Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW et al (2003) National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 139(2):137–147
Article
PubMed
Google Scholar
Bikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M et al (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395(10225):709–733
Article
Google Scholar
Ameh OI, Ekrikpo UE, Kengne A-P (2020) Preventing CKD in low-and middle-income countries: a call for urgent action. Kidney Int Rep 5(3):255–262
Article
PubMed
Google Scholar
Wheeler DC, Winkelmayer WC (2017) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD) foreword. Kidney Int Suppl 7(1):1–59
Article
Google Scholar
Witasp A, Ekström TJ, Schalling M, Lindholm B, Stenvinkel P, Nordfors L (2014) How can genetics and epigenetics help the nephrologist improve the diagnosis and treatment of chronic kidney disease patients? Nephrol Dial Transplant 29(5):972–980
Article
CAS
PubMed
Google Scholar
Wöhrle S, Bonny O, Beluch N, Gaulis S, Stamm C, Scheibler M et al (2011) FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res 26(10):2486–2497
Article
PubMed
Google Scholar
Kocełak P, Olszanecka-Glinianowicz M, Chudek J (2012) Fibroblast growth factor 23–structure, function and role in kidney diseases. Adv Clin Exp Med 21(3):391–401
PubMed
Google Scholar
Liu S, Quarles LD (2007) How fibroblast growth factor 23 works. J Am Soc Nephrol 18(6):1637–1647
Article
CAS
PubMed
Google Scholar
Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T et al (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci 107(1):407–412
Article
CAS
PubMed
Google Scholar
Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K et al (2002) Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinol 143(8):3179–3182
Article
CAS
Google Scholar
White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ (2001) Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 60(6):2079–2086
Article
CAS
PubMed
Google Scholar
White KE, Evans WE, O’Riordan JL, Speer MC, Econs MJ, Lorenz-Depiereux B et al (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26(3):345–348
Article
CAS
Google Scholar
Pekkinen M, Laine CM, Mäkitie R, Leinonen E, Lamberg-Allardt C, Viljakainen H et al (2015) FGF23 gene variation and its association with phosphate homeostasis and bone mineral density in Finnish children and adolescents. Bone 71:124–130
Article
CAS
PubMed
Google Scholar
Rendina D, Esposito T, Mossetti G, De Filippo G, Gianfrancesco F, Perfetti A et al (2012) A functional allelic variant of the FGF23 gene is associated with renal phosphate leak in calcium nephrolithiasis. J Clin Endocrinol 97(5):E840–E844
Article
CAS
Google Scholar
den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J et al (2016) HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 37(6):564–569
Article
Google Scholar
De Filippo G, Rendina D, Esposito T, Gianfrancesco F, Mossetti G, Magliocca et al (2010) A common variant of FGF23 gene significantly influences phosphate homeostasis. Horm Res Paediatr 74(Suppl 3):34
Google Scholar
Econs MJ, McEnery PT (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab 82(2):674–681
Article
CAS
PubMed
Google Scholar
Imel EA, Hui SL, Ecibs MJ (2007) FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res 22(4):520–526
Article
CAS
PubMed
Google Scholar
Quarles LD (2019) FGF-23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens 28(1):16
Article
CAS
PubMed
PubMed Central
Google Scholar
Erben RG (2017) Pleiotropic actions of FGF23. Toxicol Pathol 45(7):904–910
Article
CAS
PubMed
PubMed Central
Google Scholar
Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H et al (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79(12):1370–1378
Article
CAS
PubMed
PubMed Central
Google Scholar
