS
PubMed
Google Scholar
Zhao R, Wang N, Huang H, Ma W, Yan Q (2014) CHD5 a tumour suppressor is epigenetically silenced in hepatocellular carcinoma. Liver Int 34:e151-160. https://doi.org/10.1111/liv.12503
Article
CAS
PubMed
Google Scholar
Zhu X, Kong Q, Xie L, Chen Z, Li H, Zhu Z et al (2017) The single-nucleotide polymorphisms in CHD5 affect the prognosis of patients with hepatocellular carcinoma. Oncotarget 9:13222–13230
Article
Google Scholar
Baykara O, Tansarikaya M, Bulut P, Demirkaya A, Buyru N (2017) CHD5 is a potential tumor suppressor in non small cell lung cancer (NSCLC). Gene 618:65–68. https://doi.org/10.1016/j.gene.2017.04.010
Article
CAS
PubMed
Google Scholar
Xiao Q, Chen L, Luo H, Li H, Kong Q, Jiao F et al (2018) A rare CHD5 haplotype and its interactions with environmental factors predicting hepatocellular carcinoma risk. BMC Cancer 18:658. https://doi.org/10.1186/s12885-018-4551-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Liu Y, Xu C, Ba L, Liu Z, Li X et al (2021) QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function. Nat Commun 12:89. https://doi.org/10.1038/s41467-020-20327-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Zong F-Y, Fu X, Wei W-J, Luo Y-G, Heiner M, Cao L-J et al (2014) The RNA-binding protein QKI suppresses cancer-associated aberrant splicing. PLoS Genet 10:e1004289. https://doi.org/10.1371/journal.pgen.1004289
Article
CAS
PubMed
PubMed Central
Google Scholar
de Miguel FJ, Pajares MJ, Martínez-Terroba E, Ajona D, Morales X, Sharma RD et al (2016) A large-scale analysis of alternative splicing reveals a key role of QKI in lung cancer. Mol Oncol 10:1437–1449. https://doi.org/10.1016/j.molonc.2016.08.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Noell G, Tabib T, Gregory AD, Trejo Bittar HE, Vats R et al (2021) Single cell RNA sequencing identifies IGFBP5 and QKI as ciliated epithelial cell genes associated with severe COPD. Respir Res 22:100. https://doi.org/10.1186/s12931-021-01675-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973. https://doi.org/10.1242/jcs.01589
Article
CAS
PubMed
Google Scholar
Lee W, Kim HS, Hwang SS, Lee GR (2017) The transcription factor Batf3 inhibits the differentiation of regulatory T cells in the periphery. Exp Mol Med 49:e393–e393. https://doi.org/10.1038/emm.2017.157
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu Z, Khairallah C, Romanov G, Sheridan BS (2020) Cutting edge: Batf3 expression by CD8 T cells critically regulates the development of memory populations. J Immunol. https://doi.org/10.4049/jimmunol.2000228
Article
PubMed
Google Scholar
Engler DB, Reuter S, van Wijck Y, Urban S, Kyburz A, Maxeiner J et al (2014) Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10. PNAS 111:11810–11815. https://doi.org/10.1073/pnas.1410579111
Article
CAS
PubMed
PubMed Central
Google Scholar
Staudt MR, Salit J, Kaner RJ, Hollmann C, Crystal RG (2018) Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. Respir Res 19:78. https://doi.org/10.1186/s12931-018-0778-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilk JB, Walter RE, Laramie JM, Gottlieb DJ, O’Connor GT (2007) Framingham Heart Study genome-wide association: results for pulmonary function measures. BMC Med Genet 8:S8. https://doi.org/10.1186/1471-2350-8-S1-S8
Article
CAS
PubMed
PubMed Central
Google Scholar
Garbers C, Rose-John S (2021) Genetic IL-6R variants and therapeutic inhibition of IL-6 receptor signalling in COVID-19. Lancet Rheumatol 3:e96–e97. https://doi.org/10.1016/S2665-9913(20)30416-1
Article
PubMed
Google Scholar