Burnett SAM, Gunawardene SC, Bringhurst FR, Jüppner H, Lee H, Finkelstein JS (2006) Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 21(8):1187–1196
Article
CAS
PubMed
Google Scholar
Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE et al (2011) Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49(4):636–643
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu X, Hu MC (2017) Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease. Kidney Dis 3(1):15–23
Article
Google Scholar
van Ballegooijen AJ, Rhee EP, Elmariah S, de Boer IH, Kestenbaum B (2016) Renal clearance of mineral metabolism biomarkers. J Am Soc Nephrol 27(2):392–397
Article
PubMed
Google Scholar
Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J et al (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. J Am Med Assoc 305(23):2432–2439
Article
CAS
Google Scholar
Lima F, El-Husseini A, Monier-Faugere M-C, David V, Mawad H, Quarles D et al (2014) FGF-23 serum levels and bone histomorphometric results in adult patients with chronic kidney disease on dialysis. Clin Nephrol 82(5):287
Article
CAS
PubMed
PubMed Central
Google Scholar
De Jong MA, Eisenga MF, van Ballegooijen AJ, Beulens JW, Vervloet MG, Navis G et al (2021) Fibroblast growth factor 23 and new-onset chronic kidney disease in the general population: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Nephrol dial Transplant 36(1):121–128
Article
PubMed
Google Scholar
Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A et al (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 18(9):2600–2608
Article
CAS
PubMed
Google Scholar
Lundberg S, Qureshi AR, Olivecrona S, Gunnarsson I, Jacobson SH, Larsson TE (2012) FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin J Am Soc Nephrol 7(5):727–734
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf M, Molnar MZ, Amaral AP, Czira ME, Rudas A, Ujszaszi A et al (2011) Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol 22(5):956–966
Article
CAS
PubMed
PubMed Central
Google Scholar
Sezer S, Bal Z, Uyar EM, Ozdemir H, Guliyev O, Yildirim S et al (2014) Fibroblast growth factor 23/Klotho axis is a risk factor for kidney transplant loss. Abstract A261. Transplantation 98:473–474
Article
Google Scholar
David V, Francis C, Babitt JL (2017) Ironing out the cross talk between FGF23 and inflammation. Am J Physiol Renal Physiol 312(1):F1–F8
Article
CAS
PubMed
Google Scholar
Abdullah Z, Kurts C (2016) More trouble with FGF23: a novel role in systemic immunosuppression. Kidney Int 89(6):1176–1177
Article
CAS
PubMed
Google Scholar
Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutiérrez OM (2015) Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS ONE 10(3):e0122885
Article
PubMed
PubMed Central
Google Scholar
Yan J, Zhang M, Ni Z, Jin S, Zhu M, Pang H (2017) Associations of serum fibroblast growth factor 23 with dyslipidemia and carotid atherosclerosis in chronic kidney disease stages 3–5D. Clin Exp Med 10:13588–13597
Google Scholar
Mirza MA, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205(2):385–390
Article
CAS
PubMed
Google Scholar
Yilmaz MI, Sonmez A, Saglam M, Yaman H, Kilic S, Demirkaya E et al (2010) FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int 78(7):679–685
Article
CAS
PubMed
Google Scholar
Shah NH, Dong C, Elkind MS, Sacco RL, Mendez AJ, Hudson BI et al (2015) Fibroblast growth factor 23 is associated with carotid plaque presence and area: the Northern Manhattan Study. Arterioscler Thromb Vasc Biol 35(9):2048–2053
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirza MA, Hansen T, Johansson L, Ahlström H, Larsson A, Lind L et al (2009) Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transplant 24(10):3125–3131
Article
CAS
PubMed
Google Scholar
Donate-Correa J, Martín-Núñez E, Hernández-Carballo C, Ferri C, Tagua VG, Delgado-Molinos A et al (2019) Fibroblast growth factor 23 expression in human calcified vascular tissues. Aging (Albany NY) 11(18):7899