Buonaguro FM, Puzanov I, Ascierto PA (2020) Anti-IL6R role in treatment of COVID-19-related ARDS. J Transl Med 18:165. https://doi.org/10.1186/s12967-020-02333-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Stolarczyk M, Amatngalim GD, Yu X, Veltman M, Hiemstra PS, Scholte BJ (2016) ADAM17 and EGFR regulate IL-6 receptor and amphiregulin mRNA expression and release in cigarette smoke-exposed primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD). Physiol Rep 4:12878
Article
Google Scholar
Pérez-Rubio G, Silva-Zolezzi I, Fernández-López JC, Camarena Á, Velázquez-Uncal M, Morales-Mandujano F et al (2016) Genetic variants in IL6R and ADAM19 are associated with COPD severity in a Mexican mestizo population. COPD J Chronic Obstruct Pulm Dis 13:610–615. https://doi.org/10.3109/15412555.2016.1161017
Article
Google Scholar
Farahi N, Paige E, Balla J, Prudence E, Ferreira RC, Southwood M et al (2017) Neutrophil-mediated IL-6 receptor trans-signaling and the risk of chronic obstructive pulmonary disease and asthma. Hum Mol Genet 26:1584–1596. https://doi.org/10.1093/hmg/ddx053
Article
CAS
PubMed
PubMed Central
Google Scholar
Legaz I, Pérez-Cárceles MD, de la Calle I, Arjona F, Roca M, Cejudo P et al (2019) Genetic susceptibility to nicotine and/or alcohol addiction: a systematic review. Toxin Rev. https://doi.org/10.1080/15569543.2019.1619085
Article
Google Scholar
Zhang T-X, Saccone NL, Bierut LJ, Rice JP (2017) Targeted sequencing identifies genetic polymorphisms of flavin-containing monooxygenase genes contributing to susceptibility of nicotine dependence in European American and African American. Brain Behavior 7:e00651. https://doi.org/10.1002/brb3.651
Article
PubMed
PubMed Central
Google Scholar
Boué S, Tarasov K, Jänis M, Lebrun S, Hurme R, Schlage W et al (2012) Modulation of atherogenic lipidome by cigarette smoke in apolipoprotein E-deficient mice. Atherosclerosis 225:328–334. https://doi.org/10.1016/j.atherosclerosis.2012.09.032
Article
CAS
PubMed
Google Scholar
Wang DC, Shi L, Zhu Z, Gao D, Zhang Y (2017) Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol 42:52–59. https://doi.org/10.1016/j.semcancer.2016.11.001
Article
CAS
PubMed
Google Scholar
Lee S-Y, Kwon J, Lee K-A (2021) Bcl2l10 induces metabolic alterations in ovarian cancer cells by regulating the TCA cycle enzymes SDHD and IDH1. Oncol Rep 45:1–15. https://doi.org/10.3892/or.2021.7998
Article
CAS
Google Scholar
Kerkentzes K, Lagani V, Tsamardinos I, Vyberg M, Røe OD (2014) Hidden treasures in “ancient” microarrays: gene-expression portrays biology and potential resistance pathways of major lung cancer subtypes and normal tissue. Front Oncol 4:251. https://doi.org/10.3389/fonc.2014.00251
Article
PubMed
PubMed Central
Google Scholar
Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008. https://doi.org/10.1101/cshperspect.a001008
Article
CAS
PubMed
PubMed Central
Google Scholar
Halvorsen AR, Silwal-Pandit L, Meza-Zepeda LA, Vodak D, Vu P, Sagerup C et al (2016) TP53 mutation spectrum in smokers and never smoking lung cancer patients. Front Genet 7:85. https://doi.org/10.3389/fgene.2016.00085
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallerand H, Bakkar AA, de Medina SGD, Pairon J-C, Yang Y-C, Vordos D et al (2005) Mutations in TP53, but not FGFR3, in urothelial cell carcinoma of the bladder are influenced by smoking: contribution of exogenous versus endogenous carcinogens. Carcinogenesis 26:177–184. https://doi.org/10.1093/carcin/bgh275
Article
CAS
PubMed
Google Scholar
Hainaut P, Olivier M, Pfeifer GP (2001) TP53 mutation spectrum in lung cancers and mutagenic signature of components of tobacco smoke: lessons from the IARC TP53 mutation database. Mutagenesis 16:551–553. https://doi.org/10.1093/mutage/16.6.551
Article
CAS
PubMed
Google Scholar
Pires KMP, Lanzetti M, Rueff-Barroso CR, Castro P, Abrahão A, Koatz VLG et al (2012) Oxidative damage in alveolar macrophages exposed to cigarette smoke extract and participation of nitric oxide in redox balance. Toxicol In Vitro 26:791–798. https://doi.org/10.1016/j.tiv.2012.05.011
Article
CAS
PubMed
Google Scholar
Ozguner F, Koyu A, Cesur G (2005) Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health 21:21–26. https://doi.org/10.1191/0748233705th211oa
Article
CAS
PubMed
Google Scholar
Caliri AW, Tommasi S, Besaratinia A (2021) Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res 787:108365. https://doi.org/10.1016/j.mrrev.2021.108365
Article
CAS
PubMed
Google Scholar
Venardos K, Zhang W-Z, Chin-Dusting J, Kaye DM (2006) Cigarette smoke adversely influences nitric oxide bioavailability by effects on L-arginine transport and oxidative stress in endothelial cells. J Mol Cell Cardiol 41:748. https://doi.org/10.1016/j.yjmcc.2006.06.057
Article
Google Scholar
Barua RS, Ambrose JA, Srivastava S, DeVoe MC, Eales-Reynolds L-J (2003) Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells. Circulation 107:2342–2347. https://doi.org/10.1161/01.CIR.0000066691.52789.BE
Article
CAS
PubMed
Google Scholar
Kim S-M, Hwang K-A, Choi D-W, Choi K-C (2018) The cigarette smoke components induced the cell proliferation and epithelial to mesenchymal transition via production of reactive oxygen species in endometrial adenocarcinoma cells. Food Chem Toxicol 121:657–665. https://doi.org/10.1016/j.fct.2018.09.023
Article
CAS
PubMed
Google Scholar
Kutkowska-Kaźmierczak A, Gos M, Obersztyn E (2018) Craniosynostosis as a clinical and diagnostic problem: molecular pathology and genetic counseling. J Appl Genet 59:133–147. https://doi.org/10.1007/s13353-017-0423-4
Article
CAS
PubMed
Google Scholar
Carmichael SL, Ma C, Rasmussen SA, Honein MA, Lammer EJ, Shaw GM (2008) Craniosynostosis and maternal smoking. Birth Defects Res A 82:78–85. https://doi.org/10.1002/bdra.20426
Article
CAS
Google Scholar
Ardinger HH, Buetow KH, Bell GI, Bardach J, VanDemark DR, Murray JC (1989) Association of genetic variation of the transforming growth factor-alpha gene with cleft lip and palate. Am J Hum Genet 45:348–353
CAS
PubMed
PubMed Central
Google Scholar
Durham EL, Howie RN, Cray JJ (2017) Gene/environment interactions in craniosynostosis: a brief review. Orthod Craniofac Res 20:8–11. https://doi.org/10.1111/ocr.12153
Article
PubMed
PubMed Central
Google Scholar
Pavone D, Clemenza S, Sorbi F, Fambrini M, Petraglia F (2018) Epidemiology and risk factors of uterine fibroids. Best Pract Res Clin Obstet Gynaecol 46:3–11. https://doi.org/10.1016/j.bpobgyn.2017.09.004
Article
PubMed
Google Scholar
Wong JYY, Chang P-Y, Gold EB, Johnson WO, Lee JS (2016) Environmental tobacco smoke and risk of late-diagnosis incident fibroids in the Study of Women’s Health across the Nation (SWAN). Fertil Steril 106:1157–1164. https://doi.org/10.1016/j.fertnstert.2016.06.025
Article
CAS
PubMed
PubMed Central
Google Scholar
Baron JA, La Vecchia C, Levi F (1990) The antiestrogenic effect of cigarette smoking in women. Am J Obstet Gynecol 162:502–514. https://doi.org/10.1016/0002-9378(90)90420-C
Article
CAS
PubMed
Google Scholar
Baron JA, Nichols HB, Anderson C, Safe S (2021) Cigarette smoking and estrogen-related cancer. Cancer Epidemiol Biomarkers Prev 30:1462–1471. https://doi.org/10.1158/1055-9965.EPI-20-1803
Article
CAS
PubMed
PubMed Central
Google Scholar
Nomura M, Li E (1998) Smad2 role in mesoderm formation, left–right patterning and craniofacial development. Nature 393:786–790. https://doi.org/10.1038/31693
Article
CAS
PubMed
Google Scholar
Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E et al (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362. https://doi.org/10.1093/emboj/16.17.5353
Article
CAS
PubMed
PubMed Central
Google Scholar