Article
CAS
Google Scholar
Fyfe-Johnson AL, Alonso A, Selvin E, Bower JK, Pankow JS, Agarwal SK et al (2016) Serum fibroblast growth factor-23 and incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. J Hypertens 34(7):1266–1272
Article
CAS
PubMed
Google Scholar
Akhabue E, Montag S, Reis JP, Pool LR, Mehta R, Yancy CW et al (2018) FGF23 (fibroblast growth factor-23) and incident hypertension in young and middle-aged adults: the CARDIA study. Hypertension 72(1):70–76
Article
CAS
PubMed
Google Scholar
Li J, Yu G, Zhuang Y (2018) Impact of serum FGF23 levels on blood pressure of patients with chronic kidney disease. Eur Rev Med Pharmacol Sci 22(3):721–725
PubMed
Google Scholar
Stevens KK, McQuarrie EP, Sands W, Hillyard DZ, Patel RK, Mark PB et al (2011) Fibroblast growth factor 23 predicts left ventricular mass and induces cell adhesion molecule formation. Int J Nephrol 2011:1–6
Article
Google Scholar
Poelzl G, Trenkler C, Kliebhan J, Wuertinger P, Seger C, Kaser S et al (2014) FGF 23 is associated with disease severity and prognosis in chronic heart failure. Eur J Clin Invest 44(12):1150–1158
Article
CAS
PubMed
Google Scholar
Ärnlöv J, Carlsson AC, Sundström J, Ingelsson E, Larsson A, Lind L et al (2013) Higher fibroblast growth factor-23 increases the risk of all-cause and cardiovascular mortality in the community. Kidney Int 83(1):160–166
Article
PubMed
Google Scholar
Ix JH, Katz R, Kestenbaum BR, de Boer IH, Chonchol M, Mukamal KJ et al (2012) Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol 60(3):200–207
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue C, Yang B, Zhou C, Dai B, Liu Y, Mao Z et al (2017) Fibroblast growth factor 23 predicts all-cause mortality in a dose-response fashion in pre-dialysis patients with chronic kidney disease. Am J Nephrol 45(2):149–159
Article
CAS
PubMed
Google Scholar
Bouma-de Krijger A, de Roij van Zuijdewijn CL, Nubé MJ, Grooteman MP, Vervloet MG (2021) Change in FGF23 concentration over time and its association with all-cause mortality in patients treated with haemodialysis or haemodiafiltration. Clin Kidney J 14(3):891–897
Article
CAS
PubMed
Google Scholar
Komaba H, Fuller DS, Taniguchi M, Yamamoto S, Nomura T, Zhao J et al (2020) Fibroblast growth factor 23 and mortality among prevalent hemodialysis patients in the Japan Dialysis Outcomes and Practice Patterns Study. Kidney Int Rep 5(11):1956–1964
Article
PubMed
PubMed Central
Google Scholar
Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A et al (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. New Engl J Med 359(6):584–592
Article
PubMed
Google Scholar
Jean G, Terrat J-C, Vanel T, Hurot J-M, Lorriaux C, Mayor B et al (2009) High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant 24(9):2792–2796
Article
CAS
PubMed
Google Scholar
Soliman AR, Fathy A, Roshd D (2012) The growing burden of end-stage renal disease in Egypt. Ren Fail 34(4):425–428
Article
PubMed
Google Scholar
Ibrahim MM, Rizk H, Appel LJ, Aroussy WE, Helmy S, Sharaf Y et al (1995) Hypertension prevalence, awareness, treatment, and control in Egypt: results from the Egyptian National Hypertension Project (NHP). Hypertension 26(6):886–890
Article
CAS
PubMed
Google Scholar
Elbaz WF, Eissa SS, Mohamed RA, Aly NK, Reda TM (2018) Essential hypertension among Egyptian adults. Egypt J Hosp Med 61(1):643–652
Google Scholar
Ibrahim MM (2013) Problem of hypertension in Egypt. Egypt Heart J 65(3):233–234
Article
Google Scholar
Ghonemy TA, Farag SE, Soliman SA, El-Okely A, El-Hendy Y (2016) Epidemiology and risk factors of chronic kidney disease in the El-Sharkia Governorate, Egypt. Saudi J Kidney Dis Transplant 27(1):111
Article
Google Scholar
El-Ballat MA-F, El-Sayed MA, Emam HK (2019) Epidemiology of end stage renal disease patients on regular hemodialysis in El-Beheira governorate. Egypt Egypt J Hosp Med 76(3):3618–3625
Article
Google Scholar
Ahmed HA, Zahran AM, Issawi RA (2020) Prevalence and etiology of end-stage renal disease patients on maintenance hemodialysis. Menoufia Medical J 33(3):766–771
Google Scholar
Wijerathne BT, Meier RJ, Salgado LS, Rathnayake GK, Kumara SS, Agampodi SB (2018) Chronic kidney disease of unknown etiology: the tip of the iceberg? Ceylon J Med Sci 55(2):55–57
Article
Google Scholar
Levey AS, Coresh J, Bolton K, Culleton B, Harvey KS, Ikizler TA et al (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kid Dis 39(2 Suppl. 1):S1–S266
Google Scholar
Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 71(19):e127–e248
Article
PubMed
Google Scholar
Burtis CA, Ashwood ER, Bruns DE (2012) Tietz textbook of clinical chemistry and molecular diagnostics-e-book. Elsevier Health Sciences, Amsterdam
Google Scholar
Heijboer AC, Levitus M, Vervloet MG, Lips P, ter Wee PM, Dijstelbloem HM et al (2009) Determination of fibroblast growth factor 23. Ann Clin Biochem 46(Pt 4):338–340
Article
CAS
PubMed
Google Scholar
Levey AS, Stevens LA (2010) Estimating GFR using the CKD epidemiology collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kid Dis 55(4):622–627
Article
PubMed
Google Scholar
Alharbi KK, Abudawood M, Khan IA (2021) Amino-acid amendment of arginine-325-tryptophan in rs13266634 genetic polymorphism studies of the SLC30A8 gene with type 2 diabetes-mellitus patients featuring a positive family history in the Saudi population. J King Saud Univ-Sci 33(1):101258
Article
Google Scholar
Robinson-Cohen C, Bartz TM, Lai D, Ikizler TA, Peacock M, Imel EA et al (2018) Genetic variants associated with circulating fibroblast growth factor 23. J Am Soc Nephrol 29(10):2583–2592
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishii T, Gemma A, Kida K (2015) Senescence is involved in the pathogenesis of chronic obstructive pulmonary disease through effects on telomeres and the anti-aging molecule fibroblast growth factor 23. Geriatr Gerontol Int 15(7):827–833
Article
PubMed
Google Scholar
Kim HJ, Kim K-H, Lee J, Oh JJ, Cheong HS, Wong EL et al (2013) Single nucleotide polymorphisms in fibroblast growth factor 23 gene, FGF23, are associated with prostate cancer risk. BJU Int 114(2):303–310
Article
PubMed
Google Scholar
Merlotti D, Rendina D, Gennari L, Esposito T, Magliocca S, De FG et al (2013) Interaction between FGF23 R176W mutation and C716T nonsynonymous change (T239M, rs7955866) in FGF23 on the clinical phenotype in a family with autosomal dominant hypophosphatemic rickets. Bone Abstracts 1
Wolf M, White KE (2014) Coupling FGF23 production and cleavage: iron deficiency, rickets and kidney disease. Curr Opin Nephrol Hypertens 23(4):411–419
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Li X, Zhao Z, Chi Y, Cui L, Zhang Q et al (2021) Iron deficiency plays essential roles in the trigger, treatment, and prognosis of autosomal dominant hypophosphatemic rickets. Osteoporos Int 32(4):737–745
Article
CAS
PubMed
Google Scholar
Larsson T, Nisbeth U, Ljunggren Ö, Jüppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64(6):2272–2279
Article
CAS
PubMed
Google Scholar
David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V et al (2016) Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89(1):135–146
Article
CAS
PubMed
PubMed Central
Google Scholar
Wheeler JA, Clinkenbeard EL (2019) Regulation of fibroblast growth factor 23 by iron, EPO, and HIF. Curr Mol Biol Rep 5(1):8–17
Article
PubMed
PubMed Central
Google Scholar
Zhou B, Bentham J, Di Cesare M, Bixby H, Danaei G, Cowan MJ et al (2017) Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 389(10064):37–55
Article
Google Scholar
Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K et al (2016) Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134(6):441–450
Article
PubMed
PubMed Central
Google Scholar
Ritz E (2009) The kidney: both culprit and victim. Hypertension 54(1):25–26
Article
CAS
PubMed
Google Scholar
Ravera M, Re M, Deferrari L, Vettoretti S, Deferrari G (2006) Importance of blood pressure control in chronic kidney disease. J Am Soc Nephrol 17(4 suppl 2):S98–S103
Article
PubMed
Google Scholar
Sarafidis PA, Li S, Chen S-C, Collins AJ, Brown WW, Klag MJ et al (2008) Hypertension awareness, treatment, and control in chronic kidney disease. Am J Med 121(4):332–340
Article
PubMed
Google Scholar
Bress AP, Irvin R, Muntner P (2017) Genetics of blood pressure: new insights into a complex trait. Am J kid Dis 69(6):723–725
Article
PubMed
Google Scholar
Zając M, Rybi-Szumińska A, Wasilewska A (2015) Urine fibroblast growth factor 23 levels in hypertensive children and adolescents. Croat Med J 56(4):344–350
Article
PubMed
PubMed Central
Google Scholar
Böckmann I, Lischka J, Richter B, Deppe J, Rahn A, Fischer D-C et al (2019) FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. Int J Mol Sci 20(18):4634
Article
PubMed Central
Google Scholar
Dai B, David V, Martin A, Huang J, Li H, Jiao Y et al (2012) A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS ONE 7(9):e44161
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G et al (2005) Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16(7):2205–2215
Article
CAS
PubMed
Google Scholar
de Borst MH, Vervloet MG, ter Wee PM, Navis G (2011) Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol 22(9):1603–1609
Article
PubMed
PubMed Central
Google Scholar
Li YC, Kong J, Wei M, Chen Z-F, Liu SQ, Cao L-P (2002) 1, 25-Dihydroxyvitamin D 3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110(2):229–238
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YC (2003) Vitamin D regulation of the renin–angiotensin system. J Cell Biochem 88(2):327–331
Article
CAS
PubMed
Google Scholar
Erben RG, Andrukhova O (2015) FGF23 regulation of renal tubular solute transport. Curr Opin Nephrol Hypertens 24(5):450–456
Article
CAS
PubMed
Google Scholar
Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B et al (2014) FGF 23 regulates renal sodium handling and blood pressure. EMBO Mol Med 6(6):744–759
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber TJ, Liu S, Indridason OS, Quarles LD (2003) Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 18(7):1227–1234
Article
CAS
PubMed
Google Scholar
Yu X, White KE (2005) FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev 16(2):221–232
Article
CAS
PubMed
Google Scholar
Huang X, Jiang Y, Xia W (2013) FGF23 and phosphate wasting disorders. Bone Res 1(1):120–132
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi K, Imanishi Y, Koshiyama H, Miyauchi A, Wakasa K, Kawata T et al (2006) Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci 78(20):2295–2301
Article
CAS
PubMed
Google Scholar
Tony EA, Sobh MA, Abdou MAA, Ali MF (2018) Serum changes in fibroblast growth factor-23 and in parameters of phosphorus metabolism after renal transplantation. J Egypt Soc Nephrol Transplant 18(2):46–56
Article
Google Scholar
Kawarazaki H, Shibagaki Y, Fukumoto S, Kido R, Nakajima I, Fuchinoue S et al (2011) The relative role of fibroblast growth factor 23 and parathyroid hormone in predicting future hypophosphatemia and hypercalcemia after living donor kidney transplantation: a 1-year prospective observational study. Nephrol Dial Transplant 26(8):2691–2695
Article
CAS
PubMed
Google Scholar
Bhan I, Shah A, Holmes J, Isakova T, Gutierrez O, Burnett S-A et al (2006) Post-transplant hypophosphatemia: tertiary ‘hyper-phosphatoninism’? Kidney Int 70(8):1486–1494
Article
CAS
PubMed
Google Scholar
Marsell R, Grundberg E, Krajisnik T, Mallmin H, Karlsson M, Mellstrom D et al (2008) Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men. Eur J Endocrinol 158(1):125–130
Article
CAS
PubMed
Google Scholar
Roos M, Lutz J, Salmhofer H, Luppa P, Knauss A, Braun S et al (2008) Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol 68(4):660–665
Article
CAS
Google Scholar
Kritmetapak K, Losbanos L, Berent TE, Ashrafzadeh-Kian SL, Algeciras-Schimnich A, Hines JM et al (2021) Hyperphosphatemia with elevated serum PTH and FGF23, reduced 1, 25 (OH) 2 D and normal FGF7 concentrations characterize patients with CKD. BMC Nephrol 22(1):1–8
Article
Google Scholar
Tentori F, Blayney MJ, Albert JM, Gillespie BW, Kerr PG, Bommer J et al (2008) Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J kid Dis 52(3):519–530
Article
CAS
PubMed
Google Scholar
Slinin Y, Foley RN, Collins AJ (2005) Calcium, phosphorus, parathyroid hormone, and cardiovascular disease in hemodialysis patients: the USRDS waves 1, 3, and 4 study. J Am Soc Nephrol 16(6):1788–1793
Article
CAS
PubMed
Google Scholar
Seiler S, Heine GH, Fliser D (2009) Clinical relevance of FGF-23 in chronic kidney disease. Kidney Int 76:S34–S42
Article
Google Scholar
Rodelo-Haad C, Rodríguez-Ortiz ME, Martin-Malo A, Pendon-Ruiz de Mier MV, Agüera ML, Muñoz-Castañeda JR et al (2018) Phosphate control in reducing FGF23 levels in hemodialysis patients. PLoS ONE 13(8):e0201537
Article
PubMed
PubMed Central
Google Scholar
McGovern AP, de Lusignan S, van Vlymen J, Liyanage H, Tomson CR, Gallagher H et al (2013) Serum phosphate as a risk factor for cardiovascular events in people with and without chronic kidney disease: a large community based cohort study. PLoS ONE 8(9):e74996
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross P, Six I, Kamel S, Massy ZA (2014) Vascular toxicity of phosphate in chronic kidney disease. Circulation J 78(10):2339–2346
Article
CAS
Google Scholar
Disthabanchong S (2018) Phosphate and cardiovascular disease beyond chronic kidney disease and vascular calcification. Int J Nephrol 2018:3162806
Article
PubMed
PubMed Central
Google Scholar
Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G (2005) Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112(17):2627–2633
Article
CAS
PubMed
Google Scholar
Dhingra R, Sullivan LM, Fox CS, Wang TJ, D’Agostino RB, Gaziano JM et al (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Int Med 167(9):879–885
Article
CAS
Google Scholar
Zhou C, Shi Z, Ouyang N, Ruan X (2021) Hyperphosphatemia and cardiovascular disease. Front Cell Dev Biol 9:644363
Article
PubMed
PubMed Central
Google Scholar
Huang CX, Plantinga LC, Fink NE, Melamed ML, Coresh J, Powe NR (2008) Phosphate levels and blood pressure in incident hemodialysis patients: a longitudinal study. Adv Chronic Kidney Dis 15(3):321–331
Article
PubMed
Google Scholar
Wang Q, Cui Y, Yogendranath P, Wang N (2018) Blood pressure and heart rate variability are linked with hyperphosphatemia in chronic kidney disease patients. Chronobiol Int 35(10):1329–1334
Article
CAS
PubMed
Google Scholar
Patel RK, Jeemon P, Stevens KK, Mccallum L, Hastie CE, Schneider A et al (2015) Association between serum phosphate and calcium, long-term blood pressure, and mortality in treated hypertensive adults. J Hypertens 33(10):2046–2053
Article
CAS
PubMed
Google Scholar
Shuto E, Taketani Y, Tanaka R, Harada N, Isshiki M, Sato M et al (2009) Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol 20(7):1504–1512
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevens KK, Denby L, Patel RK, Mark PB, Kettlewell S, Smith GL et al (2017) Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway. Nephrol Dial Transplant 32(10):1617–1627
CAS
PubMed
Google Scholar
Olmos G, Martínez-Miguel P, Alcalde-Estevez E, Medrano D, Sosa P, Rodríguez-Mañas L et al (2017) Hyperphosphatemia induces senescence in human endothelial cells by increasing endothelin-1 production. Aging Cell 16(6):1300–1312
Article
CAS
PubMed
PubMed Central
Google Scholar
Bozic M, Panizo S, Sevilla MA, Riera M, Soler MJ, Pascual J et al (2014) High phosphate diet increases arterial blood pressure via a parathyroid hormone mediated increase of renin. J Hypertens 32(9):1822–1832
Article
CAS
PubMed
Google Scholar
Mizuno M, Mitchell JH, Crawford S, Huang C-L, Maalouf N, Hu M-C et al (2016) High dietary phosphate intake induces hypertension and augments exercise pressor reflex function in rats. Am J Physiol Regul Integr Comp Physiol 311(1):R39–R48
Article
PubMed
PubMed Central
Google Scholar
Da J, Xie X, Wolf M, Disthabanchong S, Wang J, Zha Y et al (2015) Serum phosphorus and progression of CKD and mortality: a meta-analysis of cohort studies. Am J Kid Dis 66(2):258–265
Article
CAS
PubMed
Google Scholar
Giachelli CM (2009) The emerging role of phosphate in vascular calcification. Kidney Int 75(9):890–897
Article
CAS
PubMed
PubMed Central
Google Scholar
Cozzolino M, Gallieni M, Brancaccio D (2008) The mechanisms of hyperphosphatemia-induced vascular calcification. Int J Artif Organs 31(12):1002–1003
Article
CAS
PubMed
Google Scholar
Cozzolino M, Ciceri P, Galassi A, Mangano M, Carugo S, Capelli I et al (2019) The key role of phosphate on vascular calcification. Toxins 11(4):213
Article
CAS
PubMed Central
Google Scholar
Gutiérrez OM, Anderson C, Isakova T, Scialla J, Negrea L, Anderson AH et al (2010) Low socioeconomic status associates with higher serum phosphate irrespective of race. J Am Soc Nephrol 21(11):1953–1960
Article
PubMed
PubMed Central
Google Scholar
Gutiérrez OM, Isakova T, Enfield G, Wolf M (2011) Impact of poverty on serum phosphate concentrations in the Third National Health and Nutrition Examination Survey. J Ren Nutr 21(2):140–148
Article
PubMed
Google Scholar
Erem S, Razzaque MS (2018) Dietary phosphate toxicity: An emerging global health concern. Histochem Cell Biol 150(6):711–719
Article
CAS
PubMed
Google Scholar
Kim H-K, Mizuno M, Vongpatanasin W (2019) Phosphate, the forgotten mineral in hypertension. Curr Opin Nephrol Hypertens 28(4):345–351
Article
PubMed
PubMed Central
Google Scholar
Vervloet MG, van Zuilen AD, Heijboer AC, ter Wee PM, Bots ML, Blankestijn PJ et al (2012) Fibroblast growth factor 23 is associated with proteinuria and smoking in chronic kidney disease: an analysis of the MASTERPLAN cohort. BMC Nephrol 13(1):1–8
Article
Google Scholar
Kim H, Park J, Nam KH, Jhee JH, Yun H-R, Park JT et al (2020) The effect of interactions between proteinuria, activity of fibroblast growth factor 23 and serum phosphate on renal progression in patients with chronic kidney disease: a result from the Korean cohort study for outcome in patients with chronic kidney disease study. Nephrol Dial Transplant 35(3):438–446
Article
PubMed
Google Scholar
Ozeki M, Fujita S-i, Kizawa S, Morita H, Sohmiya K, Hoshiga M et al (2014) Association of serum levels of FGF23 and α-Klotho with glomerular filtration rate and proteinuria among cardiac patients. BMC Nephrol 15(1):1–8
Article
Google Scholar
Ix JH, Shlipak MG, Wassel CL, Whooley MA (2010) Fibroblast growth factor-23 and early decrements in kidney function: the Heart and Soul Study. Nephrol Dial Transplant 25(3):993–997
Article
CAS
PubMed
Google Scholar
Tawfik AA, Hanna ET, Abdel-Maksoud AM (2015) Anemia and iron deficiency anemia in Egypt. IOSR J Pharm 5(4):30–34
Google Scholar
Velasquez MT, Beddhu S, Nobakht E, Rahman M, Raj DS (2016) Ambulatory blood pressure in chronic kidney disease: ready for prime time? Kidney Int Rep 1(2):94–104
Article
PubMed
PubMed Central
Google Scholar